1
|
Pagidi S, Kim M, Manda R, Ahn S, Yong Jeon M, Hee Lee S. Ideal micro-lenticular lens based on phase modulation of optically isotropic liquid crystal-polymer composite with three terminals. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Wang Z, Servio P, Rey AD. Complex Nanowrinkling in Chiral Liquid Crystal Surfaces: From Shaping Mechanisms to Geometric Statistics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1555. [PMID: 35564263 PMCID: PMC9105835 DOI: 10.3390/nano12091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Surface wrinkling is closely linked to a significant number of surface functionalities such as wetting, structural colour, tribology, frictions, biological growth and more. Given its ubiquity in nature's surfaces and that most material formation processes are driven by self-assembly and self-organization and many are formed by fibrous composites or analogues of liquid crystals, in this work, we extend our previous theory and modeling work on in silico biomimicking nanowrinkling using chiral liquid crystal surface physics by including higher-order anisotropic surface tension nonlinearities. The modeling is based on a compact liquid crystal shape equation containing anisotropic capillary pressures, whose solution predicts a superposition of uniaxial, equibiaxial and biaxial egg carton surfaces with amplitudes dictated by material anchoring energy parameters and by the symmetry of the liquid crystal orientation field. The numerical solutions are validated by analytical solutions. The blending and interaction of egg carton surfaces create surface reliefs whose amplitudes depend on the highest nonlinearity and whose morphology depends on the anchoring coefficient ratio. Targeting specific wrinkling patterns is realized by selecting trajectories on an appropriate parametric space. Finally, given its importance in surface functionalities and applications, the geometric statistics of the patterns up to the fourth order are characterized and connected to the parametric anchoring energy space. We show how to minimize and/or maximize skewness and kurtosis by specific changes in the surface energy anisotropy. Taken together, this paper presents a theory and simulation platform for the design of nano-wrinkled surfaces with targeted surface roughness metrics generated by internal capillary pressures, of interest in the development of biomimetic multifunctional surfaces.
Collapse
Affiliation(s)
| | | | - Alejandro D. Rey
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, QC H3A 0C5, Canada; (Z.W.); (P.S.)
| |
Collapse
|
3
|
Nanosize-confined nematic liquid crystals at slippery interfaces of polymer composites consisting of poly (hexyl methacrylate). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Jiang S, Park CS, Lee WB, Zhou C, Lee SS. Light-driven diffraction grating based on a photothermal actuator incorporating femtosecond laser-induced GO/rGO. OPTICS EXPRESS 2020; 28:39552-39562. [PMID: 33379501 DOI: 10.1364/oe.411526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
A light-driven diffraction grating incorporating two grating patterns with different pitches atop a photothermal actuator (PTA) has been proposed. It is based on graphene oxide/reduced graphene oxide (GO/rGO) induced via femtosecond laser direct writing (FsLDW). The rGO, its controllable linewidth, and transmission support the formation of grating patterns; its noticeably small coefficient of thermal expansion (CTE), good flexibility, and thermal conductivity enable the fabrication of a PTA consisting of a polydimethylsiloxane layer with a relatively large CTE. Under different intensities of light stimuli, diffraction patterns can be efficiently tailored according to different gratings, which are selectively addressed by incident light beam hinging on the bending of the PTA. This is the first demonstration of combining gratings and PTA, wherein the GO plays the role of a bridge. The light-driven mechanism enables the contactless operation of the proposed device, which can be efficiently induced via FsLDW. The diffraction angle could be changed between 2° and 6° horizontally, and the deviation of side lobes from the main lobe could be altered vertically in a continuous range. The proposed device may provide powerful support for activating dynamic diffraction devices in photothermally contactless schemes.
Collapse
|
5
|
Saeed MH, Zhang S, Cao Y, Zhou L, Hu J, Muhammad I, Xiao J, Zhang L, Yang H. Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications. Molecules 2020; 25:E5510. [PMID: 33255525 PMCID: PMC7727789 DOI: 10.3390/molecules25235510] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Polymer dispersed liquid crystals (PDLCs) have kindled a spark of interest because of their unique characteristic of electrically controlled switching. However, some issues including high operating voltage, low contrast ratio and poor mechanical properties are hindering their practical applications. To overcome these drawbacks, some measures were taken such as molecular structure optimization of the monomers and liquid crystals, modification of PDLC and doping of nanoparticles and dyes. This review aims at detailing the recent advances in the process, preparations and applications of PDLCs over the past six years.
Collapse
Affiliation(s)
- Mohsin Hassan Saeed
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Shuaifeng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.Z.); (J.H.)
| | - Yaping Cao
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Le Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Junmei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (S.Z.); (J.H.)
| | - Imran Muhammad
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Jiumei Xiao
- Department of Applied Mechanics, University of Sciences and Technology Beijing, Beijing 100083, China;
| | - Lanying Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| | - Huai Yang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; (M.H.S.); (Y.C.); (L.Z.); (I.M.)
| |
Collapse
|
6
|
Manda R, Yoon JH, Pagidi S, Bhattacharyya SS, Tran DTT, Lim YJ, Myoung JM, Lee SH. Paper-like flexible optically isotropic liquid crystal film for tunable diffractive devices. OPTICS EXPRESS 2019; 27:34876-34887. [PMID: 31878667 DOI: 10.1364/oe.27.034876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
We have demonstrated a paper-like diffractive film in which nano-structured liquid crystal droplets are embedded in elastomeric monomer incorporated polymer matrix by polymerization induced phase-separation. The film with voltage-tunable phase grating exhibits an optically isotropic phase with high transparency and an effective chromatic diffraction for an incident white light with sub-millisecond switching time. In addition, the proposed diffractive film is exhibiting excellent chemical stability against organic and inorganic solvents. In this paper, the diffraction properties of test films depending on incident polarization direction, wavelength, and spatial dispersion are characterized. Easy processing and optically isotropic nature of the film imparts potential applications to flexible electro-optic devices that can be widely implemented in wearable photonics.
Collapse
|
7
|
Manda R, Pagidi S, Lim YJ, He R, Song SM, Lee JH, Lee GD, Lee SH. Self-supported liquid crystal film for flexible display and photonic applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Kawai K, Sakamoto M, Noda K, Sasaki T, Kawatsuki N, Ono H. Dynamic control of diffraction angle and separation properties of wavelength and polarization by quaternary liquid crystal grating. APPLIED OPTICS 2019; 58:4234-4240. [PMID: 31251225 DOI: 10.1364/ao.58.004234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
A quaternary liquid crystal (LC) grating simultaneously performs dynamic control of diffraction angle, polarization, and wavelength-separation properties as shown in the following: (1) Diffraction orders in which light waves are diffracted can be selected by applying a voltage, (2) the efficiency of each diffraction order can be controlled depending on a wavelength of an incident beam, and (3) a pair of counter-rotated circular polarizations or linear polarizations with an orthogonal relationship are diffracted simultaneously, and this property can be controlled by applying a voltage. These diffraction properties and LC alignment structures are proposed based on theoretical analyses using Jones calculus, and their properties are now demonstrated experimentally. The quaternary LC grating can be used as an advanced optical element for industrial applications such as tunable polarization beam splitters and dynamic switching of propagation directions of light depending on wavelength.
Collapse
|
9
|
Liang ZY, Tu CY, Yang TH, Liu CK, Cheng KT. Low-Threshold-Voltage and Electrically Switchable Polarization-Selective Scattering Mode Liquid Crystal Light Shutters. Polymers (Basel) 2018; 10:E1354. [PMID: 30961278 PMCID: PMC6401727 DOI: 10.3390/polym10121354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
Low-threshold-voltage (Vth) and electrically switchable, polarization-selective scattering mode light shutters (PSMLSs) using polymer-dispersed liquid crystals (PDLCs) are demonstrated in this work. The optimized weight ratio of the nematic liquid crystals (LCs) to the adopted monomer (NBA107, Norland Optics) in the low-Vth PDLCs based on NBA107 is 7:3, [7:3]-PDLCsNBA107. The properties of the low-Vth PDLCsNBA107, such as light-scattering performance, initial transmission, Vth, and droplet size were investigated. Experiment results show that the surface anchoring (threshold-voltage) of NBA107 is weaker (lower) than or equal to that of the common NOA65. The cost is that the response time of the proposed PDLCsNBA107 is relatively long. A method to reduce the decay time, which can be applied to all other PDLC devices, will be elucidated. In addition to the low Vth of the proposed PDLCsNBA107, the operation voltage (~6 Vrms) to approach the maximum transmission is relatively low in a 7 μm-thick PDLCsNBA107 cell. Moreover, the polarization-selective light-scattering performances of the proposed PSMLSs based on the [7:3]-PDLCsNBA107, mainly driven by in-plane and vertical fields, are also demonstrated.
Collapse
Affiliation(s)
- Zhe-Yung Liang
- Department of Optics and Photonics, National Central University, 320 Taoyuan, Taiwan.
| | - Ching-Yen Tu
- Department of Optics and Photonics, National Central University, 320 Taoyuan, Taiwan.
| | - Tsung-Hsun Yang
- Department of Optics and Photonics, National Central University, 320 Taoyuan, Taiwan.
| | - Cheng-Kai Liu
- Department of Optics and Photonics, National Central University, 320 Taoyuan, Taiwan.
| | - Ko-Ting Cheng
- Department of Optics and Photonics, National Central University, 320 Taoyuan, Taiwan.
| |
Collapse
|
10
|
Pagidi S, Manda R, Lim YJ, Song SM, Yoo H, Woo JH, Lin YH, Lee SH. Helical pitch-dependent electro-optics of optically high transparent nano-phase separated liquid crystals. OPTICS EXPRESS 2018; 26:27368-27380. [PMID: 30469807 DOI: 10.1364/oe.26.027368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
Feeble light leakage in a dark state of conventional optically isotropic liquid crystal (OILC) device has a strong impact on the contrast ratio of a liquid crystal (LC) device. In order to overcome such intrinsic problem, we proposed an OILC in which the LC directors inside droplets are twisted by introducing chirality. The light leakage is effectively suppressed by matching the refractive indices between LC and polymer matrix; consequently, we achieved a high contrast ratio, 1:1401. Interestingly, the on-state transmittance is enhanced by ~49% compared to conventional OILC. The response time was also improved and the hysteresis was suppressed to be negligible. The improved electro-optic performances of the proposed OILC device would give diverse applications in upcoming flexible display and various photonic devices.
Collapse
|