Vladimirova YV, Zadkov VN. Quantum Optics in Nanostructures.
NANOMATERIALS (BASEL, SWITZERLAND) 2021;
11:1919. [PMID:
34443750 PMCID:
PMC8398959 DOI:
10.3390/nano11081919]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023]
Abstract
This review is devoted to the study of effects of quantum optics in nanostructures. The mechanisms by which the rates of radiative and nonradiative decay are modified are considered in the model of a two-level quantum emitter (QE) near a plasmonic nanoparticle (NP). The distributions of the intensity and polarization of the near field around an NP are analyzed, which substantially depend on the polarization of the external field and parameters of plasmon resonances of the NP. The effects of quantum optics in the system NP + QE plus external laser field are analyzed-modification of the resonance fluorescence spectrum of a QE in the near field, bunching/antibunching phenomena, quantum statistics of photons in the spectrum, formation of squeezed states of light, and quantum entangled states in these systems.
Collapse