• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4622124)   Today's Articles (62)   Subscriber (49405)
For: Nakamura T, Takahashi Y, Tanaka Y, Asano T, Noda S. Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components. Opt Express 2016;24:9541-9549. [PMID: 27137567 DOI: 10.1364/oe.24.009541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Number Cited by Other Article(s)
1
Mitsuhashi R, Song BS, Inoue K, Asano T, Noda S. Design and fabrication of a coupled high-Q photonic nanocavity system with large coupling coefficients. OPTICS EXPRESS 2024;32:10630-10647. [PMID: 38571269 DOI: 10.1364/oe.513508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
2
Pham PV, Mai TH, Do HB, Ponnusamy VK, Chuang FC. Integrated Graphene Heterostructures in Optical Sensing. MICROMACHINES 2023;14:mi14051060. [PMID: 37241683 DOI: 10.3390/mi14051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
3
Fukuda A, Asano T, Kawakatsu T, Takahashi Y, Noda S. Suppressing the sample-to-sample variation of photonic crystal nanocavity Q-factors by air-hole patterns with broken mirror symmetry. OPTICS EXPRESS 2023;31:15495-15513. [PMID: 37157650 DOI: 10.1364/oe.488516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
4
Takata K, Kuramochi E, Shinya A, Notomi M. Improved design and experimental demonstration of ultrahigh-Q C6-symmetric H1 hexapole photonic crystal nanocavities. OPTICS EXPRESS 2023;31:11864-11884. [PMID: 37155812 DOI: 10.1364/oe.485093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
5
Ge R, Yan X, Liang Z, Li H, Wu J, Liu X, Chen Y, Chen X. Large quality factor enhancement based on cascaded uniform lithium niobate bichromatic photonic crystal cavities. OPTICS LETTERS 2023;48:113-116. [PMID: 36563383 DOI: 10.1364/ol.477895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
6
Wu H, Zhang H, Li F, Su W. Designing a Fano-resonance-based temperature sensor by side-coupling double cavities to waveguide in photonic crystals. APPLIED OPTICS 2022;61:10267-10274. [PMID: 36606792 DOI: 10.1364/ao.471280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
7
Song J, Feng G, Liu X, Hou H, Chen Z. Genetic Algorithm-Assisted Design of Sandwiched One-Dimensional Photonic Crystals for Efficient Fluorescence Enhancement of 3.18-μm-Thick Layer of the Fluorescent Solution. MATERIALS (BASEL, SWITZERLAND) 2022;15:7803. [PMID: 36363395 PMCID: PMC9658013 DOI: 10.3390/ma15217803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
8
Mehaney A, Abadla MM, Elsayed HA. Biosensors based on novel nonlinear delta-function photonic crystals comprising weak nonlinearities. Sci Rep 2022;12:17674. [PMID: 36271127 PMCID: PMC9586973 DOI: 10.1038/s41598-022-22210-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2023]  Open
9
Jiang X, Fan Z, Luo L, Wang L. Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. MICROMACHINES 2022;13:709. [PMID: 35630176 PMCID: PMC9145869 DOI: 10.3390/mi13050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
10
Takahashi Y, Fujimoto M, Kikunaga K, Takahashi Y. Detection of ionized air using a photonic-crystal nanocavity excited by broadband light from a superluminescent diode. OPTICS EXPRESS 2022;30:10694-10708. [PMID: 35473030 DOI: 10.1364/oe.454328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
11
High-Sensitivity Biosensor Based on Glass Resonance PhC Cavities for Detection of Blood Component and Glucose Concentration in Human Urine. COATINGS 2021. [DOI: 10.3390/coatings11121555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
12
Ji Y, Wang B, Fang L, Zhao Q, Xiao F, Gan X. Exciting Magnetic Dipole Mode of Split-Ring Plasmonic Nano-Resonator by Photonic Crystal Nanocavity. MATERIALS 2021;14:ma14237330. [PMID: 34885484 PMCID: PMC8658318 DOI: 10.3390/ma14237330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
13
Okada H, Fujimoto M, Tanaka N, Saito Y, Asano T, Noda S, Takahashi Y. 1.2-µm-band ultrahigh-Q photonic crystal nanocavities and their potential for Raman silicon lasers. OPTICS EXPRESS 2021;29:24396-24410. [PMID: 34614686 DOI: 10.1364/oe.431721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
14
Kawakatsu T, Asano T, Noda S, Takahashi Y. Sub-100-nW-threshold Raman silicon laser designed by a machine-learning method that optimizes the product of the cavity Q-factors. OPTICS EXPRESS 2021;29:17053-17068. [PMID: 34154256 DOI: 10.1364/oe.423470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
15
Rickert L, Fritsch B, Kors A, Reithmaier JP, Benyoucef M. Mode properties of telecom wavelength InP-based high-(Q/V) L4/3 photonic crystal cavities. NANOTECHNOLOGY 2020;31:315703. [PMID: 32303021 DOI: 10.1088/1361-6528/ab8a8c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
16
Mertin P, Römer F, Witzigmann B. Numerical analysis of subwavelength field effects in photonic crystal slab cavities. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab60c6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
17
Fu Z, Sun F, Wang C, Wang J, Tian H. High-sensitivity broad free-spectral-range two-dimensional three-slot photonic crystal sensor integrated with a 1D photonic crystal bandgap filter. APPLIED OPTICS 2019;58:5997-6002. [PMID: 31503918 DOI: 10.1364/ao.58.005997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
18
Asano T, Noda S. Optimization of photonic crystal nanocavities based on deep learning. OPTICS EXPRESS 2018;26:32704-32717. [PMID: 30645432 DOI: 10.1364/oe.26.032704] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
19
Ashida K, Okano M, Ohtsuka M, Seki M, Yokoyama N, Koshino K, Mori M, Asano T, Noda S, Takahashi Y. Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies. OPTICS EXPRESS 2017;25:18165-18174. [PMID: 28789305 DOI: 10.1364/oe.25.018165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
20
Maeno K, Takahashi Y, Nakamura T, Asano T, Noda S. Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components. OPTICS EXPRESS 2017;25:367-376. [PMID: 28085831 DOI: 10.1364/oe.25.000367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
21
Itoh T, Yamamoto YS, Ozaki Y. Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chem Soc Rev 2017;46:3904-3921. [DOI: 10.1039/c7cs00155j] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA