1
|
AlGaN Quantum Disk Nanorods with Efficient UV-B Emission Grown on Si(111) Using Molecular Beam Epitaxy. NANOMATERIALS 2022; 12:nano12142508. [PMID: 35889730 PMCID: PMC9319290 DOI: 10.3390/nano12142508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
AlGaN nanorods have attracted increasing amounts of attention for use in ultraviolet (UV) optoelectronic devices. Here, self-assembled AlGaN nanorods with embedding quantum disks (Qdisks) were grown on Si(111) using plasma-assisted molecular beam epitaxy (PA-MBE). The morphology and quantum construction of the nanorods were investigated and well-oriented and nearly defect-free nanorods were shown to have a high density of about 2 × 1010 cm−2. By controlling the substrate temperature and Al/Ga ratio, the emission wavelengths of the nanorods could be adjusted from 276 nm to 330 nm. By optimizing the structures and growth parameters of the Qdisks, a high internal quantum efficiency (IQE) of the AlGaN Qdisk nanorods of up to 77% was obtained at 305 nm, which also exhibited a shift in the small emission wavelength peak with respect to the increasing temperatures during the PL measurements.
Collapse
|
2
|
Liu X, Sun Y, Malhotra Y, Wu Y, Mi Z. Monolithic integration of multicolor InGaN LEDs with uniform luminescence emission. OPTICS EXPRESS 2021; 29:32826-32832. [PMID: 34809105 DOI: 10.1364/oe.435871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
We report the demonstration of monolithic integration of multicolor LEDs with highly spatially uniform emission wavelength. LEDs with colors ranging from green to orange are realized in a single selective area epitaxy process, and pronounced emission peak with very narrow spectral linewidth from photonic crystal effect is also achieved simultaneously. The In contents and emission colors are tuned by precisely controlling the nanowire emitter diameter and spacing. The emission wavelengths exhibit small variations of only a few nanometers among countless individual nanowire emitters over a sub-mm2 area region.
Collapse
|
3
|
Ren F, Liu B, Chen Z, Yin Y, Sun J, Zhang S, Jiang B, Liu B, Liu Z, Wang J, Liang M, Yuan G, Yan J, Wei T, Yi X, Wang J, Zhang Y, Li J, Gao P, Liu Z, Liu Z. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. SCIENCE ADVANCES 2021; 7:eabf5011. [PMID: 34330700 PMCID: PMC8324058 DOI: 10.1126/sciadv.abf5011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/15/2021] [Indexed: 05/21/2023]
Abstract
Van der Waals epitaxy provides a fertile playground for the monolithic integration of various materials for advanced electronics and optoelectronics. Here, a previously unidentified nanorod-assisted van der Waals epitaxy is developed and nearly single-crystalline GaN films are first grown on amorphous silica glass substrates using a graphene interfacial layer. The epitaxial GaN-based light-emitting diode structures, with a record internal quantum efficiency, can be readily lifted off, becoming large-size flexible devices. Without the effects of the potential field from a single-crystalline substrate, we expect this approach to be equally applicable for high-quality growth of nitrides on arbitrary substrates. Our work provides a revolutionary technology for the growth of high-quality semiconductors, thus enabling the hetero-integration of highly mismatched material systems.
Collapse
Affiliation(s)
- Fang Ren
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyao Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhaolong Chen
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yue Yin
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Shuo Zhang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Jiang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingzhi Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Zhetong Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jianwei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Meng Liang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Yuan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianchang Yan
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbo Wei
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Yi
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxi Wang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jinmin Li
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhiqiang Liu
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Jain B, Velpula RT, Tumuna M, Bui HQT, Jude J, Pham TT, le TV, Hoang AV, Wang R, Nguyen HPT. Enhancing the light extraction efficiency of AlInN nanowire ultraviolet light-emitting diodes with photonic crystal structures. OPTICS EXPRESS 2020; 28:22908-22918. [PMID: 32752544 DOI: 10.1364/oe.396788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
In this paper, AlInN nanowire ultraviolet light-emitting diodes (LEDs) with emission at ∼299 nm have been successfully demonstrated. We have further studied the light extraction properties of these nanowire LEDs using photonic crystal structures with square and hexagonal lattices of nanowires. The light extraction efficiency (LEE) of the periodic nanowire LED arrays was found to be significantly increased as compared to random nanowire LEDs. The LEEs reach ∼ 56%, and ∼ 63% for the square and hexagonal photonic crystal-based nanowire structures, respectively. Moreover, highly transverse-magnetic polarized emission was observed with dominant vertical light emission for the AlInN nanowire ultraviolet LEDs.
Collapse
|
5
|
AlGaN Nanowires for Ultraviolet Light-Emitting: Recent Progress, Challenges, and Prospects. MICROMACHINES 2020; 11:mi11020125. [PMID: 31979274 PMCID: PMC7074201 DOI: 10.3390/mi11020125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
In this paper, we discuss the recent progress made in aluminum gallium nitride (AlGaN) nanowire ultraviolet (UV) light-emitting diodes (LEDs). The AlGaN nanowires used for such LED devices are mainly grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); and various foreign substrates/templates have been investigated. Devices on Si so far exhibit the best performance, whereas devices on metal and graphene have also been investigated to mitigate various limitations of Si substrate, e.g., the UV light absorption. Moreover, patterned growth techniques have also been developed to grow AlGaN nanowire UV LED structures, in order to address issues with the spontaneously formed nanowires. Furthermore, to reduce the quantum confined Stark effect (QCSE), nonpolar AlGaN nanowire UV LEDs exploiting the nonpolar nanowire sidewalls have been demonstrated. With these recent developments, the prospects, together with the general challenges of AlGaN nanowire UV LEDs, are discussed in the end.
Collapse
|
6
|
Barrigón E, Heurlin M, Bi Z, Monemar B, Samuelson L. Synthesis and Applications of III-V Nanowires. Chem Rev 2019; 119:9170-9220. [PMID: 31385696 DOI: 10.1021/acs.chemrev.9b00075] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.
Collapse
Affiliation(s)
- Enrique Barrigón
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Magnus Heurlin
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden.,Sol Voltaics AB , Scheelevägen 63 , 223 63 Lund , Sweden
| | - Zhaoxia Bi
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Bo Monemar
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Lars Samuelson
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| |
Collapse
|
7
|
Tu CG, Zhang X, Chou KP, Tse WF, Hsu YC, Chen YP, Kiang YW, Yang CCCC. AlGaN nano-shell structure on a GaN nanorod formed with the pulsed MOCVD growth. NANOTECHNOLOGY 2019; 30:275201. [PMID: 30901764 DOI: 10.1088/1361-6528/ab128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An AlGaN/GaN multi-shell structure on a GaN nanorod (NR) is formed by using the self-catalytic pulsed growth process of metalorganic chemical vapor deposition with Ga and Al/N supplies in the first and second half-cycles, respectively. With Al supply, a thin AlGaN layer is precipitated near the end of a growth cycle to form the AlGaN/GaN structure. Because of the lower chemical potential for GaN nucleation, when compared with AlN, a GaN layer is first deposited in a growth cycle. AlGaN is not precipitated until the AlN nucleation probability becomes higher when the catalytic Ga droplet is almost exhausted. Because the Al adatoms on the NR sidewalls hinder the upward migration of Ga adatoms for contributing to the Ga droplet at the NR top, the size of the Ga droplet decreases along growth cycle leading to the decrease of GaN layer thickness at the top until a steady state is reached. In this process, the slant facet of an NR changes from the (1-102)-plane into (1-101)-plane. To interpret the observed growth behaviors, formulations are derived for theoretically modeling the AlN nucleation probability, NR height increment in each growth cycle, and the time of exhausting the Ga droplet in a cycle.
Collapse
Affiliation(s)
- Charng-Gan Tu
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pandey A, Shin WJ, Liu X, Mi Z. Effect of electron blocking layer on the efficiency of AlGaN mid-ultraviolet light emitting diodes. OPTICS EXPRESS 2019; 27:A738-A745. [PMID: 31252850 DOI: 10.1364/oe.27.00a738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The performance of AlGaN-based mid and deep ultraviolet light emitting diodes (LEDs) is severely limited by electron overflow and by the poor hole injection into the device active region. We have studied the effect of various electron blocking layers on the performance of AlGaN LEDs operating at ~280 nm. It is observed that, compared to conventional p-type electron blocking layer, the incorporation of an n-type AlN/AlGaN superlattice electron blocking layer before the active region can significantly improve the device performance by reducing electron overflow without compromising hole injection. Direct on-wafer measurement showed an external quantum efficiency ~4.4% and wall-plug efficiency ~2.8% by optimizing the design of n-type AlN/AlGaN superlattice electron blocking layer, which is nearly a factor of five to ten times better than identical devices but with the incorporation of a conventional p-type electron blocking layer.
Collapse
|
9
|
Brubaker MD, Genter KL, Roshko A, Blanchard PT, Spann BT, Harvey TE, Bertness KA. UV LEDs based on p-i-n core-shell AlGaN/GaN nanowire heterostructures grown by N-polar selective area epitaxy. NANOTECHNOLOGY 2019; 30:234001. [PMID: 30776789 PMCID: PMC7679058 DOI: 10.1088/1361-6528/ab07ed] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ultraviolet light-emitting diodes fabricated from N-polar AlGaN/GaN core-shell nanowires (NWs) with p-i-n structure produced electroluminescence at 365 nm with ∼5× higher intensities than similar GaN homojunction LEDs. The improved characteristics were attributed to localization of spontaneous recombination to the NW core, reduction of carrier overflow losses through the NW shell, and elimination of current shunting. Poisson-drift-diffusion modeling indicated that a shell Al mole fraction of x = 0.1 in Al x Ga1-x N effectively confines electrons and injected holes to the GaN core region. AlGaN overcoat layers targeting this approximate Al mole fraction were found to possess a low-Al-content tip and high-Al-content shell, as determined by scanning transmission electron microscopy. Photoluminescence spectroscopy further revealed the actual Al mole fraction to be NW diameter-dependent, where the tip and shell compositions converged towards the nominal flux ratio for large diameter NWs.
Collapse
Affiliation(s)
- Matt D Brubaker
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO, United States of America
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao S, Wang R, Chu S, Mi Z. Molecular Beam Epitaxy of III-Nitride Nanowires: Emerging Applications From Deep-Ultraviolet Light Emitters and Micro-LEDs to Artificial Photosynthesis. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2891370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Le BH, Liu X, Tran NH, Zhao S, Mi Z. An electrically injected AlGaN nanowire defect-free photonic crystal ultraviolet laser. OPTICS EXPRESS 2019; 27:5843-5850. [PMID: 30876179 DOI: 10.1364/oe.27.005843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
We report on the demonstration of an electrically injected AlGaN nanowire photonic crystal laser that can operate in the ultraviolet spectral range. The nanowire heterostructures were grown on sapphire substrate using a site-controlled selective area growth process. By exploiting the topological high-Q resonance of a defect-free nanowire photonic crystal, we have demonstrated electrically pumped lasers that can operate at 369.5 nm with a relatively low threshold current density of ~2.1 kA/cm2 under continuous wave operation at room-temperature. This work provides a promising approach for achieving low threshold semiconductor laser diodes operating in the UV spectral range that were previously difficult.
Collapse
|
12
|
Ren F, Yin Y, Wang Y, Liu Z, Liang M, Ou H, Ao J, Wei T, Yan J, Yuan G, Yi X, Wang J, Li J, Dasa D, Weman H. Direct Growth of AlGaN Nanorod LEDs on Graphene-Covered Si. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2372. [PMID: 30486245 PMCID: PMC6316983 DOI: 10.3390/ma11122372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
Abstract
High density of defects and stress owing to the lattice and thermal mismatch between nitride materials and heterogeneous substrates have always been important problems and limit the development of nitride materials. In this paper, AlGaN light-emitting diodes (LEDs) were grown directly on a single-layer graphene-covered Si (111) substrate by metal organic chemical vapor deposition (MOCVD) without a metal catalyst. The nanorods was nucleated by AlGaN nucleation islands with a 35% Al composition, and included n-AlGaN, 6 period of AlGaN multiple quantum wells (MQWs), and p-AlGaN. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) showed that the nanorods were vertically aligned and had an accordant orientation along the [0001] direction. The structure of AlGaN nanorod LEDs was investigated by scanning transmission electron microscopy (STEM). Raman measurements of graphene before and after MOCVD growth revealed the graphene could withstand the high temperature and ammonia atmosphere in MOCVD. Photoluminescence (PL) and cathodoluminescence (CL) characterized an emission at ~325 nm and demonstrated the low defects density in AlGaN nanorod LEDs.
Collapse
Affiliation(s)
- Fang Ren
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Yue Yin
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Yunyu Wang
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Zhiqiang Liu
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Meng Liang
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Haiyan Ou
- Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 345A, DK-2800 Kongens Lyngby, Denmark;
| | - Jinping Ao
- Department of Electrical and Electronic Engineering, The University of Tokushima, 2-1, Minami-josanjima, Tokushima 770-8506, Japan;
| | - Tongbo Wei
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Jianchang Yan
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Guodong Yuan
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Xiaoyan Yi
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Junxi Wang
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Jinmin Li
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
| | - Dheeraj Dasa
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
| | - Helge Weman
- Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (F.R.); (Y.Y.); (Y.W.); (M.L.); (T.W.); (J.Y.); (J.W.); (J.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|