1
|
Masuda T, Hiramoto A, Ang DG, Meisenhelder C, Panda CD, Sasao N, Uetake S, Wu X, DeMille DP, Doyle JM, Gabrielse G, Yoshimura K. High-sensitivity low-noise photodetector using a large-area silicon photomultiplier. OPTICS EXPRESS 2023; 31:1943-1957. [PMID: 36785218 DOI: 10.1364/oe.475109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
The application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs. This work presents a SiPM-embedded compact large-area photon detection module. Various techniques are adopted to overcome the disadvantages of SiPMs so that it can be generally utilized as an upgrade from a PMT. A simple cooling component and recently developed optical crosstalk suppression method are adopted to reduce the noise which is more serious for larger-area SiPMs. A dedicated readout circuit increases the response frequency and reduces the number of readout channels. We favorably compare this design with a conventional PMT and obtain both higher photon detection efficiency and larger-area acceptance.
Collapse
|
2
|
Yan T, Wang X, Liu S, Fan D, Xu X, Zeng Q, Xie H, Yang X, Zhu S, Ma X, Yuan Z, Chen X. Confocal Laser Scanning Microscopy Based on a Silicon Photomultiplier for Multicolor In Vivo Imaging in Near-Infrared Regions I and II. SMALL METHODS 2022; 6:e2201105. [PMID: 36351753 DOI: 10.1002/smtd.202201105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is expected to exhibit a better imaging performance in the second near-infrared (NIR-II) windows with weak tissue scattering and autofluorescence. However, the indium gallium arsenide (InGaAs) detectors currently used for imaging in the NIR-II region are prohibitively expensive, hampering its extensive biomedical applications. In this study, a novel NIR-II CLSM system is developed by using the inexpensive silicon photomultiplier (SiPM) that can perform the multicolor biological imaging in vivo. Using IR-780 iodide as the contrast agent, the NIR-II imaging capability of constructed CLSM is inspected, demonstrating a spatial resolution of 1.68 µm (close to the diffraction limit) and a fluorophore detection sensitivity as low as 100 nm. In particular, it is discovered that the multicolor imaging performance in both NIR-I and NIR-II windows is comparable to those from multialkali and InGaAs photomultiplier tubes. In addition, 3D NIR-II CLSM is also conducted for in vivo imaging of the vascular structure in mouse ear and subcutaneous tumors. To the best of authors' knowledge, this is the first time that a low-cost detector based on a SiPM has been used for microscopic imaging of trailing fluorescence signals in the NIR-II region of an NIR fluorescent probe.
Collapse
Affiliation(s)
- Tianyu Yan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xinyu Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Siting Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Dawei Fan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xinyi Xu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Qi Zeng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hui Xie
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaoli Yang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shouping Zhu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 51055, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xueli Chen
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 51055, China
| |
Collapse
|
3
|
Ban HY, Barrett GM, Borisevich A, Chaturvedi A, Dahle JL, Dehghani H, Dubois J, Field RM, Gopalakrishnan V, Gundran A, Henninger M, Ho WC, Hughes HD, Jin R, Kates-Harbeck J, Landy T, Leggiero M, Lerner G, Aghajan ZM, Moon M, Olvera I, Park S, Patel MJ, Perdue KL, Siepser B, Sorgenfrei S, Sun N, Szczepanski V, Zhang M, Zhu Z. Kernel Flow: a high channel count scalable time-domain functional near-infrared spectroscopy system. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210278SSR. [PMID: 35043610 PMCID: PMC8765296 DOI: 10.1117/1.jbo.27.7.074710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. AIM Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. APPROACH The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. RESULTS We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. CONCLUSIONS The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.
Collapse
Affiliation(s)
- Han Y. Ban
- Kernel, Los Angeles, California, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Rong Jin
- Kernel, Los Angeles, California, United States
| | | | - Thanh Landy
- Kernel, Los Angeles, California, United States
| | | | | | | | | | - Isai Olvera
- Kernel, Los Angeles, California, United States
| | | | | | | | | | | | - Nathan Sun
- Kernel, Los Angeles, California, United States
| | | | - Mary Zhang
- Kernel, Los Angeles, California, United States
| | - Zhenye Zhu
- Kernel, Los Angeles, California, United States
| |
Collapse
|
4
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
5
|
Masuda T, Ang DG, Hutzler NR, Meisenhelder C, Sasao N, Uetake S, Wu X, DeMille D, Gabrielse G, Doyle JM, Yoshimura K. Suppression of the optical crosstalk in a multi-channel silicon photomultiplier array. OPTICS EXPRESS 2021; 29:16914-16926. [PMID: 34154244 DOI: 10.1364/oe.424460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression. The proposed technique can be easily applied to suppress the optical crosstalk in SiPMs in cases where filtering near infrared light is compatible with the application.
Collapse
|
6
|
The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical techniques based on diffuse optics have been around for decades now and are making their way into the day-to-day medical applications. Even though the physics foundations of these techniques have been known for many years, practical implementation of these technique were hindered by technological limitations, mainly from the light sources and/or detection electronics. In the past 20 years, the developments of supercontinuum laser (SCL) enabled to unlock some of these limitations, enabling the development of system and methodologies relevant for medical use, notably in terms of spectral monitoring. In this review, we focus on the use of SCL in biomedical diffuse optics, from instrumentation and methods developments to their use for medical applications. A total of 95 publications were identified, from 1993 to 2021. We discuss the advantages of the SCL to cover a large spectral bandwidth with a high spectral power and fast switching against the disadvantages of cost, bulkiness, and long warm up times. Finally, we summarize the utility of using such light sources in the development and application of diffuse optics in biomedical sciences and clinical applications.
Collapse
|
7
|
Di Sieno L, Behera A, Rohilla S, Ferocino E, Contini D, Torricelli A, Krämer B, Koberling F, Pifferi A, Mora AD. Probe-hosted large area silicon photomultiplier and high-throughput timing electronics for enhanced performance time-domain functional near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6389-6412. [PMID: 33282497 PMCID: PMC7687960 DOI: 10.1364/boe.400868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 05/06/2023]
Abstract
Two main bottlenecks prevent time-domain diffuse optics instruments to reach their maximum performances, namely the limited light harvesting capability of the detection chain and the bounded data throughput of the timing electronics. In this work, for the first time to our knowledge, we overcome both those limitations using a probe-hosted large area silicon photomultiplier detector coupled to high-throughput timing electronics. The system performances were assessed based on international protocols for diffuse optical imagers showing better figures with respect to a state-of-the-art device. As a first step towards applications, proof-of-principle in-vivo brain activation measurements demonstrated superior signal-to-noise ratio as compared to current technologies.
Collapse
Affiliation(s)
- L. Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A. Behera
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - S. Rohilla
- PicoQuant Innovation GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - E. Ferocino
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - D. Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A. Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - B. Krämer
- PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - F. Koberling
- PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - A. Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A. Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
8
|
Gundacker S, Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector. ACTA ACUST UNITED AC 2020; 65:17TR01. [DOI: 10.1088/1361-6560/ab7b2d] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Papadimitriou KI, Vidal Rosas EE, Zhang E, Cooper RJ, Hebden JC, Arridge SR, Powell S. Dual wavelength spread-spectrum time-resolved diffuse optical instrument for the measurement of human brain functional responses. BIOMEDICAL OPTICS EXPRESS 2020; 11:3477-3490. [PMID: 33014545 PMCID: PMC7510926 DOI: 10.1364/boe.393586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, with their associated cost, complexity, and size. In this work, we present an alternative approach that employs spread-spectrum excitation to enable the development of a small, low-cost, dual-wavelength system using vertical-cavity surface-emitting lasers. Since the optimal wavelengths and drive parameters for optical spectroscopy are not served by commercially available modules as used in our previous single-wavelength demonstration platform, we detail the design of a custom instrument and demonstrate its performance in resolving haemodynamic changes in human subjects during apnoea and cognitive task experiments.
Collapse
Affiliation(s)
- Konstantinos I. Papadimitriou
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- These authors contributed equally to this work
| | - Ernesto E. Vidal Rosas
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- These authors contributed equally to this work
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Simon R. Arridge
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Samuel Powell
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
10
|
Real-Time Dual-Wavelength Time-Resolved Diffuse Optical Tomography System for Functional Brain Imaging Based on Probe-Hosted Silicon Photomultipliers. SENSORS 2020; 20:s20102815. [PMID: 32429158 PMCID: PMC7287927 DOI: 10.3390/s20102815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
Near-infrared diffuse optical tomography is a non-invasive photonics-based imaging technology suited to functional brain imaging applications. Recent developments have proved that it is possible to build a compact time-domain diffuse optical tomography system based on silicon photomultipliers (SiPM) detectors. The system presented in this paper was equipped with the same eight SiPM probe-hosted detectors, but was upgraded with six injection fibers to shine the sample at several points. Moreover, an automatic switch was included enabling a complete measurement to be performed in less than one second. Further, the system was provided with a dual-wavelength (670 nm and 820 nm) light source to quantify the oxy- and deoxy-hemoglobin concentration evolution in the tissue. This novel system was challenged against a solid phantom experiment, and two in-vivo tests, namely arm occlusion and motor cortex brain activation. The results show that the tomographic system makes it possible to follow the evolution of brain activation over time with a 1s-resolution.
Collapse
|
11
|
Mosca S, Lanka P, Stone N, Konugolu Venkata Sekar S, Matousek P, Valentini G, Pifferi A. Optical characterization of porcine tissues from various organs in the 650-1100 nm range using time-domain diffuse spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1697-1706. [PMID: 32206436 PMCID: PMC7075607 DOI: 10.1364/boe.386349] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 05/10/2023]
Abstract
We present a systematic characterization of the optical properties (µa and µs') of nine representative ex vivo porcine tissues over a broadband spectrum (650-1100 nm). We applied time-resolved diffuse optical spectroscopy measurements for recovering the optical properties of porcine tissues depicting a realistic representation of the tissue heterogeneity and morphology likely to be found in different ex vivo tissues. The results demonstrate a large spectral and inter-tissue variation of optical properties. The data can be exploited for planning or simulating ex vivo experiments with various biophotonics techniques, or even to construct artificial structures mimicking specific pathologies exploiting the wide assortment in optical properties.
Collapse
Affiliation(s)
- Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, OX11 0QX, United Kingdom
- These authors contributed equally to this research
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- These authors contributed equally to this research
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | | | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UK Research and Innovation, Harwell Campus, OX11 0QX, United Kingdom
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milano, Italy
| |
Collapse
|
12
|
Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work reviews physical concepts, technologies and applications of time-domain diffuse optics based on time-gated single-photon detection. This particular photon detection strategy is of the utmost importance in the diffuse optics field as it unleashes the full power of the time-domain approach by maximizing performances in terms of contrast produced by a localized perturbation inside the scattering medium, signal-to-noise ratio, measurement time and dynamic range, penetration depth and spatial resolution. The review covers 15 years of theoretical studies, technological progresses, proof of concepts and design of laboratory systems based on time-gated single-photon detection with also few hints on other fields where the time-gated detection strategy produced and will produce further impact.
Collapse
|
13
|
Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents recent developments and a wide overview of broadband time domain diffuse optical spectroscopy (TD-DOS). Various topics including physics of photon migration, advanced instrumentation, methods of analysis, applications covering multiple domains (tissue chromophore, in vivo studies, food, wood, pharmaceutical industry) are elaborated. The key role of standardization and recent studies in that direction are discussed. Towards the end, a brief outlook is presented on the current status and future trends in broadband TD-DOS.
Collapse
|
14
|
Saha S, Lu Y, Lesage F, Sawan M. Wearable SiPM-Based NIRS Interface Integrated With Pulsed Laser Source. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1313-1323. [PMID: 31689208 DOI: 10.1109/tbcas.2019.2951539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present the design of a miniaturized probe integrating silicon photomultiplier and light-pulsing electronics in a single 2 × 2 mm2 complementary metal-oxide-semiconductor (CMOS) chip which includes functional blocks such as a fast pulse-laser driver and synchronized single-photon detection circuit. The photon pulses can be either counted on-chip or processed by an external high-speed electronic module such as time-corelated single photon counting (TCSPC) unit. The integrated circuit was assembled on a printed circuit board (PCB) and also on a 2.5D silicon interposer platform of size 1 cm and interfaced with a silicon photomultiplier (SiPM), vertical cavity surface emitting laser (VCSEL) and other ancillary components such as capacitors and resistors. Our approach of integrating an optical interface to optimize light collection on the small active area and light emission from the vertical-cavity surface-emitting laser (VSCEL) will facilitate clinical adoption in many applications and change the landscape of Near Infrared Spectroscopy (NIRS) hardware commercially due to significant optode-size reduction and the elimination of optical fibers.
Collapse
|
15
|
Oraiqat I, DeBruin S, Pearce R, Como C, Mikell J, Taylor C, Way J, Suarez M, Rehemtulla A, Clarke R, El Naqa I. Silicon Photomultipliers for Deep Tissue Cerenkov Emission Detection During External Beam Radiotherapy. IEEE PHOTONICS JOURNAL 2019; 11:6802316. [PMID: 33747354 PMCID: PMC7971172 DOI: 10.1109/jphot.2019.2931845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cerenkov Emission (CE) during external beam radiation therapy (EBRT) from a linear accelerator (Linac) has been demonstrated as a useful tool for radiotherapy quality assurance and potentially other applications for online tracking of tumors during treatment delivery. However, some of the current challenges that are impacting the potential of CE are related to the limited detection sensitivity and the lack of flexible tools to fit into an already complex treatment delivery environment. Silicon photomultiplier (SiPM) solid-state devices are new promising tools for low light detection due to their extreme sensitivity that mirrors photomultiplier tubes and yet have a form factor that is similar to silicon photodiodes, allowing for improved flexibility in device design that may help in the process of wider clinical applicability. In this work, we assess the feasibility of using SiPMs to detect CE during EBRT from a Linac and contrast their performance with commercially available silicon photodiodes (PDs). We demonstrate the feasibility of the SiPM based probes for standard dosimetry measurements. We also demonstrate that CE optical signals can be detected from tissue depths about five times greater than that for standard probes based on PDs, making our SiPM probe an enabling technology of CE measurements, particularly for deep tissue applications.
Collapse
Affiliation(s)
- Ibrahim Oraiqat
- Radiation Oncology Department, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Robin Pearce
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48108 USA
| | - Christopher Como
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48108 USA
| | - Justin Mikell
- Radiation Oncology Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles Taylor
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48108 USA
| | - John Way
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48108 USA
| | - Manuel Suarez
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48108 USA
| | - Alnawaz Rehemtulla
- Radiation Oncology Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Roy Clarke
- Endectra, LLC, Ann Arbor, MI 48109 USA
- Physics Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Issam El Naqa
- Radiation Oncology Department, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
16
|
Di Sieno L, Contini D, Lo Presti G, Cortese L, Mateo T, Rosinski B, Venturini E, Panizza P, Mora M, Aranda G, Squarcia M, Farina A, Durduran T, Taroni P, Pifferi A, Mora AD. Systematic study of the effect of ultrasound gel on the performances of time-domain diffuse optics and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:3899-3915. [PMID: 31452983 PMCID: PMC6701515 DOI: 10.1364/boe.10.003899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 05/06/2023]
Abstract
Recently, multimodal imaging has gained an increasing interest in medical applications thanks to the inherent combination of strengths of the different techniques. For example, diffuse optics is used to probe both the composition and the microstructure of highly diffusive media down to a depth of few centimeters, but its spatial resolution is intrinsically low. On the other hand, ultrasound imaging exhibits the higher spatial resolution of morphological imaging, but without providing solid constitutional information. Thus, the combination of diffuse optical imaging and ultrasound may improve the effectiveness of medical examinations, e.g. for screening or diagnosis of tumors. However, the presence of an ultrasound coupling gel between probe and tissue can impair diffuse optical measurements like diffuse optical spectroscopy and diffuse correlation spectroscopy, since it may provide a direct path for photons between source and detector. A systematic study on the effect of different ultrasound coupling fluids was performed on tissue-mimicking phantoms, confirming that a water-clear gel can produce detrimental effects on optical measurements when recovering absorption/reduced scattering coefficients from time-domain spectroscopy acquisitions as well as particle Brownian diffusion coefficient from diffuse correlation spectroscopy ones. On the other hand, we show the suitability for optical measurements of other types of diffusive fluids, also compatible with ultrasound imaging.
Collapse
Affiliation(s)
- Laura Di Sieno
- Politecnico di Milano - Dipartimento di Fisica, Milano, Italy
| | - Davide Contini
- Politecnico di Milano - Dipartimento di Fisica, Milano, Italy
| | - Giuseppe Lo Presti
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Lorenzo Cortese
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | | | - Elena Venturini
- Scientific Institute (IRCCS) Ospedale San Raffaele - Breast Imaging Unit, Milano, Italy
| | - Pietro Panizza
- Scientific Institute (IRCCS) Ospedale San Raffaele - Breast Imaging Unit, Milano, Italy
| | - Mireia Mora
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Gloria Aranda
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Mattia Squarcia
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Andrea Farina
- Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paola Taroni
- Politecnico di Milano - Dipartimento di Fisica, Milano, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano - Dipartimento di Fisica, Milano, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | | |
Collapse
|
17
|
Wheelock MD, Culver JP, Eggebrecht AT. High-density diffuse optical tomography for imaging human brain function. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:051101. [PMID: 31153254 PMCID: PMC6533110 DOI: 10.1063/1.5086809] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/14/2019] [Indexed: 05/08/2023]
Abstract
This review describes the unique opportunities and challenges for noninvasive optical mapping of human brain function. Diffuse optical methods offer safe, portable, and radiation free alternatives to traditional technologies like positron emission tomography or functional magnetic resonance imaging (fMRI). Recent developments in high-density diffuse optical tomography (HD-DOT) have demonstrated capabilities for mapping human cortical brain function over an extended field of view with image quality approaching that of fMRI. In this review, we cover fundamental principles of the diffusion of near infrared light in biological tissue. We discuss the challenges involved in the HD-DOT system design and implementation that must be overcome to acquire the signal-to-noise necessary to measure and locate brain function at the depth of the cortex. We discuss strategies for validation of the sensitivity, specificity, and reliability of HD-DOT acquired maps of cortical brain function. We then provide a brief overview of some clinical applications of HD-DOT. Though diffuse optical measurements of neurophysiology have existed for several decades, tremendous opportunity remains to advance optical imaging of brain function to address a crucial niche in basic and clinical neuroscience: that of bedside and minimally constrained high fidelity imaging of brain function.
Collapse
Affiliation(s)
- Muriah D. Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
18
|
Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081612] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Near-infrared spectroscopy (NIRS) is an optical technique that can measure brain tissue oxygenation and haemodynamics in real-time and at the patient bedside allowing medical doctors to access important physiological information. However, despite this, the use of NIRS in a clinical environment is hindered due to limitations, such as poor reproducibility, lack of depth sensitivity and poor brain-specificity. Time domain NIRS (or TD-NIRS) can resolve these issues and offer detailed information of the optical properties of the tissue, allowing better physiological information to be retrieved. This is achieved at the cost of increased instrument complexity, operation complexity and price. In this review, we focus on brain monitoring clinical applications of TD-NIRS. A total of 52 publications were identified, spanning the fields of neonatal imaging, stroke assessment, traumatic brain injury (TBI) assessment, brain death assessment, psychiatry, peroperative care, neuronal disorders assessment and communication with patient with locked-in syndrome. In all the publications, the advantages of the TD-NIRS measurement to (1) extract absolute values of haemoglobin concentration and tissue oxygen saturation, (2) assess the reduced scattering coefficient, and (3) separate between extra-cerebral and cerebral tissues, are highlighted; and emphasize the utility of TD-NIRS in a clinical context. In the last sections of this review, we explore the recent developments of TD-NIRS, in terms of instrumentation and methodologies that might impact and broaden its use in the hospital.
Collapse
|
19
|
Sekar SKV, Pacheco A, Martella P, Li H, Lanka P, Pifferi A, Andersson-Engels S. Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms. BIOMEDICAL OPTICS EXPRESS 2019; 10:2090-2100. [PMID: 31061772 PMCID: PMC6484985 DOI: 10.1364/boe.10.002090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 05/19/2023]
Abstract
We present a tissue mimicking optical phantom recipe to create robust well tested solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres (scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was characterized over a broadband spectrum (600-1100 nm) for a wide range of optical properties (absorption 0.1-1 cm-1, reduced scattering 5-25 cm-1) that are relevant to human organs. The results of linearity show a proper scaling of optical properties as well as the absence of coupling between the absorber and scatterer at different concentrations. A reproducibility of 4% among different preparations was obtained, with a similar grade of spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of our work that is 3D printing human organs of biomedical relevance.
Collapse
Affiliation(s)
| | - Andrea Pacheco
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Pierluigi Martella
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Haiyang Li
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- School of Mechanical Engineering and Automation, Northeastern University, China
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Stefan Andersson-Engels
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
20
|
Kitsmiller VJ, O'Sullivan TD. Next-generation frequency domain diffuse optical imaging systems using silicon photomultipliers. OPTICS LETTERS 2019; 44:562-565. [PMID: 30702679 DOI: 10.1364/ol.44.000562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/23/2018] [Indexed: 05/27/2023]
Abstract
Diffuse optical imaging of biological tissue is a well-established methodology used to measure functional information from intrinsic contrast due to hemoglobin, water, and lipid. This information is exploited in frequency domain diffuse optical spectroscopy (FD-DOS) systems, which have been used to investigate chemotherapy response, optical mammography, and brain imaging. FD-DOS depth sensitivity and dynamic range are typically constrained by photodetector sensitivity. Here we present FD-DOS utilizing a silicon photomultiplier (SiPM) detector that has a higher signal-to-noise ratio (SNR) compared to an avalanche photodiode (APD), and thus enables extended source-detector (S/D) separations and increased depth penetration. We find the SiPM to have 10-30 dB greater SNR than a comparably sized APD while detecting 1.5-2 orders of magnitude lower light levels, down to ∼4 pW at 50 MHz modulation. The SiPM and APD recover optical property values of tissue-simulating phantoms within 13% agreement and are stable with 1% coefficient of variation over one hour. Finally, the SiPM is used to accurately recover optical properties in a reflectance geometry at S/D separations up to 48 mm in phantoms mimicking human breast tissue.
Collapse
|
21
|
0.16 µm⁻BCD Silicon Photomultipliers with Sharp Timing Response and Reduced Correlated Noise. SENSORS 2018; 18:s18113763. [PMID: 30400328 PMCID: PMC6263763 DOI: 10.3390/s18113763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022]
Abstract
Silicon photomultipliers (SiPMs) have improved significantly over the last years and now are widely employed in many different applications. However, the custom fabrication technologies exploited for commercial SiPMs do not allow the integration of any additional electronics, e.g., on-chip readout and analog (or digital) processing circuitry. In this paper, we present the design and characterization of two microelectronics-compatible SiPMs fabricated in a 0.16 µm–BCD (Bipolar-CMOS-DMOS) technology, with 0.67 mm × 0.67 mm total area, 10 × 10 square pixels and 53% fill-factor (FF). The photon detection efficiency (PDE) surpasses 33% (FF included), with a dark-count rate (DCR) of 330 kcps. Although DCR density is worse than that of state-of-the-art SiPMs, the proposed fabrication technology enables the development of cost-effective systems-on-chip (SoC) based on SiPM detectors. Furthermore, correlated noise components, i.e., afterpulsing and optical crosstalk, and photon timing response are comparable to those of best-in-class commercial SiPMs.
Collapse
|
22
|
Alayed M, Palubiak DP, Deen MJ. Characterization of a Time-Resolved Diffuse Optical Spectroscopy Prototype Using Low-Cost, Compact Single Photon Avalanche Detectors for Tissue Optics Applications. SENSORS 2018; 18:s18113680. [PMID: 30380688 PMCID: PMC6263510 DOI: 10.3390/s18113680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
Time-resolved diffuse optical spectroscopy (TR-DOS) is an increasingly used method to determine the optical properties of diffusive media, particularly for medical applications including functional brain, breast and muscle measurements. For medical imaging applications, important features of new generation TR-DOS systems are low-cost, small size and efficient inverse modeling. To address the issues of low-cost, compact size and high integration capabilities, we have developed free-running (FR) single-photon avalanche diodes (SPADs) using 130 nm silicon complementary metal-oxide-semiconductor (CMOS) technology and used it in a TR-DOS prototype. This prototype was validated using assessments from two known protocols for evaluating TR-DOS systems for tissue optics applications. Following the basic instrumental performance protocol, our prototype had sub-nanosecond total instrument response function and low differential non-linearity of a few percent. Also, using light with optical power lower than the maximum permissible exposure for human skin, this prototype can acquire raw data in reflectance geometry for phantoms with optical properties similar to human tissues. Following the MEDPHOT protocol, the absolute values of the optical properties for several homogeneous phantoms were retrieved with good accuracy and linearity using a best-fitting model based on the Levenberg-Marquardt method. Overall, the results of this study show that our silicon CMOS-based SPAD detectors can be used to build a multichannel TR-DOS prototype. Also, real-time functional monitoring of human tissue such as muscles, breasts and newborn heads will be possible by integrating this detector with a time-to-digital converter (TDC).
Collapse
Affiliation(s)
- Mrwan Alayed
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
- National Nanotechnology Center, King Abdul Aziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.
| | - Darek P Palubiak
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - M Jamal Deen
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
23
|
Ferocino E, Martinenghi E, Dalla Mora A, Pifferi A, Cubeddu R, Taroni P. High throughput detection chain for time domain optical mammography. BIOMEDICAL OPTICS EXPRESS 2018; 9:755-770. [PMID: 29552410 PMCID: PMC5854076 DOI: 10.1364/boe.9.000755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 05/04/2023]
Abstract
A novel detection chain, based on 8 Silicon Photomultipliers (forming a wide-area custom-made detection probe) and on a time-to-digital converter, was developed to improve the signal level in multi-wavelength (635-1060 nm) time domain optical mammography. The performances of individual components and of the overall chain were assessed using established protocols (BIP and MEDPHOT). The photon detection efficiency was improved by up to 3 orders of magnitude, and the maximum count rate level was increased by a factor of 10 when compared to the previous system, based on photomultiplier tubes and conventional time-correlated single-photon counting boards. In the estimate of optical parameters, the novel detection chain provides performances comparable to the previous system, widely validated in clinics, but with higher signal level, higher robustness, and at a lower price per channel, thus targeting important requirements for clinical applications.
Collapse
Affiliation(s)
- Edoardo Ferocino
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Edoardo Martinenghi
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Alberto Dalla Mora
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
- CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Rinaldo Cubeddu
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Paola Taroni
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
- CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| |
Collapse
|
24
|
Ortiz-Rascón E, Bruce NC, Garduño-Mejía J, Carrillo-Torres R, Hernández-Paredes J, Álvarez-Ramos ME. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media. APPLIED OPTICS 2017; 56:9199-9204. [PMID: 29216090 DOI: 10.1364/ao.56.009199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.
Collapse
|
25
|
Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges. SENSORS 2017; 17:s17092115. [PMID: 28906462 PMCID: PMC5621067 DOI: 10.3390/s17092115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.
Collapse
|
26
|
Abdalmalak A, Milej D, Diop M, Shokouhi M, Naci L, Owen AM, St. Lawrence K. Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently? BIOMEDICAL OPTICS EXPRESS 2017; 8:2162-2172. [PMID: 28736662 PMCID: PMC5516814 DOI: 10.1364/boe.8.002162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that a subgroup of patients diagnosed as being in a vegetative state are aware and able to communicate by performing a motor imagery task in response to commands. Due to the fMRI's cost and accessibility, there is a need for exploring different imaging modalities that can be used at the bedside. A promising technique is functional near infrared spectroscopy (fNIRS) that has been successfully applied to measure brain oxygenation in humans. Due to the limited depth sensitivity of continuous-wave NIRS, time-resolved (TR) detection has been proposed as a way of enhancing the sensitivity to the brain, since late arriving photons have a higher probability of reaching the brain. The goal of this study was to assess the feasibility and sensitivity of TR fNIRS in detecting brain activity during motor imagery. Fifteen healthy subjects were recruited in this study, and the fNIRS results were validated using fMRI. The change in the statistical moments of the distribution of times of flight (number of photons, mean time of flight and variance) were calculated for each channel to determine the presence of brain activity. The results indicate up to an 86% agreement between fMRI and TR-fNIRS and the sensitivity ranging from 64 to 93% with the highest value determined for the mean time of flight. These promising results highlight the potential of TR-fNIRS as a portable brain computer interface for patients with disorder of consciousness.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Mahsa Shokouhi
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Lorina Naci
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Adrian M. Owen
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
27
|
Konugolu Venkata Sekar S, Pagliazzi M, Negredo E, Martelli F, Farina A, Dalla Mora A, Lindner C, Farzam P, Pérez-Álvarez N, Puig J, Taroni P, Pifferi A, Durduran T. In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies. PLoS One 2016; 11:e0168426. [PMID: 27997565 PMCID: PMC5172608 DOI: 10.1371/journal.pone.0168426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600-1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care.
Collapse
Affiliation(s)
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Eugènia Negredo
- Lluita contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic, Barcelona, Spain
| | - Fabrizio Martelli
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Andrea Farina
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | | | - Claus Lindner
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Núria Pérez-Álvarez
- Lluita contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
- Statistics and Operations Research Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Jordi Puig
- Lluita contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paola Taroni
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
Di Sieno L, Zouaoui J, Hervé L, Pifferi A, Farina A, Martinenghi E, Derouard J, Dinten JM, Mora AD. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:116002. [PMID: 27812705 DOI: 10.1117/1.jbo.21.11.116002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 05/21/2023]
Abstract
Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.
Collapse
Affiliation(s)
- Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Judy Zouaoui
- Université Grenoble Alpes, CEA, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, FrancecCEA, LETI, MINATEC Campus, 17 rue des Martyrs, Grenoble 38054, France
| | - Lionel Hervé
- Université Grenoble Alpes, CEA, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, FrancecCEA, LETI, MINATEC Campus, 17 rue des Martyrs, Grenoble 38054, France
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, ItalydIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Edoardo Martinenghi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Jacques Derouard
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (LIPhy), Pole Phitem, CS 40 700, 38058 Grenoble Cedex 9, France
| | - Jean-Marc Dinten
- Université Grenoble Alpes, CEA, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, FrancecCEA, LETI, MINATEC Campus, 17 rue des Martyrs, Grenoble 38054, France
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| |
Collapse
|
29
|
Milej D, Abdalmalak A, McLachlan P, Diop M, Liebert A, St. Lawrence K. Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS. BIOMEDICAL OPTICS EXPRESS 2016; 7:4514-4526. [PMID: 27895992 PMCID: PMC5119592 DOI: 10.1364/boe.7.004514] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 05/18/2023]
Abstract
The aim of this study was to evaluate enhancing of the depth sensitivity of time-resolved near-infrared spectroscopy with a subtraction-based approach. Due to the complexity of light propagation in a heterogeneous media, and to prove the validity of the proposed method in a heterogeneous turbid media we conducted a broad analysis taking into account a number of parameters related to the method as well as various parameters of this media. The results of these experiments confirm that the depth sensitivity of the subtraction-based approach is better than classical approaches using continuous-wave or time-resolved methods. Furthermore, the results showed that the subtraction-based approach has a unique, selective sensitivity to a layer at a specific depth. In vivo application of the proposed method resulted in a greater magnitude of the hemodynamic changes during functional activation than with the standard approach.
Collapse
Affiliation(s)
- Daniel Milej
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Androu Abdalmalak
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Peter McLachlan
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Keith. St. Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
30
|
Re R, Martinenghi E, Mora AD, Contini D, Pifferi A, Torricelli A. Probe-hosted silicon photomultipliers for time-domain functional near-infrared spectroscopy: phantom and in vivo tests. NEUROPHOTONICS 2016; 3:045004. [PMID: 27752520 PMCID: PMC5061109 DOI: 10.1117/1.nph.3.4.045004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 05/23/2023]
Abstract
We report the development of a compact probe for time-domain (TD) functional near-infrared spectroscopy (fNIRS) based on a fast silicon photomultiplier (SiPM) that can be put directly in contact with the sample without the need of optical fibers for light collection. We directly integrated an avalanche signal amplification stage close to the SiPM, thus reducing the size of the detection channel and optimizing the signal immunity to electromagnetic interferences. The whole detection electronics was placed in a plastic screw holder compatible with the electroencephalography standard cap for measurement on brain or with custom probe holders. The SiPM is inserted into a transparent and insulating resin to avoid the direct contact of the scalp with the 100-V bias voltage. The probe was integrated in an instrument for TD fNIRS spectroscopy. The system was characterized on tissue phantoms in terms of temporal resolution, responsivity, linearity, and capability to detect deep absorption changes. Preliminary in vivo tests on adult volunteers were performed to monitor hemodynamic changes in the arm during a cuff occlusion and in the brain cortex during a motor task.
Collapse
Affiliation(s)
- Rebecca Re
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Edoardo Martinenghi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| |
Collapse
|
31
|
Martelli F, Binzoni T, Sekar SKV, Farina A, Cavalieri S, Pifferi A. Time-domain Raman analytical forward solvers. OPTICS EXPRESS 2016; 24:20382-20399. [PMID: 27607645 DOI: 10.1364/oe.24.020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A set of time-domain analytical forward solvers for Raman signals detected from homogeneous diffusive media is presented. The time-domain solvers have been developed for two geometries: the parallelepiped and the finite cylinder. The potential presence of a background fluorescence emission, contaminating the Raman signal, has also been taken into account. All the solvers have been obtained as solutions of the time dependent diffusion equation. The validation of the solvers has been performed by means of comparisons with the results of "gold standard" Monte Carlo simulations. These forward solvers provide an accurate tool to explore the information content encoded in the time-resolved Raman measurements.
Collapse
|
32
|
Pifferi A, Contini D, Mora AD, Farina A, Spinelli L, Torricelli A. New frontiers in time-domain diffuse optics, a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091310. [PMID: 27311627 DOI: 10.1117/1.jbo.21.9.091310] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity.
Collapse
Affiliation(s)
- Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, ItalybIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, Milan I-20133, ItalybIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale per le Ricerche, Piazza Leonardo da Vinci 32, Milan I-20133, Italy
| |
Collapse
|
33
|
Martinenghi E, Di Sieno L, Contini D, Sanzaro M, Pifferi A, Dalla Mora A. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:073101. [PMID: 27475542 DOI: 10.1063/1.4954968] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/16/2016] [Indexed: 05/20/2023]
Abstract
We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm(2) together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).
Collapse
Affiliation(s)
- E Martinenghi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - L Di Sieno
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - D Contini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Sanzaro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A Dalla Mora
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
34
|
Di Sieno L, Wabnitz H, Pifferi A, Mazurenka M, Hoshi Y, Dalla Mora A, Contini D, Boso G, Becker W, Martelli F, Tosi A, Macdonald R. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:035118. [PMID: 27036830 DOI: 10.1063/1.4944562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 05/20/2023]
Abstract
We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.
Collapse
Affiliation(s)
- Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Mikhail Mazurenka
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Yoko Hoshi
- Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Gianluca Boso
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Wolfgang Becker
- Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Fabrizio Martelli
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Rainer Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
35
|
Di Sieno L, Bettega G, Berger M, Hamou C, Aribert M, Mora AD, Puszka A, Grateau H, Contini D, Hervé L, Coll JL, Dinten JM, Pifferi A, Planat-Chrétien A. Toward noninvasive assessment of flap viability with time-resolved diffuse optical tomography: a preclinical test on rats. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:25004. [PMID: 26836208 DOI: 10.1117/1.jbo.21.2.025004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/30/2015] [Indexed: 05/10/2023]
Abstract
The noninvasive assessment of flap viability in autologous reconstruction surgery is still an unmet clinical need. To cope with this problem, we developed a proof-of-principle fully automatized setup for fast time-gated diffuse optical tomography exploiting Mellin-Laplace transform to obtain three-dimensional tomographic reconstructions of oxy- and deoxy-hemoglobin concentrations. We applied this method to perform preclinical tests on rats inducing total venous occlusion in the cutaneous abdominal flaps. Notwithstanding the use of just four source-detector couples, we could detect a spatially localized increase of deoxyhemoglobin following the occlusion (up to 550 μM in 54 min). Such capability to image spatio-temporal evolution of blood perfusion is a key issue for the noninvasive monitoring of flap viability.
Collapse
Affiliation(s)
- Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Georges Bettega
- Hôpital d'Annecy, 1 avenue de l'hôpital, Metz Tessy, BP 90074-74374 Pringy cedex 9, FrancecUniversity Grenoble Alpes-site santé, Institut Albert Bonniot, INSERM U1209, Domaine de la merci, 38000, La Tronche, FrancedUniversity Grenoble Alpes, BP53, 38041 G
| | - Michel Berger
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Cynthia Hamou
- University Grenoble Alpes-site santé, Institut Albert Bonniot, INSERM U1209, Domaine de la merci, 38000, La Tronche, FrancedUniversity Grenoble Alpes, BP53, 38041 Grenoble, FrancefCentre Hospitalier Universitaire-Grenoble, Boulevard de la Chantourne, 3870
| | - Marion Aribert
- University Grenoble Alpes-site santé, Institut Albert Bonniot, INSERM U1209, Domaine de la merci, 38000, La Tronche, FrancedUniversity Grenoble Alpes, BP53, 38041 Grenoble, France
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Agathe Puszka
- University Grenoble Alpes-site santé, Institut Albert Bonniot, INSERM U1209, Domaine de la merci, 38000, La Tronche, FrancedUniversity Grenoble Alpes, BP53, 38041 Grenoble, FranceeCEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, Franc
| | - Henri Grateau
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lionel Hervé
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Jean-Luc Coll
- University Grenoble Alpes-site santé, Institut Albert Bonniot, INSERM U1209, Domaine de la merci, 38000, La Tronche, FrancedUniversity Grenoble Alpes, BP53, 38041 Grenoble, France
| | - Jean-Marc Dinten
- CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, ItalygIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | |
Collapse
|