1
|
Kim D, Cha BJ, Guo H, Gao G, Pennington C, Wong MS, Getachew BA, Han Y. Precise Fabrication and Manipulation of Individual Polymer Nanofibers. NANO LETTERS 2024; 24:6038-6042. [PMID: 38735063 DOI: 10.1021/acs.nanolett.4c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Polymer nanofibers hold promise in a wide range of applications owing to their diverse properties, flexibility, and cost effectiveness. In this study, we introduce a polymer nanofiber drawing process in a scanning electron microscope and focused ion beam (SEM/FIB) instrument with in situ observation. We employed a nanometer-sharp tungsten needle and prepolymer microcapsules to enable nanofiber drawing in a vacuum environment. This method produces individual polymer nanofibers with diameters as small as ∼500 nm and lengths extending to millimeters, yielding nanofibers with an aspect ratio of 2000:1. The attachment to the tungsten manipulator ensures accurate transfer of the polymer nanofiber to diverse substrate types as well as fabrication of assembled structures. Our findings provide valuable insights into ultrafine polymer fiber drawing, paving the way for high-precision manipulation and assembly of polymer nanofibers.
Collapse
Affiliation(s)
- Daewon Kim
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Byeong Jun Cha
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Hua Guo
- Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Chris Pennington
- Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Michael S Wong
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, 77005 United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Bezawit A Getachew
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, 77005 United States
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Ahmed I, Ali M, Elsherif M, Butt H. UV polymerization fabrication method for polymer composite based optical fiber sensors. Sci Rep 2023; 13:10823. [PMID: 37402807 DOI: 10.1038/s41598-023-33991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 07/06/2023] Open
Abstract
Optical fiber (OF) sensors are critical optical devices with excellent sensing capabilities and the capacity to operate in remote and hostile environments. However, integrating functional materials and micro/nanostructures into the optical fiber systems for specific sensing applications has limitations of compatibility, readiness, poor control, robustness, and cost-effectiveness. Herein, we have demonstrated the fabrication and integration of stimuli-responsive optical fiber probe sensors using a novel, low-cost, and facile 3D printing process. Thermal stimulus-response of thermochromic pigment micro-powders was integrated with optical fibers by incorporating them into ultraviolet-sensitive transparent polymer resins and then printed via a single droplet 3D printing process. Hence, the thermally active polymer composite fibers were grown (additively manufactured) on top of the commercial optical fiber tips. Then, the thermal response was studied within the temperature range of (25-35 °C) and (25-31 °C) for unicolor and dual color pigment powders-based fiber-tip sensors, respectively. The unicolor (with color to colorless transition) and dual color (with color to color transition) powders-based sensors exhibited substantial variations in transmission and reflection spectra by reversibly increasing and decreasing temperatures. The sensitivities were calculated from the transmission spectra where average change in transmission spectra was recorded as 3.5% with every 1 °C for blue, 3% for red and 1% for orange-yellow thermochromic powders based optical fiber tip sensors. Our fabricated sensors are cost-effective, reusable, and flexible in terms of materials and process parameters. Thus, the fabrication process can potentially develop transparent and tunable thermochromic sensors for remote sensing with a much simpler manufacturing process compared to conventional and other 3D printing processes for optical fiber sensors. Moreover, this process can integrate micro/nanostructures as patterns on the optical fiber tips to increase sensitivity. The developed sensors may be employed as remote temperature sensors in biomedical and healthcare applications.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| | - Murad Ali
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| | | | - Haider Butt
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| |
Collapse
|
3
|
Gozzard DR, Craine R, Hickey D, Martin A, Shen W, Sones B. Optical couplers and step-index fibers fabricated using FDM 3D printers. OPTICS LETTERS 2022; 47:5124-5127. [PMID: 36181202 DOI: 10.1364/ol.470523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Step-index optical fiber preforms are manufactured and drawn into fibers using low-cost consumer-grade fused deposition modeling (FDM) 3D printers with no other specialist tooling. The fibers are fabricated from polyethylene terephthalate glycol (PETG) cladding with an acrylonitrile buatadiene styrene (ABS) core, resulting in V < 2.4 after drawing. The fibers are measured to have a loss of α ≈ 0.78 dB/cm, which matches previous polymer fibers manufactured using draw towers. The printing of multimode optical couplers with reliable 50:50 split ratios is also demonstrated. This work points toward the fabrication of useful and bespoke optical devices with low-cost 3D printers.
Collapse
|
4
|
Infinity additive manufacturing of continuous microstructured fiber links for THz communications. Sci Rep 2022; 12:4551. [PMID: 35297411 PMCID: PMC8927297 DOI: 10.1038/s41598-022-08334-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, a novel infinity 3D printing technique is explored to fabricate continuous few-meter-long low-loss near-zero dispersion suspended-core polypropylene fibers for application in terahertz (THz) communications. Particular attention is paid to process parameter optimization for 3D printing with low-loss polypropylene plastic. Three microstructured THz fibers were 3D printed using the standard and infinity 3D printers, and an in-depth theoretical and experimental comparison between the fibers was carried out. Transmission losses (by power) of 4.79 dB/m, 17.34 dB/m, and 11.13 dB/m are experimentally demonstrated for the three fibers operating at 128 GHz. Signal transmission with bit error rate (BER) far below the forward error correction limit (10–3) for the corresponding three fiber types of lengths of 2 m, 0.75 m, and 1.6 m are observed, and an error-free transmission is realized at the bit rates up to 5.2 Gbps. THz imaging of the fiber near-field is used to visualize modal distributions and study optimal fiber excitation conditions. The ability to shield the fundamental mode from the environment, mechanical robustness, and ease of handling of thus developed effectively single-mode high optical performance fibers make them excellent candidates for upcoming fiber-assisted THz communications. Additionally, novel fused deposition modeling (FDM)-based infinity printing technique allows continuous fabrication of unlimited in length fibers of complex transverse geometries using advanced thermoplastic composites, which, in our opinion, is poised to become a key fabrication technique for advanced terahertz fiber manufacturing.
Collapse
|
5
|
Low-Cost 3D Printer Drawn Optical Microfibers for Smartphone Colorimetric Detection. BIOSENSORS 2022; 12:bios12020054. [PMID: 35200315 PMCID: PMC8869565 DOI: 10.3390/bios12020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
A fused deposition modeling (FDM) 3D printer extruder was utilized as a micro-furnace draw tower for the direct fabrication of low-cost optical fibers. An air-clad multimode microfiber was drawn from optically transparent polyethylene terephthalate glycol (PETG) filament. A custom-made spooling collection allows for an automatic variation of fiber diameter between ϕ ∼ 72 to 397 μm by tuning the drawing speed. Microstructure imaging as well as the 3D beam profiling of the transmitted beam in the orthogonal axes was used to show good quality, functioning microfiber fabrication with uniform diameter and identical beam profiles for orthogonal axes. The drawn microfiber was used to demonstrate budget smartphone colorimetric-based absorption measurement to detect the degree of adulteration of olive oils with soybean oil.
Collapse
|
6
|
|
7
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
8
|
Abstract
Abstract
3D printing belongs to the emerging technologies of our time. Describing diverse specific techniques, 3D printing enables rapid production of individual objects and creating shapes that would not be produced with other techniques. One of the drawbacks of typical 3D printing processes, however, is the layered structure of the created parts. This is especially problematic in the production of optical elements, which in most cases necessitate highly even surfaces. To meet this challenge, advanced 3D printing techniques as well as other sophisticated solutions can be applied. Here, we give an overview of 3D printed optical elements, such as lenses, mirrors, and waveguides, with a focus on freeform optics and other elements for which 3D printing is especially well suited.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Silesian University of Technology, Institute of Physics – Center for Science and Education , 44-100 Gliwice , Poland
| | - Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM) , 33619 Bielefeld , Germany
| | - Andrea Ehrmann
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics , 33619 Bielefeld , Germany
| |
Collapse
|
9
|
Khan MRH, Ali FAM, Islam MR. THz sensing of CoViD-19 disinfecting products using photonic crystal fiber. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|
11
|
Rahman MM, Mou FA, Bhuiyan MIH, Islam MR. Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100356] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Talataisong W, Gorecki J, Ismaeel R, Beresna M, Schwendemann D, Apostolopoulos V, Brambilla G. Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer. Sci Rep 2020; 10:11045. [PMID: 32632256 PMCID: PMC7338405 DOI: 10.1038/s41598-020-68079-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/11/2020] [Indexed: 11/09/2022] Open
Abstract
Terahertz (THz) technology has witnessed a significant growth in a wide range of applications, including spectroscopy, bio-medical sensing, astronomical and space detection, THz tomography, and non-invasive imaging. Current THz microstructured fibers show a complex fabrication process and their flexibility is severely restricted by the relatively large cross-sections, which turn them into rigid rods. In this paper, we demonstrate a simple and novel method to fabricate low-cost THz microstructured fibers. A cyclic olefin copolymer (TOPAS) suspended-core fiber guiding in the THz is extruded from a structured 3D printer nozzle and directly drawn in a single step process. Spectrograms of broadband THz pulses propagated through different lengths of fiber clearly indicate guidance in the fiber core. Cladding mode stripping allow for the identification of the single mode in the spectrograms and the determination of the average propagation loss (~ 0.11 dB/mm) in the 0.5-1 THz frequency range. This work points towards single step manufacturing of microstructured fibers using a wide variety of materials and geometries using a 3D printer platform.
Collapse
Affiliation(s)
- Wanvisa Talataisong
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jon Gorecki
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rand Ismaeel
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.,National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Martynas Beresna
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Daniel Schwendemann
- Institute for Material Science and Plastics Processing, University of Applied Sciences Eastern Switzerland, 8640, Rapperswil, Switzerland
| | | | - Gilberto Brambilla
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
14
|
Zhang B, Chu Y, Fu X, Wei S, Wang J, Luo Y, Peng GD. Thermal bleaching of BACs in bismuth/erbium co-doped fiber fabricated through 3D silica lithography. OPTICS LETTERS 2020; 45:3729-3732. [PMID: 32630940 DOI: 10.1364/ol.397975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Bismuth/erbium co-doped optical fiber fabricated through 3D silica lithography is thermally treated with various conditions. Then the thermal treatment effect on bismuth active centers (BACs) in this fiber is investigated. The thermal bleaching of the BAC associated with Al and the BAC associated with Si is observed after thermal treatment at high temperatures (300°C-800°C). It is found that the absorption and luminescence of BACs dramatically decrease after the thermal treatment, even totally bleaching at 700°C. The results show that the temperature and dwell time have significant effects on the thermal bleaching and activation of BACs. The underlying mechanisms of these thermal-induced effects are further discussed.
Collapse
|
15
|
Ultra-simplified Single-Step Fabrication of Microstructured Optical Fiber. Sci Rep 2020; 10:9678. [PMID: 32541807 PMCID: PMC7295744 DOI: 10.1038/s41598-020-66632-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022] Open
Abstract
Manufacturing optical fibers with a microstructured cross-section relies on the production of a fiber preform in a multiple-stage procedure, and drawing of the preform to fiber. These processes encompass the use of several dedicated and sophisticated equipment, including a fiber drawing tower. Here we demonstrate the use of a commercial table-top low-cost filament extruder to produce optical fibers with complex microstructure in a single step - from the pellets of the optical material directly to the final fiber. The process does not include the use of an optical fiber drawing tower and is time, electrical power, and floor space efficient. Different fiber geometries (hexagonal-lattice solid core, suspended core and hollow core) were successfully fabricated and their geometries evaluated. Air guidance in a wavelength range where the fiber material is opaque was shown in the hollow core fiber.
Collapse
|
16
|
Chu Y, Fu X, Luo Y, Canning J, Tian Y, Cook K, Zhang J, Peng GD. Silica optical fiber drawn from 3D printed preforms. OPTICS LETTERS 2019; 44:5358-5361. [PMID: 31675013 DOI: 10.1364/ol.44.005358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Silica optical fiber was drawn from a three-dimensional printed preform. Both single mode and multimode fibers are reported. The results demonstrate additive manufacturing of glass optical fibers and its potential to disrupt traditional optical fiber fabrication. It opens up fiber designs for novel applications hitherto not possible.
Collapse
|
17
|
Suspended-Core Microstructured Polymer Optical Fibers and Potential Applications in Sensing. SENSORS 2019; 19:s19163449. [PMID: 31394753 PMCID: PMC6719154 DOI: 10.3390/s19163449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The study of the fabrication, material selection, and properties of microstructured polymer optical fibers (MPOFs) has long attracted great interest. This ever-increasing interest is due to their wide range of applications, mainly in sensing, including temperature, pressure, chemical, and biological species. This manuscript reviews the manufacturing of MPOFs, including the most recent single-step process involving extrusion from a modified 3D printer. MPOFs sensing applications are then discussed, with a stress on the benefit of using polymers.
Collapse
|