1
|
Tsilipakos O, Viskadourakis Z, Tasolamprou AC, Zografopoulos DC, Kafesaki M, Kenanakis G, Economou EN. Meta-Atoms with Toroidal Topology for Strongly Resonant Responses. MICROMACHINES 2023; 14:468. [PMID: 36838168 PMCID: PMC9959404 DOI: 10.3390/mi14020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A conductive meta-atom of toroidal topology is studied both theoretically and experimentally, demonstrating a sharp and highly controllable resonant response. Simulations are performed both for a free-space periodic metasurface and a pair of meta-atoms inserted within a rectangular metallic waveguide. A quasi-dark state with controllable radiative coupling is supported, allowing to tune the linewidth (quality factor) and lineshape of the supported resonance via the appropriate geometric parameters. By conducting a rigorous multipole analysis, we find that despite the strong toroidal dipole moment, it is the residual electric dipole moment that dictates the electromagnetic response. Subsequently, the structure is fabricated with 3D printing and coated with silver paste. Importantly, the structure is planar, consists of a single metallization layer and does not require a substrate when neighboring meta-atoms are touching, resulting in a practical, thin and potentially low-loss system. Measurements are performed in the 5 GHz regime with a vector network analyzer and a good agreement with simulations is demonstrated.
Collapse
Affiliation(s)
- Odysseas Tsilipakos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Zacharias Viskadourakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Crete, Greece
| | - Anna C. Tasolamprou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Crete, Greece
- Section of Electronic Physics and Systems, Department of Physics, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Dimitrios C. Zografopoulos
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), 00133 Rome, Italy
| | - Maria Kafesaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Crete, Greece
- Department of Materials Science Technology, University of Crete, GR-70013 Heraklion, Crete, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Crete, Greece
| | - Eleftherios N. Economou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Crete, Greece
- Department of Physics, University of Crete, GR-70013 Heraklion, Crete, Greece
| |
Collapse
|
2
|
Algorri JF, Dell'Olio F, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM, Sánchez-Pena JM, Dmitriev V, Zografopoulos DC. Analogue of electromagnetically induced transparency in square slotted silicon metasurfaces supporting bound states in the continuum. OPTICS EXPRESS 2022; 30:4615-4630. [PMID: 35209694 DOI: 10.1364/oe.446720] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
In this work, a silicon metasurface designed to support electromagnetically induced transparency (EIT) based on quasi-bound states in the continuum (qBIC) is proposed and theoretically demonstrated in the near-infrared spectrum. The metasurface consists of a periodic array of square slot rings etched in a silicon layer. The interruption of the slot rings by a silicon bridge breaks the symmetry of the structure producing qBIC stemming from symmetry-protected states, as rigorously demonstrated by a group theory analysis. One of the qBIC is found to behave as a resonance-trapped mode in the perturbed metasurface, which obtains very high quality factor values at certain dimensions of the silicon bridge. Thanks to the interaction of the sharp qBIC resonances with a broadband bright background mode, sharp high-transmittance peaks are observed within a low-transmittance spectral window, thus producing a photonic analogue of EIT. Moreover, the resonator possesses a simple bulk geometry with channels that facilitate the use in biosensing. The sensitivity of the resonant qBIC on the refractive index of the surrounding material is calculated in the context of refractometric sensing. The sharp EIT-effect of the proposed metasurface, along with the associated strong energy confinement may find direct use in emerging applications based on strong light-matter interactions, such as non-linear devices, lasing, biological sensors, optical trapping, and optical communications.
Collapse
|
3
|
Taghizadeh A, Pedersen TG. Plasmons in ultra-thin gold slabs with quantum spill-out: Fourier modal method, perturbative approach, and analytical model. OPTICS EXPRESS 2019; 27:36941-36952. [PMID: 31873465 DOI: 10.1364/oe.27.036941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
We numerically study the effect of the quantum spill-out (QSO) on the plasmon mode indices of an ultra-thin metallic slab, using the Fourier modal method (FMM). To improve the convergence of the FMM results, a novel nonlinear coordinate transformation is suggested and employed. Furthermore, we present a perturbative approach for incorporating the effects of QSO on the plasmon mode indices, which agrees very well with the full numerical results. The perturbative approach also provides additional physical insight, and is used to derive analytical expressions for the mode indices using a simple model for the dielectric function. The analytical expressions reproduce the results obtained from the numerically-challenging spill-out problem with much less effort and may be used for understanding the effects of QSO on other plasmonic structures.
Collapse
|
4
|
Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating. Sci Rep 2017; 7:2123. [PMID: 28522816 PMCID: PMC5437060 DOI: 10.1038/s41598-017-02394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
Photon’s effective mass is an important parameter of an optical cavity mode, which determines the strength of light-matter interaction. Here, we propose a novel method for controlling the photon’s effective mass by using coupled photonic cavities and designing the angular dependence of the coupling strength. This can be implemented by employing a high-contrast grating (HCG) as the coupling reflector in a system of two coupled vertical cavities, and engineering both the HCG reflection phase and amplitude response. Several examples of HCG-based coupled cavities with novel features are discussed, including a case capable of dynamically controlling the photon’s effective mass to a large extent while keeping the resonance frequency same. We believe that full-control and dynamical-tuning of the photon’s effective mass may enable new possibilities for cavity quantum electrodynamics studies or conventional/polariton laser applications. For instance, one can dynamically control the condensate formation in polariton lasers by modifying the polariton mass.
Collapse
|
5
|
Learkthanakhachon S, Taghizadeh A, Park GC, Yvind K, Chung IS. Hybrid III-V/SOI resonant cavity enhanced photodetector. OPTICS EXPRESS 2016; 24:16512-16519. [PMID: 27464106 DOI: 10.1364/oe.24.016512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A hybrid III-V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE-PD sample has been fabricated by heterogeneously integrating an InP-based material onto a silicon-on-insulator wafer and has been characterized, which shows a clear enhancement in photo-current at the designed wavelength. This indicates that the HG reflector provides a field enhancement sufficient for RCE-PD operation. In addition, a capability of feasibly selecting the detection wavelength during fabrication as well as a possibility of realizing silicon-integrated bidirectional transceivers are discussed.
Collapse
|
6
|
Popov E, Fehrembach AL, Brûlé Y, Demésy G, Boyer P. Two-dimensional grating for narrow-band filtering with large angular tolerances. OPTICS EXPRESS 2016; 24:14974-14985. [PMID: 27410648 DOI: 10.1364/oe.24.014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A two-dimensional periodic sub-wavelength array of vertical dielectric cylinders on a glass substrate is studied numerically using three different electromagnetic approaches. It is shown that such structure can present a narrow-band spectral resonance characterized by large angular tolerances and 100% maximum in reflection. In particular, in a two-nanometer spectral bandwidth the reflectivity stays above 90% within angles of incidence exceeding 10 degrees for unpolarized light. Bloch modal analysis shows that these properties are due to the excitation of a hybrid mode that is created in the structure by a guided-like mode and a localized cavity mode. The first one is due to the collective effect of the array, while the second one comes from the mode(s) of a single step-index fiber.
Collapse
|
7
|
Sturmberg BCP, Dossou KB, Botten LC, McPhedran RC, de Sterke CM. Fano resonances of dielectric gratings: symmetries and broadband filtering. OPTICS EXPRESS 2015; 23:A1672-A1686. [PMID: 26698813 DOI: 10.1364/oe.23.0a1672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The guided mode resonances (GMRs) of diffraction gratings surrounded by low index materials can be designed to produce broadband regions of near perfect reflection and near perfect transmission. These have many applications, including in optical isolators, in hybrid lasers cavities and in photovoltaics. The excitation of rapid GMRs occurs in a background of slowly varying Fabry-Perot oscillation, which produces Fano resonances. We demonstrate the critical role of the polarity of adjacent Fano resonances in the formation of the broadband features. We design gratings for photovoltaic applications that operate at wavelengths where material absorption must be considered and where light is incident at non-normal angles.
Collapse
|