1
|
Chen F, Yao J, Wang X, Wang S, Liu Z, Ding T. Fast modulation of surface plasmons based on the photothermal effect of nonvolatile solid thin films. NANOSCALE 2023; 15:476-482. [PMID: 36514986 DOI: 10.1039/d2nr05527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nonvolatile phase change materials owing to their robust stability and reversibility have shown significant potential in nanophotonic switches and memory devices. However, their performances deteriorate as the thickness decreases below 10 nm due to the local deformation induced by the phase change, which makes them less compatible with plasmonic nanogaps. Here, we address this issue by photothermally modulating the refractive index of germanium antimony telluride (GST) placed in plasmonic nanogaps, which tunes plasmon resonances in the visible region below the melting point of GST, making such optical switching highly reversible at a rate of up to hundreds of ∼kHz. They are also demonstrated to modulate the waveguiding efficiency of propagating surface plasmons, which is based on the photothermal modulation of plasmons with the assistance of GST. Such hybrid nanoplasmonic system with cost-effective fabrication and efficient operation method provides a promising route towards integrated nanophotonic chips.
Collapse
Affiliation(s)
- Fangqi Chen
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Proffit M, Pelivani S, Landais P, Bradley AL. Electrically Driven Reprogrammable Vanadium Dioxide Metasurface Using Binary Control for Broadband Beam Steering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41186-41195. [PMID: 36049164 PMCID: PMC9478939 DOI: 10.1021/acsami.2c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Resonant optical phased arrays are a promising way to reach fully reconfigurable metasurfaces in the optical and near-infrared (NIR) regimes with low energy consumption, low footprint, and high reliability. Continuously tunable resonant structures suffer from inherent drawbacks such as low phase range, amplitude-phase correlation, or extreme sensitivity that makes precise control at the individual element level very challenging. We computationally investigate 1-bit (binary) control as a mechanism to bypass these issues. We consider a metasurface for beam steering using a nanoresonator antenna and explore the theoretical capabilities of such phased arrays. A thermally realistic structure based on vanadium dioxide sandwiched in a metal-insulator-metal structure is proposed and optimized using inverse design to enhance its performance at 1550 nm. Continuous beam steering over 90° range is successfully achieved using binary control, with excellent agreement with predictions based on the theoretical first-principles description of phased arrays. Furthermore, a broadband response from 1500 to 1700 nm is achieved. The robustness to the design manufacturing imperfections is also demonstrated. This simplified approach can be implemented to optimize tunable nanophotonic phased array metasurfaces based on other materials or phased shifting mechanisms for various functionalities.
Collapse
Affiliation(s)
- Matthieu Proffit
- School
of Physics and AMBER, Trinity College Dublin, Dublin 2, Ireland
| | - Sara Pelivani
- School
of Physics and AMBER, Trinity College Dublin, Dublin 2, Ireland
| | - Pascal Landais
- School
of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - A. Louise Bradley
- School
of Physics and AMBER, Trinity College Dublin, Dublin 2, Ireland
- IPIC,
Tyndall National Institute, Cork T12R5CP, Ireland
| |
Collapse
|
3
|
Stimuli-Responsive Phase Change Materials: Optical and Optoelectronic Applications. MATERIALS 2021; 14:ma14123396. [PMID: 34205233 PMCID: PMC8233899 DOI: 10.3390/ma14123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Stimuli-responsive materials offer a large variety of possibilities in fabrication of solid- state devices. Phase change materials (PCMs) undergo rapid and drastic changes of their optical properties upon switching from one crystallographic phase to another one. This peculiarity makes PCMs ideal candidates for a number of applications including sensors, active displays, photonic volatile and non-volatile memories for information storage and computer science and optoelectronic devices. This review analyzes different examples of PCMs, in particular germanium–antimonium tellurides and vanadium dioxide (VO2) and their applications in the above-mentioned fields, with a detailed discussion on potential, limitations and challenges.
Collapse
|
4
|
Behera JK, Liu K, Lian M, Cao T. A reconfigurable hyperbolic metamaterial perfect absorber. NANOSCALE ADVANCES 2021; 3:1758-1766. [PMID: 36132556 PMCID: PMC9417818 DOI: 10.1039/d0na00787k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/29/2021] [Indexed: 06/01/2023]
Abstract
Metamaterial (MM) perfect absorbers are realised over various spectra from visible to microwave. Recently, different approaches have been explored to integrate tunability into MM absorbers. Particularly, tuning has been illustrated through electrical-, thermal-, and photo-induced changes to the permittivity of the active medium within MM absorbers. However, the intricate design, expensive nanofabrication process, and the volatile nature of the active medium limit the widespread applications of MM absorbers. Metal-dielectric stack layered hyperbolic metamaterials (HMMs) have recently attracted much attention due to their extraordinary optical properties and rather simple design. Herein, we experimentally realised a reconfigurable HMM perfect absorber based on alternating gold (Au) and Ge2Sb2Te5 (GST225) layers for the near-infrared (N-IR) region. It shows that a red-shift of 500 nm of the absorptance peak can be obtained by changing the GST225 state from amorphous to crystalline. The nearly perfect absorptance is omnidirectional and polarisation-independent. Additionally, the absorptance peak can be reversibly switched in just five nanoseconds by re-amorphising the GST225, enabling a dynamically reconfigurable HMM absorber. Experimental data are validated numerically using the finite-difference time-domain method. The absorber fabricated using our strategy has advantages of being reconfigurable, uncomplicated, and lithography-free over conventional MM absorbers, which may open up a new path for applications in energy harvesting, photodetectors, biochemical sensing, and thermal camouflage techniques.
Collapse
Affiliation(s)
- Jitendra K Behera
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Kuan Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Meng Lian
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
5
|
Yu R, Alaee R, Boyd RW, de Abajo FJG. Ultrafast Topological Engineering in Metamaterials. PHYSICAL REVIEW LETTERS 2020; 125:037403. [PMID: 32745382 DOI: 10.1103/physrevlett.125.037403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Transient optical heating provides an efficient way to trigger phase transitions in naturally occurring media through ultrashort laser pulse irradiation. A similar approach could be used to induce topological transitions in the photonic response of suitably engineered artificial structures known as metamaterials. Here, we predict a topological transition in the isofrequency dispersion contours of a layered graphene metamaterial under optical pumping. We show that the contour topology transforms from elliptic to hyperbolic within a subpicosecond timescale by exploiting the extraordinary photothermal properties of graphene. This new phenomenon allows us to theoretically demonstrate applications in engineering the decay rate of proximal optical emitters, ultrafast beam steering, and dynamical far-field subwavelength imaging. Our study opens a disruptive approach toward ultrafast control of light emission, beam steering, and optical image processing.
Collapse
Affiliation(s)
- Renwen Yu
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Rasoul Alaee
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Robert W Boyd
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Gerislioglu B, Ahmadivand A. Functional Charge Transfer Plasmon Metadevices. RESEARCH 2020; 2020:9468692. [PMID: 32055799 PMCID: PMC7013279 DOI: 10.34133/2020/9468692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Reducing the capacitive opening between subwavelength metallic objects down to atomic scales or bridging the gap by a conductive path reveals new plasmonic spectral features, known as charge transfer plasmon (CTP). We review the origin, properties, and trending applications of this modes and show how they can be well-understood by classical electrodynamics and quantum mechanics principles. Particularly important is the excitation mechanisms and practical approaches of such a unique resonance in tailoring high-response and efficient extreme-subwavelength hybrid nanophotonic devices. While the quantum tunneling-induced CTP mode possesses the ability to turn on and off the charge transition by varying the intensity of an external light source, the excited CTP in conductively bridged plasmonic systems suffers from the lack of tunability. To address this, the integration of bulk plasmonic nanostructures with optothermally and optoelectronically controllable components has been introduced as promising techniques for developing multifunctional and high-performance CTP-resonant tools. Ultimate tunable plasmonic devices such as metamodulators and metafilters are thus in prospect.
Collapse
Affiliation(s)
- Burak Gerislioglu
- Department of Physics & Astronomy, Rice University, 6100 Main St, Houston, Texas 77005, USA
| | - Arash Ahmadivand
- Department of Electrical & Computer Engineering, Rice University, 6100 Main St, Houston, Texas 77005, USA
| |
Collapse
|
7
|
Cao T, Cen M. Fundamentals and Applications of Chalcogenide Phase‐Change Material Photonics. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tun Cao
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian 116024 China
| | - Mengjia Cen
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian 116024 China
| |
Collapse
|
8
|
Michel AKU, Heßler A, Meyer S, Pries J, Yu Y, Kalix T, Lewin M, Hanss J, De Rose A, Maß TWW, Wuttig M, Chigrin DN, Taubner T. Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901033. [PMID: 31131947 DOI: 10.1002/adma.201901033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Nanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta-atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase-change material (PCM) volume within each meta-atom in a proof-of-principle MS consisting of a PCM-covered Al-nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta-atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS.
Collapse
Affiliation(s)
- Ann-Katrin U Michel
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Andreas Heßler
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Sebastian Meyer
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Julian Pries
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Yuan Yu
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Thomas Kalix
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Martin Lewin
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Julian Hanss
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Angela De Rose
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Tobias W W Maß
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Matthias Wuttig
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| | - Dmitry N Chigrin
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, D-52056, Aachen, Germany
| | - Thomas Taubner
- I. Institute of Physics (IA), RWTH Aachen University, D-52056, Aachen, Germany
| |
Collapse
|
9
|
Cao T, Liu K, Lu L, Chui HC, Simpson RE. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5176-5182. [PMID: 30632371 DOI: 10.1021/acsami.8b21452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perfect absorbers that can efficiently absorb electromagnetic waves over a broad spectral range are crucial for energy harvesting, light detection, and optical camouflage. Recently, perfect absorbers based on a metasurface have attracted intensive attention. However, high-performance metasurface absorbers in the visible spectra require strict fabrication tolerances, and this is a formidable challenge. Moreover, fabricating subwavelength meta-atoms requires a top-down approach, thus limiting their scalability and spectral applicability. Here, we introduce a plasmonic nearly perfect absorber that exhibits a measured polarization-insensitive absorptance of ∼92% across the spectral region from 400 to 1000 nm. The absorber is realized via a one-step self-assembly deposition of 50 nm gold (Au) nanoparticle (NP) clusters onto a 35 nm-thick Ge2Sb2Te5 (GST225) chalcogenide film. An excellent agreement between the measured and theoretically simulated absorptance was found. The coalescence of the lossy GST225 dielectric layer and high density of localized surface plasmon resonance modes induced by the randomly distributed Au NPs play a vital role in obtaining the nearly perfect absorptance. The exceptionally high absorptance together with large-area high-throughput self-assembly fabrication demonstrates their potential for industrial-scale manufacturability and consequential widespread applications in thermophotovoltaics, photodetection, and sensing.
Collapse
Affiliation(s)
- Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science , Dalian University of Technology , Dalian 116024 , China
| | - Kuan Liu
- School of Optoelectronic Engineering and Instrumentation Science , Dalian University of Technology , Dalian 116024 , China
| | - Li Lu
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Hsiang-Chen Chui
- Department of Photonics , National Cheng-Kung University , Tainan 70101 , Taiwan
- Center for Micro/Nano Science and Technology , National Cheng-Kung University , Tainan 70101 , Taiwan
| | - Robert E Simpson
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| |
Collapse
|
10
|
Wang Y, Liang L, Chen Y, Jia P, Qin L, Liu Y, Ning Y, Wang L. Improved performance of optical phased arrays assisted by transparent graphene nanoheaters and air trenches. RSC Adv 2018; 8:8442-8449. [PMID: 35542001 PMCID: PMC9078513 DOI: 10.1039/c7ra13154b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
Improved performances of optical phased arrays have been achieved assisted by graphene nanoheaters and air trenches.
Collapse
Affiliation(s)
- Yubing Wang
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Lei Liang
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Yongyi Chen
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Peng Jia
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Li Qin
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Yun Liu
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Yongqiang Ning
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| | - Lijun Wang
- State Key Laboratory of Luminescence and Applications
- Changchun Institute of Optics, Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
- P. R. China
| |
Collapse
|
11
|
Zhu Z, Liu H, Wang D, Li YX, Guan CY, Zhang H, Shi JH. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface. Sci Rep 2016; 6:37476. [PMID: 27874053 PMCID: PMC5118694 DOI: 10.1038/srep37476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Collapse
Affiliation(s)
- Z Zhu
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
| | - H Liu
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
| | - D Wang
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
| | - Y X Li
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
| | - C Y Guan
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China
| | - H Zhang
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science &Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - J H Shi
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China.,SZU-NUS Collaborative Innovation Centre for Optoelectronic Science &Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Bonjour R, Burla M, Abrecht FC, Welschen S, Hoessbacher C, Heni W, Gebrewold SA, Baeuerle B, Josten A, Salamin Y, Haffner C, Johnston PV, Elder DL, Leuchtmann P, Hillerkuss D, Fedoryshyn Y, Dalton LR, Hafner C, Leuthold J. Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves. OPTICS EXPRESS 2016; 24:25608-25618. [PMID: 27828496 DOI: 10.1364/oe.24.025608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.
Collapse
|