1
|
Kanda N, Nakagawa M, Murotani Y, Matsunaga R. Time-domain characterization of electric field vector in multi-terahertz pulses using polarization-modulated electro-optic sampling. OPTICS EXPRESS 2024; 32:1576-1584. [PMID: 38297706 DOI: 10.1364/oe.506405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024]
Abstract
We demonstrated characterizing the electric field waveform of multi-terahertz pulses (10 - 50 THz) as vector quantities in the time domain by applying the polarization modulated electro-optic sampling (POMEOS) method. The problem of an ultrabroadband gate pulse was solved by modifying the fitting function in POMEOS, and its validity was confirmed through numerical simulations. High accuracy and precision of approximately 1 mrad with 3 s accumulation were demonstrated. Our method can be applied not only to multi-terahertz polarization measurements for linear response but also to the evaluation of the driving field of intense pulses for nonlinear response or material control.
Collapse
|
2
|
Yoneda Y, Kuramochi H. Rapid-Scan Resonant Two-Dimensional Impulsive Stimulated Raman Spectroscopy of Excited States. J Phys Chem A 2023. [PMID: 37289973 DOI: 10.1021/acs.jpca.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical reactions occur in the electronically excited state, which is effectively represented by a multidimensional potential energy surface (PES) with a vast degree of freedom of nuclear coordinates. The elucidation of the intricate shape of the PES constitutes an important topic in the field of photochemistry and has long been studied both experimentally and theoretically. Recently, fully time-domain resonant two-dimensional Raman spectroscopy has emerged as a potentially powerful tool to provide unique information about the coupling between vibrational manifolds in the excited state. However, the wide application of this technique has been significantly hampered by the technical difficulties associated with experimental implementation and remains challenging. Herein, we demonstrate time-domain resonant two-dimensional impulsive stimulated Raman spectroscopy (2D-ISRS) of excited states using sub-10 fs pulses based on the rapid scan of the time delay, which facilitates the efficient collection of time-domain vibrational signals with high sensitivity. As a proof-of-principle experiment, we performed 2D-ISRS of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) in solution. Through 2D Fourier transformation of the high-quality time-time oscillatory signal, we obtained a 2D frequency-frequency correlation map of excited-state TIPS-pentacene in the broad frequency window of 0-2000 cm-1. The data clearly resolve a number of cross peaks that signify the correlations among excited-state vibrational manifolds. The high capability of the rapid-scan-based 2D-ISRS spectrometer presented in this study enables the systematic investigation of various photochemical reaction systems, thereby further promoting the understanding and applications of this new multidimensional spectroscopy.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
3
|
Okamoto T, Kunihashi Y, Shinohara Y, Sanada H, Chen MC, Oguri K. Operation at 1 MHz of 1.7-cycle multiple plate compression at 35-W average output power. OPTICS LETTERS 2023; 48:2579-2582. [PMID: 37186713 DOI: 10.1364/ol.477372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We generate 1.7-cycle and 35-µJ pulses at a 1-MHz repetition rate by using two-stage multiple plate continuum compression of Yb-laser pulses with 80-W average input power. By adjusting the plate positions with careful consideration of the thermal lensing effect due to the high average power, we compress the output pulse with a 184-fs initial duration to 5.7 fs by using only group-delay-dispersion compensation. This pulse achieves a sufficient beam quality (M2 < 1.5) reaching a focused intensity over 1014 W/cm2 and a high spatial-spectral homogeneity (98%). Our study holds promise for a MHz-isolated-attosecond-pulse source for advanced attosecond spectroscopic and imaging technologies with unprecedentedly high signal-to-noise ratios.
Collapse
|
4
|
Kurihara T, Yang T, Mizuno T, Kanai T, Itatani J. Highly CEP-stable optical parametric amplifier at 2 µm with a few-cycle duration and 100 kHz repetition rate. OPTICS EXPRESS 2023; 31:11649-11658. [PMID: 37155795 DOI: 10.1364/oe.481126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We develop a BiB3O6 (BiBO)-based optical parametric amplifier in the spectral region around 2 µm using a Yb:KGW amplifier operating at 100 kHz. The two-stage degenerate optical parametric amplification results in a typical output energy of 30 µJ after compression, spectrum covering 1.7-2.5 µm range, and a pulse duration fully compressible down to 16.4 fs, corresponding to 2.3 cycles. Due to the inline difference frequency generation of the seed pulses, the carrier envelope phase (CEP) is passively stabilized without feedback over 11 hours at the level below 100 mrad including a long-term drift. Short-term statistical analysis in the spectral domain further shows a behavior qualitatively different from that of parametric fluorescence, indicating high degree of suppression of optical parametric fluorescence. The high phase stability together with the few-cycle pulse duration is promising for the investigation of high-field phenomena such as subcycle spectroscopy in solids or high harmonics generation.
Collapse
|
5
|
Bournet Q, Jonusas M, Zheng A, Guichard F, Natile M, Zaouter Y, Joffre M, Bonvalet A, Druon F, Hanna M, Georges P. Inline amplification of mid-infrared intrapulse difference frequency generation. OPTICS LETTERS 2022; 47:4885-4888. [PMID: 36181142 DOI: 10.1364/ol.467792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate an ultrafast mid-infrared source architecture that implements both intrapulse difference frequency generation (iDFG) and further optical parametric amplification (OPA), in an all-inline configuration. The source is driven by a nonlinearly compressed high-energy Yb-doped-fiber amplifier delivering 7.4 fs pulses at a central wavelength of 1030 nm, at a repetition rate of 250 kHz. It delivers 1 µJ, 73 fs pulses at a central wavelength of 8 µm, tunable over more than one octave. By enrolling all the pump photons in the iDFG process and recycling the long wavelength pump photons amplified in the iDFG in the subsequent OPA, we obtain an unprecedented overall optical efficiency of 2%. These performances, combining high energy and repetition rate in a very simple all-inline setup, make this technique ideally suited for a growing number of applications, such as high harmonic generation in solids or two-dimensional infrared spectroscopy experiments.
Collapse
|
6
|
Zhu B, Fu Z, Chen Y, Peng S, Jin C, Fan G, Zhang S, Wang S, Ru H, Tian C, Wang Y, Kapteyn H, Murnane M, Tao Z. Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management. OPTICS EXPRESS 2022; 30:2918-2932. [PMID: 35209423 DOI: 10.1364/oe.443942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics.
Collapse
|
7
|
Bournet Q, Guichard F, Natile M, Zaouter Y, Joffre M, Bonvalet A, Pupeza I, Hofer C, Druon F, Hanna M, Georges P. Enhanced intrapulse difference frequency generation in the mid-infrared by a spectrally dependent polarization state. OPTICS LETTERS 2022; 47:261-264. [PMID: 35030582 DOI: 10.1364/ol.444908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
We present a technique to optimize the intrapulse difference frequency generation efficiency for mid-infrared generation. The approach employs a multi-order wave plate that is designed to selectively rotate the polarization state of the incoming spectral components on the relevant orthogonal axes for subsequent nonlinear interaction. We demonstrate a significant increase of the mid-infrared average power generated, of a factor ≥2.5 compared with the conventional scheme, owing to an optimally distributed number of photons enrolled in the difference frequency generation process.
Collapse
|
8
|
Sanari Y, Sekiguchi F, Nakagawa K, Ishii N, Kanemitsu Y, Hirori H. Generation of wavelength-tunable few-cycle pulses in the mid-infrared at repetition rates up to 10 kHz. OPTICS LETTERS 2021; 46:5280-5283. [PMID: 34653172 DOI: 10.1364/ol.440228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate a compact and tunable mid-infrared light source that provides carrier-envelope-phase (CEP)-locked pulses at repetition rates from 500 Hz to 10 kHz. The seed pulses were generated by intra-pulse difference frequency mixing of the output of an Yb:KGW regenerative amplifier that had been spectrally broadened by continuum generation using multiple plates. Then, a two-stage optical parametric amplifier was used to obtain output energies of about 100 µJ/pulse for center wavelengths between 2.8 and 3.5 µm. Owing to the intense pulse energies, it was possible to compress the multi-cycle pulses down to two-cycle pulses using YAG and Si plates.
Collapse
|
9
|
Zhang S, Fu Z, Zhu B, Fan G, Chen Y, Wang S, Liu Y, Baltuska A, Jin C, Tian C, Tao Z. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. LIGHT, SCIENCE & APPLICATIONS 2021; 10:53. [PMID: 33692333 PMCID: PMC7946960 DOI: 10.1038/s41377-021-00495-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 05/31/2023]
Abstract
Generating intense ultrashort pulses with high-quality spatial modes is crucial for ultrafast and strong-field science and can be achieved by nonlinear supercontinuum generation (SCG) and pulse compression. In this work, we propose that the generation of quasi-stationary solitons in periodic layered Kerr media can greatly enhance the nonlinear light-matter interaction and fundamentally improve the performance of SCG and pulse compression in condensed media. With both experimental and theoretical studies, we successfully identify these solitary modes and reveal their unified condition for stability. Space-time coupling is shown to strongly influence the stability of solitons, leading to variations in the spectral, spatial and temporal profiles of femtosecond pulses. Taking advantage of the unique characteristics of these solitary modes, we first demonstrate single-stage SCG and the compression of femtosecond pulses from 170 to 22 fs with an efficiency >85%. The high spatiotemporal quality of the compressed pulses is further confirmed by high-harmonic generation. We also provide evidence of efficient mode self-cleaning, which suggests rich spatiotemporal self-organization of the laser beams in a nonlinear resonator. This work offers a route towards highly efficient, simple, stable and highly flexible SCG and pulse compression solutions for state-of-the-art ytterbium laser technology.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Zongyuan Fu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Bingbing Zhu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Guangyu Fan
- Institute of Photonics, TU Wien, Gusshausstrasse 27/387, Vienna, Austria
| | - Yudong Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Shunjia Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Yaxin Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Andrius Baltuska
- Institute of Photonics, TU Wien, Gusshausstrasse 27/387, Vienna, Austria
| | - Cheng Jin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chuanshan Tian
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Zhensheng Tao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Kanda N, Ishii N, Itatani J, Matsunaga R. Optical parametric amplification of phase-stable terahertz-to-mid-infrared pulses studied in the time domain. OPTICS EXPRESS 2021; 29:3479-3489. [PMID: 33770945 DOI: 10.1364/oe.413200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
We report optical parametric amplification (OPA) of low-frequency infrared pulses in the intermediate region between terahertz (THz) frequency and mid-infrared (MIR), i.e., from 16.9 to 44.8 THz (6.7-17.8 μm). The 255-fs laser output of the Yb:KGW regenerative amplifier is compressed to 11-fs pulses using a multi-plate broadening scheme, which generates THz-to-MIR pulses with a spectrum extending to approximately 50 THz by intra-pulse differential frequency generation (DFG) in GaSe. The THz-to-MIR pulses are further amplified using a two-stage OPA in GaSe. The temporal dynamics and photocarrier effects during OPA are characterized in the time domain. Owing to the intra-pulse DFG, the long-term phase drift of the THz-to-MIR pulses after two-stage OPA is as small as 16 mrad during a 6-h operation without any active feedback. Our scheme using the intra-pulse DFG and post-amplification proposes a new route to intense THz-to-MIR light sources with extreme phase stability.
Collapse
|
11
|
Huang WH, Zhao Y, Kusama S, Kumaki F, Luo CW, Fuji T. Generation of sub-half-cycle 10 µm pulses through filamentation at kilohertz repetition rates. OPTICS EXPRESS 2020; 28:36527-36543. [PMID: 33379745 DOI: 10.1364/oe.408342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
We have experimentally demonstrated the generation of sub-half-cycle phase-stable pulses with the carrier wavelength of 10.2 µm through two-color filamentation in nitrogen. The carrier-envelope phase (CEP) of the MIR pulse is passively stabilized and controlled by the attosecond time delay between the two-color input pulses. The duration of the MIR pulse is 13.7 fs, which corresponds to 0.402 cycles. The absolute value of the CEP of the generated sub-half-cycle pulse is consistent with a simple four-wave difference frequency generation model. We have also found that the 10 kHz repetition rate of the light source causes the fluctuation of the pulse energy on a few hundred millisecond time scale.
Collapse
|
12
|
Bridger M, Naranjo-Montoya OA, Tarasevitch A, Bovensiepen U. Towards high power broad-band OPCPA at 3000 nm. OPTICS EXPRESS 2019; 27:31330-31337. [PMID: 31684367 DOI: 10.1364/oe.27.031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
High-energy femtosecond laser pulses in the mid-infrared (MIR) wavelength range are essential for a wide range of applications from strong-field physics to selectively pump and probe low energy excitations in condensed matter and molecular vibrations. Here we report a four stage optical parametric chirped pulse amplifier (OPCPA) which generates ultrashort pulses at a central wavelength of 3000 nm with 430 μJ energy per pulse at a bandwidth of 490 nm. Broadband emission of a Ti:sapphire oscillator seeds both the four stage OPCPA 800 nm and the pump line at 1030 nm. The first stage amplifies the 800 nm pulses in BBO using a non-collinear configuration. The second stage converts the wavelength to 1560 nm using difference frequency generation in BBO in a collinear geometry. The third stage amplifies this frequency non-collinearly in KTA. Finally, the fourth stage generates the 3000 nm radiation in a collinear configuration in LiIO 3 due to the broad amplification bandwidth this crystal provides. We compress these pulses to 65 fs by transmission through sapphire. Quantitative calculations of the individual non-linear processes in all stages verify that our OPCPA architecture operates close to optimum efficiency. Low absorption losses suggest that this particular design is very suitable for operation at high average power and multi kHz repetition rates.
Collapse
|