1
|
Kim H, Jung J, Shin J. Bidirectional Vectorial Holography Using Bi-Layer Metasurfaces and Its Application to Optical Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406717. [PMID: 39268796 DOI: 10.1002/adma.202406717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The field of optical systems with asymmetric responses has grown significantly due to their various potential applications. Janus metasurfaces are noteworthy for their ability to control light asymmetrically at the pixel level within thin films. However, previous demonstrations are restricted to the partial control of asymmetric transmission for a limited set of input polarizations, focusing primarily on scalar functionalities. Here, optical bi-layer metasurfaces that achieve a fully generalized form of asymmetric transmission for any input polarization are presented. The designs owe much to the theoretical model of asymmetric transmission in reciprocal systems, which elucidates the relationship between front- and back-side Jones matrices in general cases. This model reveals a fundamental correlation between the polarization-direction channels of opposing sides. To circumvent this constraint, partitioning the transmission space is utilized to realize four distinct vector functionalities within the target volume. As a proof of concept, polarization-direction-multiplexed Janus vectorial holograms generating four vectorial holographic images are experimentally demonstrated. When integrated with computational vector polarizer arrays, this approach enables optical encryption with a high level of obscurity. The proposed mathematical framework and novel material systems for generalized asymmetric transmission may pave the way for applications such as optical computation, sensing, and imaging.
Collapse
Affiliation(s)
- Hyeonhee Kim
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonkyo Jung
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Kumar M, Murata T, Matoba O. Live Cell Imaging by Single-Shot Common-Path Wide Field-of-View Reflective Digital Holographic Microscope. SENSORS (BASEL, SWITZERLAND) 2024; 24:720. [PMID: 38339437 PMCID: PMC10857047 DOI: 10.3390/s24030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Quantitative phase imaging by digital holographic microscopy (DHM) is a nondestructive and label-free technique that has been playing an indispensable role in the fields of science, technology, and biomedical imaging. The technique is competent in imaging and analyzing label-free living cells and investigating reflective surfaces. Herein, we introduce a new configuration of a wide field-of-view single-shot common-path off-axis reflective DHM for the quantitative phase imaging of biological cells that leverages several advantages, including being less-vibration sensitive to external perturbations due to its common-path configuration, also being compact in size, simple in optical design, highly stable, and cost-effective. A detailed description of the proposed DHM system, including its optical design, working principle, and capability for phase imaging, is presented. The applications of the proposed system are demonstrated through quantitative phase imaging results obtained from the reflective surface (USAF resolution test target) as well as transparent samples (living plant cells). The proposed system could find its applications in the investigation of several biological specimens and the optical metrology of micro-surfaces.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Systems Science, Graduate School of System Informatics, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Takashi Murata
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi 243-0292, Japan
| | - Osamu Matoba
- Department of Systems Science, Graduate School of System Informatics, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
- Center of Optical Scattering Image Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Tayal S, Tiwari S, Mehta DS. Label-free high-resolution white light quantitative phase nanoscopy system. JOURNAL OF BIOPHOTONICS 2023; 16:e202200298. [PMID: 36602467 DOI: 10.1002/jbio.202200298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
We present a high-resolution white light quantitative phase nanoscopy (WLQPN) system that can be utilized to visualize nanoparticles and subcellular features of the biological specimens. The five-phase shifting technique, along with deconvolution, is adopted to obtain super-resolution in phase imaging. The phase shifting technique can provide full detector resolution, making it beneficial as compared to the well-known Fourier analysis method. The Fourier transform method requires minimum angle of sin - 1 3 f x λ , where f x is maximum achievable spatial frequency. It limits the highest achievable resolution to much below the actual diffraction limit of the system. Thus, to obtain a high-resolution phase map of the biological specimen, a two-step process is adopted. First, the phase map is recovered using the five-phase shifting algorithm, with full detector spatial resolution. Second, the complex field is obtained from the recovered phase map and further processed using the Richardson Lucy total variation deconvolution algorithm to obtain super-resolution phase images. The present technique was tested on 1951 USAF resolution chart, 200 nm polystyrene beads and Escherichia coli bacteria using a 50×, 0.55NA objective lens. The 200 nm polystyrene beads are visually resolvable and subcellular features of the E. coli bacteria are also observed, suggesting a significant improvement in the resolution.
Collapse
Affiliation(s)
- Shilpa Tayal
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubham Tiwari
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Dalip Singh Mehta
- Bio-photonics and Green Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
4
|
Tahara T, Kozawa Y, Oi R. Single-path single-shot phase-shifting digital holographic microscopy without a laser light source. OPTICS EXPRESS 2022; 30:1182-1194. [PMID: 35209283 DOI: 10.1364/oe.442661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
We propose single-path single-shot phase-shifting digital holographic microscopy (SSP-DHM) in which the quantitative phase information of an object wave is acquired without a laser light source. Multiple phase-shifted holograms are simultaneously obtained using a linear polarizer, a liquid crystal on a silicon spatial light modulator (LCoS-SLM), and a polarization-imaging camera. Complex amplitude imaging of a USAF1951 test target and phase imaging of transparent HeLa cells are performed to show its quantitative phase-imaging ability. We also conduct an experiment for the motion-picture imaging of transparent particles to highlight the single-shot imaging ability of SSP-DHM.
Collapse
|
5
|
Kumar M, Matoba O. 2D full-field displacement and vibration measurements of specularly reflecting surfaces by two-beam common-path digital holography. OPTICS LETTERS 2021; 46:5966-5969. [PMID: 34851935 DOI: 10.1364/ol.438860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
A new, to the best of our knowledge, configuration of common-path off-axis digital holography is proposed for simultaneous evaluation of out-of-plane and in-plane displacements of the vibrating object. The object is illuminated from two different directions, and each illumination interferes with its corresponding reference beam generated near the object, resulting in two independent holograms that are spatially multiplexed in a single camera image. Two multiplexed holograms, at undeformed and deformed states of the object, are recorded and processed to obtain the out-of-plane and in-plane displacements simultaneously. The proposed digital holographic system has the advantage of a simple and compact optical setup, is less sensitive to environmental disturbances, and has high temporal phase stability. The two-dimensional (z,x) full-field amplitude and phase vibration analysis of a perfect specularly reflecting surface are also demonstrated by the proposed holographic system. The experimental results authenticate the feasibility of the proposed system and reveal its unique advantages. The proposed digital holographic system, owing to simple and compact geometry and providing several advantages over other two-channel holographic systems, may find a wide range of applications in investigating real-time dynamic phenomena.
Collapse
|
6
|
Boonruangkan J, Farrokhi H, Rohith TM, Kwok S, Carney TJ, Su PC, Kim YJ. Label-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210182RR. [PMID: 34773396 PMCID: PMC8589177 DOI: 10.1117/1.jbo.26.11.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Real-time monitoring of the heart rate and blood flow is crucial for studying cardiovascular dysfunction, which leads to cardiovascular diseases. AIM This study aims at in-depth understanding of high-speed cardiovascular dynamics in a zebrafish embryo model for various biomedical applications via frequency-comb-referenced quantitative phase imaging (FCR-QPI). APPROACH Quantitative phase imaging (QPI) has emerged as a powerful technique in the field of biomedicine but has not been actively applied to the monitoring of circulatory/cardiovascular parameters, due to dynamic speckles and low frame rates. We demonstrate FCR-QPI to measure heart rate and blood flow in a zebrafish embryo. FCR-QPI utilizes a high-speed photodetector instead of a conventional camera, so it enables real-time monitoring of individual red blood cell (RBC) flow. RESULTS The average velocity of zebrafish's RBCs was measured from 192.5 to 608.8 μm / s at 24 to 28 hour-post-fertilization (hpf). In addition, the number of RBCs in a pulsatile blood flow was revealed to 16 cells/pulse at 48 hpf. The heart rates corresponded to 94 and 142 beats-per-minute at 24 and 48 hpf. CONCLUSIONS This approach will newly enable in-depth understanding of the cardiovascular dynamics in the zebrafish model and possible usage for drug discovery applications in biomedicine.
Collapse
Affiliation(s)
- Jeeranan Boonruangkan
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Hamid Farrokhi
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Thazhe M. Rohith
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Samuel Kwok
- Nanyang Technological University, Lee Kong Chian, School of Medicine, Singapore
| | - Tom J. Carney
- Nanyang Technological University, Lee Kong Chian, School of Medicine, Singapore
| | - Pei-Chen Su
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
| | - Young-Jin Kim
- Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Chen C, Lu YN, Huang H, Yan K, Jiang Z, He X, Kong Y, Liu C, Liu F, Xue L, Wang S. PhaseRMiC: phase real-time microscope camera for live cell imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:5261-5271. [PMID: 34513255 PMCID: PMC8407842 DOI: 10.1364/boe.430115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 05/20/2023]
Abstract
We design a novel phase real-time microscope camera (PhaseRMiC) for live cell phase imaging. PhaseRMiC has a simple and cost-effective configuration only consisting of a beam splitter and a board-level camera with two CMOS imaging chips. Moreover, integrated with 3-D printed structures, PhaseRMiC has a compact size of 136×91×60 mm3, comparable to many commercial microscope cameras, and can be directly connected to the microscope side port. Additionally, PhaseRMiC can be well adopted in real-time phase imaging proved with satisfied accuracy, good stability and large field of view. Considering its compact and cost-effective device design as well as real-time phase imaging capability, PhaseRMiC is a preferred solution for live cell imaging.
Collapse
Affiliation(s)
- Chao Chen
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Nan Lu
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Keding Yan
- Advanced Institute of Micro-Nano Intelligent Sensing (AIMNIS), School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi 710032, China
| | - Zhilong Jiang
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoliang He
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Kong
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Liu
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fei Liu
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Xue
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shouyu Wang
- Computational Optics Laboratory, School of Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zdańkowski P, Winnik J, Patorski K, Gocłowski P, Ziemczonok M, Józwik M, Kujawińska M, Trusiak M. Common-path intrinsically achromatic optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4219-4234. [PMID: 34457410 PMCID: PMC8367224 DOI: 10.1364/boe.428828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this work we propose an open-top like common-path intrinsically achromatic optical diffraction tomography system. It operates as a total-shear interferometer and employs Ronchi-type amplitude diffraction grating, positioned in between the camera and the tube lens without an additional 4f system, generating three-beam interferograms with achromatic second harmonic. Such configuration makes the proposed system low cost, compact and immune to vibrations. We present the results of the measurements of 3D-printed cell phantom using laser diode (coherent) and superluminescent diode (partially coherent) light sources. Broadband light sources can be naturally employed without the need for any cumbersome compensation because of the intrinsic achromaticity of the interferometric recording (holograms generated by -1st and +1st conjugated diffraction orders are not affected by the illumination wavelength). The results show that the decreased coherence offers much reduced coherent noise and higher fidelity tomographic reconstruction especially when applied nonnegativity constraint regularization procedure.
Collapse
Affiliation(s)
- Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Julianna Winnik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Paweł Gocłowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Ziemczonok
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Józwik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Małgorzata Kujawińska
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| |
Collapse
|
9
|
Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. ADVANCES IN OPTICS AND PHOTONICS 2021; 13:353-425. [PMID: 35494404 PMCID: PMC9048520 DOI: 10.1364/aop.417837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
Collapse
|
10
|
Bouchal P, Chmelík R, Bouchal Z. Phase of white light and its compatibility to the optical path. OPTICS EXPRESS 2021; 29:12398-12412. [PMID: 33985000 DOI: 10.1364/oe.418878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The phase of monochromatic light directly relates to the optical path difference (OPD), but finding this connection for spectrally broadband light is challenging. Due to a missing concept of the compatibility between the phase of randomly fluctuating fields and the OPD, demanding scanning is the only proven way for a highly accurate OPD measurement in white light. Here, we use the self-coherence function (SCF) of the spatially incoherent light to reveal the connection between the white-light phase and the OPD. Our method uses an associated field assigned to the SCF to mimic the intensity oscillation of a correlation pattern. The associated field allows restoring a cumulative OPD integrated into the SCF across all spectral constituents. The method is essential for quantitative phase microscopy, in which the SCF is available even in white light, but its processing beyond the quasi-monochromatic approach is still lacking. Improper assessment of the white-light phase may result in a loss of measurement accuracy, as we demonstrate theoretically and experimentally. Deploying our method in coherence-controlled holographic microscopy, we measured the cumulative OPD in the broadband light with a strongly asymmetric spectrum (bandwidth of 150 nm), achieving accuracy better than 5 nm in the measuring depth range of 2 µm.
Collapse
|
11
|
Kumar M, Matoba O, Quan X, Rajput SK, Awatsuji Y, Tamada Y. Single-shot common-path off-axis digital holography: applications in bioimaging and optical metrology [Invited]. APPLIED OPTICS 2021; 60:A195-A204. [PMID: 33690370 DOI: 10.1364/ao.404208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
The demand for single-shot and common-path holographic systems has become increasingly important in recent years, as such systems offer various advantages compared to their counterparts. Single-shot holographic systems, for example, reduce computational complexity as only a single hologram with the object information required to process, making them more suitable for the investigation of dynamic events; and common-path holographic systems are less vibration-sensitive, compact, inexpensive, and high in temporal phase stability. We have developed a single-shot common-path off-axis digital holographic setup based on a beam splitter and pinhole. In this paper, we present a concise review of the proposed digital holographic system for several applications, including the quantitative phase imaging to investigate the morphological and quantitative parameters, as a metrological tool for testing of micro-optics, industrial inspection and measurement, and sound field imaging and visualization.
Collapse
|
12
|
Chang T, Ryu D, Jo Y, Choi G, Min HS, Park Y. Calibration-free quantitative phase imaging using data-driven aberration modeling. OPTICS EXPRESS 2020; 28:34835-34847. [PMID: 33182943 DOI: 10.1364/oe.412009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
We present a data-driven approach to compensate for optical aberrations in calibration-free quantitative phase imaging (QPI). Unlike existing methods that require additional measurements or a background region to correct aberrations, we exploit deep learning techniques to model the physics of aberration in an imaging system. We demonstrate the generation of a single-shot aberration-corrected field image by using a U-net-based deep neural network that learns a translation between an optical field with aberrations and an aberration-corrected field. The high fidelity and stability of our method is demonstrated on 2D and 3D QPI measurements of various confluent eukaryotic cells and microbeads, benchmarking against the conventional method using background subtractions.
Collapse
|
13
|
Hayes-Rounds C, Bogue-Jimenez B, Garcia-Sucerquia J, Skalli O, Doblas A. Advantages of Fresnel biprism-based digital holographic microscopy in quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32755077 PMCID: PMC7399475 DOI: 10.1117/1.jbo.25.8.086501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/23/2020] [Indexed: 05/30/2023]
Abstract
SIGNIFICANCE The hallmarks of digital holographic microscopy (DHM) compared with other quantitative phase imaging (QPI) methods are high speed, accuracy, spatial resolution, temporal stability, and polarization-sensitivity (PS) capability. The above features make DHM suitable for real-time quantitative PS phase imaging in a broad number of biological applications aimed at understanding cell growth and dynamic changes occurring during physiological processes and/or in response to pharmaceutical agents. AIM The insertion of a Fresnel biprism (FB) in the image space of a light microscope potentially turns any commercial system into a DHM system enabling QPI with the five desired features in QPI simultaneously: high temporal sensitivity, high speed, high accuracy, high spatial resolution, and PS. To the best of our knowledge, this is the first FB-based DHM system providing these five features all together. APPROACH The performance of the proposed system was calibrated with a benchmark phase object. The PS capability has been verified by imaging human U87 glioblastoma cells. RESULTS The proposed FB-based DHM system provides accurate phase images with high spatial resolution. The temporal stability of our system is in the order of a few nanometers, enabling live-cell studies. Finally, the distinctive behavior of the cells at different polarization angles (e.g., PS capability) can be observed with our system. CONCLUSIONS We have presented a method to turn any commercial light microscope with monochromatic illumination into a PS QPI system. The proposed system provides accurate quantitative PS phase images in a new, simple, compact, and cost-effective format, thanks to the low cost (a few hundred dollars) involved in implementing this simple architecture, enabling the use of this QPI technique accessible to most laboratories with standard light microscopes.
Collapse
Affiliation(s)
- Charity Hayes-Rounds
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| | - Brian Bogue-Jimenez
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| | | | - Omar Skalli
- The University of Memphis, Department of Biological Sciences, Memphis, Tennessee 38152, USA
| | - Ana Doblas
- The University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee 38152, USA
| |
Collapse
|
14
|
Ahmad A, Dubey V, Butola A, Tinguely JC, Ahluwalia BS, Mehta DS. Sub-nanometer height sensitivity by phase shifting interference microscopy under environmental fluctuations. OPTICS EXPRESS 2020; 28:9340-9358. [PMID: 32225543 DOI: 10.1364/oe.384259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phase shifting interferometric (PSI) techniques are among the most sensitive phase measurement methods. Owing to its high sensitivity, any minute phase change caused due to environmental instability results into, inaccurate phase measurement. Consequently, a well calibrated piezo electric transducer (PZT) and highly-stable environment is mandatory for measuring accurate phase map using PSI implementation. Here, we present an inverse approach, which can retrieve phase maps of the samples with negligible errors under environmental fluctuations. The method is implemented by recording a video of continuous temporally phase shifted interferograms and phase shifts were calculated between all the data frames using Fourier transform algorithm with a high accuracy ≤ 5.5 × 10-4 π rad. To demonstrate the robustness of the proposed method, a manual translation of the stage was employed to introduce continuous temporal phase shift between data frames. The developed algorithm is first verified by performing quantitative phase imaging of optical waveguide and red blood cells using uncalibrated PZT under the influence of vibrations/air turbulence and compared with the well calibrated PZT results. Furthermore, we demonstrated the potential of the proposed approach by acquiring the quantitative phase imaging of an optical waveguide with a rib height of only 2 nm and liver sinusoidal endothelial cells (LSECs). By using 12-bit CMOS camera the height of shallow rib waveguide is measured with a height sensitivity of 4 Å without using PZT and in presence of environmental fluctuations.vn.
Collapse
|
15
|
Guo R, Mirsky SK, Barnea I, Dudaie M, Shaked NT. Quantitative phase imaging by wide-field interferometry with variable shearing distance uncoupled from the off-axis angle. OPTICS EXPRESS 2020; 28:5617-5628. [PMID: 32121778 DOI: 10.1364/oe.385437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/12/2020] [Indexed: 05/20/2023]
Abstract
We introduce a new shearing interferometry module for digital holographic microscopy, in which the off-axis angle, which defines the interference fringe frequency, is not coupled to the shearing distance, as is the case in most shearing interferometers. Thus, it enables the selection of shearing distance based on the spatial density of the sample, without losing spatial frequency content due to overlapping of the complex wave fronts in the spatial frequency domain. Our module is based on a 4f imaging unit and a diffraction grating, in which the hologram is generated from two mutually coherent, partially overlapping sample beams, with adjustable shearing distance, as defined by the position of the grating, but with a constant off-axis angle, as defined by the grating period. The module is simple, easy to align, and presents a nearly common-path geometry. By placing this module as an add-on unit at the exit port of an inverted microscope, quantitative phase imaging can easily be performed. The system is characterized by a 2.5 nm temporal stability and a 3.4 nm spatial stability, without using anti-vibration techniques. We provide quantitative phase imaging experiments of silica beads with different shearing distances, red blood cell fluctuations, and cancer cells flowing in a micro-channel, which demonstrate the capability and versatility of our approach in different imaging scenarios.
Collapse
|
16
|
Trusiak M, Picazo-Bueno JA, Patorski K, Zdańkowski P, Mico V. Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31522487 PMCID: PMC6997581 DOI: 10.1117/1.jbo.24.9.096004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Single-shot, two-frame, π-shifted spatially multiplexed interference microscopy (π-SMIM) is presented as an improvement to previous SMIM implementations, introducing a versatile, robust, fast, and accurate method for cumbersome, noisy, and low-contrast phase object analysis. The proposed π-SMIM equips a commercially available nonholographic microscope with a high-speed (video frame rate) enhanced quantitative phase imaging (QPI) capability by properly placing a beam-splitter in the microscope embodiment to simultaneously (in a single shot) record two holograms mutually phase shifted by π radians at the expense of reducing the field of view. Upon subsequent subtractive superimposition of holograms, a π-hologram is generated with reduced background and improved modulation of interference fringes. These features determine superior phase retrieval quality, obtained by employing the Hilbert spiral transform on the π-hologram, as compared with a single low-quality (low signal-to-noise ratio) hologram analysis. In addition, π-SMIM enables accurate in-vivo analysis of high dynamic range phase objects, otherwise measurable only in static regime using time-consuming phase-shifting. The technique has been validated utilizing a 20 × / 0.46 NA objective in a regular Olympus BX-60 upright microscope for QPI of different lines of prostate cancer cells and flowing microbeads.
Collapse
Affiliation(s)
- Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
- Address all correspondence to Maciej Trusiak, E-mail: ; Vicente Mico, E-mail:
| | - Jose-Angel Picazo-Bueno
- Universitat de Valencia, Departamento de Óptica y Optometría y Ciencias de la Visión, Burjassot, Spain
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
| | - Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland
| | - Vicente Mico
- Universitat de Valencia, Departamento de Óptica y Optometría y Ciencias de la Visión, Burjassot, Spain
- Address all correspondence to Maciej Trusiak, E-mail: ; Vicente Mico, E-mail:
| |
Collapse
|
17
|
LEE KYEOREH, SHIN SEUNGWOO, YAQOOB ZAHID, SO PETERTC, PARK YONGKEUN. Low-coherent optical diffraction tomography by angle-scanning illumination. JOURNAL OF BIOPHOTONICS 2019; 12:e201800289. [PMID: 30597743 PMCID: PMC6470054 DOI: 10.1002/jbio.201800289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/27/2018] [Accepted: 12/28/2018] [Indexed: 05/20/2023]
Abstract
Temporally low-coherent optical diffraction tomography (ODT) is proposed and demonstrated based on angle-scanning Mach-Zehnder interferometry. Using a digital micromirror device based on diffractive tilting, the full-field interference of incoherent light is successfully maintained during every angle-scanning sequences. Further, current ODT reconstruction principles for temporally incoherent illuminations are thoroughly reviewed and developed. Several limitations of incoherent illumination are also discussed, such as the nondispersive assumption, optical sectioning capacity and illumination angle limitation. Using the proposed setup and reconstruction algorithms, low-coherent ODT imaging of plastic microspheres, human red blood cells and rat pheochromocytoma cells is experimentally demonstrated.
Collapse
Affiliation(s)
- KYEOREH LEE
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - SEUNGWOO SHIN
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - ZAHID YAQOOB
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - PETER T. C. SO
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - YONGKEUN PARK
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- Tomocube Inc., Daejeon 34051, Republic of Korea
| |
Collapse
|
18
|
Bouchal P, Štrbková L, Dostál Z, Chmelík R, Bouchal Z. Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples. Sci Rep 2019; 9:3608. [PMID: 30837653 PMCID: PMC6401004 DOI: 10.1038/s41598-019-40441-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
We present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5 nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens.
Collapse
Affiliation(s)
- Petr Bouchal
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.
| | - Lenka Štrbková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Zbyněk Dostál
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Radim Chmelík
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Zdeněk Bouchal
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
19
|
Kim G, Jo Y, Cho H, Min HS, Park Y. Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens Bioelectron 2019; 123:69-76. [DOI: 10.1016/j.bios.2018.09.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
20
|
Li Y, Di J, Ma C, Zhang J, Zhong J, Wang K, Xi T, Zhao J. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation. OPTICS EXPRESS 2018; 26:586-593. [PMID: 29328336 DOI: 10.1364/oe.26.000586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.
Collapse
|
21
|
Choi I, Lee K, Park Y. Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration. OPTICS EXPRESS 2017; 25:30771-30779. [PMID: 29221103 DOI: 10.1364/oe.25.030771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
We present a simple and effective method to eliminate system aberrations in quantitative phase imaging. Using spiral phase integration, complete information about system aberration is calculated from three laterally shifted phase images. The present method is especially useful when measuring confluent samples in which acquisition of background area is challenging. To demonstrate validity and applicability, we present measurements of various types of samples including microspheres, HeLa cells, and mouse brain tissue. Working conditions and limitations are systematically analyzed and discussed.
Collapse
|
22
|
Baek Y, Lee K, Yoon J, Kim K, Park Y. White-light quantitative phase imaging unit: erratum. OPTICS EXPRESS 2017; 25:24368-24369. [PMID: 29041381 DOI: 10.1364/oe.25.024368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/07/2023]
Abstract
We found an error in Fig. 1 of our article "White-light Quantitative Phase Imaging Unit." Here we publish the revised figure.
Collapse
|
23
|
Park G, Han D, Kim G, Shin S, Kim K, Park JK, Park Y. Visualization and label-free quantification of microfluidic mixing using quantitative phase imaging. APPLIED OPTICS 2017; 56:6341-6347. [PMID: 29047833 DOI: 10.1364/ao.56.006341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microfluidic mixing plays a key role in various fields, including biomedicine and chemical engineering. To date, although various approaches for imaging microfluidic mixing have been proposed, they provide only quantitative imaging capability and require exogenous labeling agents. Quantitative phase imaging techniques, however, circumvent these problems and offer label-free quantitative information about concentration maps of microfluidic mixing. We present the quantitative phase imaging of microfluidic mixing in various types of polydimethylsiloxane microfluidic channels with different geometries; the feasibility of the present method was validated by comparing it with the results obtained by theoretical calculation based on Fick's law.
Collapse
|
24
|
Ma C, Li Y, Zhang J, Li P, Xi T, Di J, Zhao J. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. OPTICS EXPRESS 2017; 25:13659-13667. [PMID: 28788908 DOI: 10.1364/oe.25.013659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We propose a compact and easy-to-align lateral shearing common-path digital holographic microscopy, which is based on a slightly trapezoid Sagnac interferometer to create two laterally sheared beams and form off-axis geometry. In this interferometer, the two beams pass through a set of identical optical elements in opposite directions and have nearly the same optical path difference. Without any vibration isolation, the temporal stability of the setup is found to be around 0.011 rad. Compared with highly simple lateral shearing interferometer, the off-axis angle of the setup can be easily adjusted and quantitatively controlled, meanwhile the image quality is not degraded. The experiments for measuring the static and dynamic specimens are performed to demonstrate the capability and applicability.
Collapse
|
25
|
Farrokhi H, Boonruangkan J, Chun BJ, Rohith TM, Mishra A, Toh HT, Yoon HS, Kim YJ. Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers. OPTICS EXPRESS 2017; 25:10791-10800. [PMID: 28788768 DOI: 10.1364/oe.25.010791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We studied quantitative phase imaging (QPI) using coherent laser illumination coupled with static and moving optical diffusers. The spatial coherence of a continuous-wave laser was controlled by tuning the particle size and the diffusion angle of optical diffusers for speckle-reduced 3D phase imaging of transparent objects. We used a common-path QPI configuration to investigate the coherent phase mapping of polystyrene micro-beads and breast cancer cells (MCF-7) under different degrees of coherent speckles. The proposed speckle reduction method could provide an avenue for enhancing lateral resolution and suppressing coherent artifacts of the phase images from QPI.
Collapse
|
26
|
Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci Rep 2017; 7:1039. [PMID: 28432323 PMCID: PMC5430658 DOI: 10.1038/s41598-017-01036-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
In this paper, we present the optical characterisations of diabetic red blood cells (RBCs) in a non-invasive manner employing three-dimensional (3-D) quantitative phase imaging. By measuring 3-D refractive index tomograms and 2-D time-series phase images, the morphological (volume, surface area and sphericity), biochemical (haemoglobin concentration and content) and mechanical (membrane fluctuation) parameters were quantitatively retrieved at the individual cell level. With simultaneous measurements of individual cell properties, systematic correlative analyses on retrieved RBC parameters were also performed. Our measurements show there exist no statistically significant alterations in morphological and biochemical parameters of diabetic RBCs, compared to those of healthy (non-diabetic) RBCs. In contrast, membrane deformability of diabetic RBCs is significantly lower than that of healthy, non-diabetic RBCs. Interestingly, non-diabetic RBCs exhibit strong correlations between the elevated glycated haemoglobin in RBC cytoplasm and decreased cell deformability, whereas diabetic RBCs do not show correlations. Our observations strongly support the idea that slow and irreversible glycation of haemoglobin and membrane proteins of RBCs by hyperglycaemia significantly compromises RBC deformability in diabetic patients.
Collapse
|
27
|
Coquoz S, Nahas A, Sison M, Lopez A, Lasser T. High-speed phase-shifting common-path quantitative phase imaging with a piezoelectric actuator. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:126019. [PMID: 28009028 DOI: 10.1117/1.jbo.21.12.126019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
We present a phase-shifting quantitative phase imaging technique providing high temporal and spatial phase stability and high acquisition speed. A piezoelectric microfabricated phase modulator allows tunable modulation frequencies up to the kHz range. After assessing the quantitative phase accuracy with technical samples, we demonstrate the high acquisition rate while monitoring cellular processes at temporal scales ranging from milliseconds to hours.
Collapse
Affiliation(s)
- Séverine Coquoz
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - Amir Nahas
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - Miguel Sison
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - Antonio Lopez
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| | - Theo Lasser
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne, Station 17, 1015 Lausanne, Switzerland
| |
Collapse
|