1
|
Neudert A, Duerr P, Nitzsche M. An FEM Study on Minimizing Electrostatic Cross-Talk in a Comb Drive Micro Mirror Array. MICROMACHINES 2024; 15:942. [PMID: 39203593 PMCID: PMC11356037 DOI: 10.3390/mi15080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
We are developing a phase-modulating micro mirror-array spatial light modulator to be used for real holography within the EU-funded project REALHOLO, featuring millions of pixels that can be individually positioned in a piston mode at a large frame rate. We found earlier that an electrostatic comb-drive array offers the best performance for the actuators: sufficient yoke forces for fast switching even at low voltages compatible with the CMOS addressing backplane. In our first design, the well-known electrostatic cross-talk issue had already been much smaller than would have been possible for parallel-plate actuators, but it was still larger than the precision requirements for high-image-quality holography. In this paper, we report on our analysis of the crucial regions for the electrostatic cross-talk and ways to reduce it while observing manufacturing constraints as well as avoiding excessively high field strengths that might lead to electrical breakdown. Finally, we present a solution that, in FEM simulations, reduces the remaining cross-talk to well below the required specification limit. This solution can be manufactured without any additional processing steps and suffers only a very small reduction of the yoke forces.
Collapse
Affiliation(s)
- Andreas Neudert
- Fraunhofer Institute for Photonic Microsystems IPMS, Maria-Reiche Str. 2, 01109 Dresden, Germany; (P.D.); (M.N.)
| | | | | |
Collapse
|
2
|
Chen C, Hao Q, Liu L, Cao J, Qiao Z, Cheng Y. Continuous Optical Zoom Compound Eye Imaging Using Alvarez Lenses Actuated by Dielectric Elastomers. Biomimetics (Basel) 2024; 9:374. [PMID: 38921254 PMCID: PMC11202164 DOI: 10.3390/biomimetics9060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
The compound eye is a natural multi-aperture optical imaging system. In this paper, a continuous optical zoom compound eye imaging system based on Alvarez lenses is proposed. The main optical imaging part of the proposed system consists of a curved Alvarez lens array (CALA) and two Alvarez lenses. The movement of the CALA and two Alvarez lenses perpendicular to the optical axis is realized by the actuation of the dielectric elastomers (DEs). By adjusting the focal length of the CALA and the two Alvarez lenses, the proposed system can realize continuous zoom imaging without any mechanical movement vertically to the optical axis. The experimental results show that the paraxial magnification of the target can range from ∼0.30× to ∼0.9×. The overall dimensions of the optical imaging part are 54 mm × 36 mm ×60 mm (L × W × H). The response time is 180 ms. The imaging resolution can reach up to 50 lp/mm during the optical zoom process. The proposed continuous optical zoom compound eye imaging system has potential applications in various fields, including large field of view imaging, medical diagnostics, machine vision, and distance detection.
Collapse
Affiliation(s)
- Chuanxun Chen
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China; (C.C.); (Q.H.); (L.L.); (J.C.); (Z.Q.)
| | - Qun Hao
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China; (C.C.); (Q.H.); (L.L.); (J.C.); (Z.Q.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314003, China
| | - Lin Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China; (C.C.); (Q.H.); (L.L.); (J.C.); (Z.Q.)
| | - Jie Cao
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China; (C.C.); (Q.H.); (L.L.); (J.C.); (Z.Q.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314003, China
- National Key Laboratory on Near-Surface Detection, Beijing 100072, China
| | - Zhibo Qiao
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China; (C.C.); (Q.H.); (L.L.); (J.C.); (Z.Q.)
| | - Yang Cheng
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China; (C.C.); (Q.H.); (L.L.); (J.C.); (Z.Q.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314003, China
- National Key Laboratory on Near-Surface Detection, Beijing 100072, China
| |
Collapse
|
3
|
Hiroi Y, Hiraki T, Itoh Y. StainedSweeper: Compact, Variable-Intensity Light-Attenuation Display with Sweeping Tunable Retarders. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2682-2692. [PMID: 38437084 DOI: 10.1109/tvcg.2024.3372058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Light Attenuation Displays (LADs) are a type of Optical See-Through Head-Mounted Display (OST-HMD) that present images by attenuating incoming light with a pixel-wise polarizing color filter. Although LADs can display images in bright environments, there is a trade-off between the number of Spatial Light Modulators (SLMs) and the color gamut and contrast that can be expressed, making it difficult to achieve both high-fidelity image display and a small form factor. To address this problem, we propose StainedSweeper, a LAD that achieves both the wide color gamut and the variable intensity with a single SLM. Our system synchronously controls a pixel-wise Digital Micromirror Device (DMD) and a nonpixel polarizing color filter to pass light when each pixel is the desired color. By sweeping this control at high speed, the human eye perceives images in a time-multiplexed, integrated manner. To achieve this, we develop the OST-HMD design using a reflective Solc filter as a polarized color filter and a color reproduction algorithm based on the optimization of the time-multiplexing matrix for the selected primary color filters. Our proof-of-concept prototype showed that our single SLM design can produce subtractive images with variable contrast and a wider color gamut than conventional LADs.
Collapse
|
4
|
Gonzalez-Utrera D, Villalobos-Mendoza B, Diaz-Uribe R, Aguirre-Aguirre D. Modeling, fabrication, and metrology of 3D printed Alvarez lenses prototypes. OPTICS EXPRESS 2024; 32:3512-3527. [PMID: 38297571 DOI: 10.1364/oe.513553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
In this work, we present the fabrication of two 3D printed plano-freeform prototypes, designed in such a way that, when assembled, an Alvarez lens is formed. The freeform surface of each element was mathematically described using Zernike polynomials and verified by implementing an off-axis null-screen test. Additionally, a characterization by refraction of the assembled lens was performed. Experimental images show the suitability of additive manufacturing engineering for prototyping freeform optics by providing a practical demonstration of the Alvarez lens concept.
Collapse
|
5
|
Zhang S, Zhao X, Li D, Feng H, Zhao S, Wang L, Zhang X. High-precision analysis of aberration contribution of Zernike freeform surface terms for non-zero field of view. OPTICS EXPRESS 2024; 32:3167-3183. [PMID: 38297544 DOI: 10.1364/oe.511052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Clarifying the aberrations arising from freeform surfaces is of great significance for maximizing the potential of freeform surfaces in the design of optical systems. However, the current precision in calculating aberration contribution of freeform surface terms for non-zero field of view is insufficient, impeding the development of freeform imaging systems with larger field of view. This paper proposes a high-precision analysis of aberration contribution of freeform surface terms based on nodal aberration theory, particularly for non-zero field points. Accurate calculation formulas of aberrations generated by Zernike terms on freeform surface are presented. Design examples illustrate that the calculation error of the provided formulas is 78% less than that of conventional theoretical values. Building upon high-precision analysis, we propose an optimization method for off-axis freeform surface systems and illustrate its effectiveness through the optimization of an off-axis three-mirror system. This research extends the applicability of nodal aberration theory in aberration analysis, offering valuable insights for the optimal design and alignment of optical freeform systems.
Collapse
|
6
|
Chen C, Hao Q, Liu L, Cao J, Zhang Y, Cheng Y. 10× continuous optical zoom imaging using Alvarez lenses actuated by dielectric elastomers. OPTICS EXPRESS 2024; 32:1246-1256. [PMID: 38297680 DOI: 10.1364/oe.507056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/25/2023] [Indexed: 02/02/2024]
Abstract
Optical zoom is an essential function for many imaging systems including consumer electronics, biomedical microscopes, telescopes, and projectors. However, most optical zoom imaging systems have discrete zoom rates or narrow zoom ranges. In this work, a continuous optical zoom imaging system with a wide zoom range is proposed. It consists of a solid lens, two Alvarez lenses, and a camera with an objective. Each Alvarez lens is composed of two cubic phase plates, which have inverted freeform surfaces concerning each other. The movement of the cubic phase masks perpendicular to the optical axis is realized by the actuation of the dielectric elastomer. By applying actuation voltages to the dielectric elastomer, cubic phase masks are moved laterally and then the focal lengths of the two Alvarez lenses are changed. By adjusting the focal lengths of these two Alvarez lenses, the optical magnification is tuned. The proposed continuous optical zoom imaging system is built and the validity is verified by the experiments. The experimental results demonstrate that the zoom ratio is up to 10×, i.e., the magnification continuously changes from 1.58× to 15.80× when the lateral displacements of the cubic phase masks are about 1.0 mm. The rise and fall response times are 150 ms and 210 ms, respectively. The imaging resolution can reach 114 lp/mm during the optical zoom process. The proposed continuous optical imaging system is expected to be used in the fields of microscopy, biomedicine, virtual reality, etc.
Collapse
|
7
|
Ye Z, Yan J, Jiang T, Chen S, Xu Z, Feng H, Li Q, Chen Y. Design of an optimized Alvarez lens based on the fifth-order polynomial combination. APPLIED OPTICS 2023; 62:9072-9081. [PMID: 38108744 DOI: 10.1364/ao.501295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
This paper proposes an optimized design of the Alvarez lens by utilizing a combination of three fifth-order X-Y polynomials. It can effectively minimize the curvature of the lens surface to meet the manufacturing requirements. The phase modulation function and aberration of the proposed lens are evaluated by using first-order optical analysis. Simulations compare the proposed lens with the traditional Alvarez lens in terms of surface curvature, zoom capability, and imaging quality. The results demonstrate the exceptional performance of the proposed lens, achieving a remarkable 26.36% reduction in the maximum curvature of the Alvarez lens (with a coefficient A value of 4×10-4 and a diameter of 26 mm) while preserving its original zoom capability and imaging quality.
Collapse
|
8
|
Yan J, Ye Z, Jiang T, Chen S, Feng H, Xu Z, Li Q, Chen Y. Image restoration for optical zooming system based on Alvarez lenses. OPTICS EXPRESS 2023; 31:35765-35776. [PMID: 38017741 DOI: 10.1364/oe.500967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023]
Abstract
Alvarez lenses are known for their ability to achieve a broad range of optical power adjustment by utilizing complementary freeform surfaces. However, these lenses suffer from optical aberrations, which restrict their potential applications. To address this issue, we propose a field of view (FOV) attention image restoration model for continuous zooming. In order to simulate the degradation of optical zooming systems based on Alvarez lenses (OZA), a baseline OZA is designed where the polynomial for the Alvarez lenses consists of only three coefficients. By computing spatially varying point spread functions (PSFs), we simulate the degraded images of multiple zoom configurations and conduct restoration experiments. The results demonstrate that our approach surpasses the compared methods in the restoration of degraded images across various zoom configurations while also exhibiting strong generalization capabilities under untrained configurations.
Collapse
|
9
|
Ruan N, Shi F, Tian Y, Xing P, Zhang W, Qiao S. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis. OPTICS EXPRESS 2023; 31:33799-33814. [PMID: 37859152 DOI: 10.1364/oe.498011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
A two-dimensional geometrical waveguide enables ultra-thin augmented reality (AR) near-eye display (NED) with wide field of view (FOV) and large exit-pupil diameter (EPD). A conventional design method can efficiently design waveguides that meet the requirements, but is unable to fully utilize the potential display performance of the waveguide. A forward-ray-tracing waveguide design method with maximum FOV analysis is proposed, enabling two-dimensional geometrical waveguides to achieve their maximum FOV while maintaining minimum dimensions. Finally, the designed stray-light-suppressed waveguide NED has a thickness of 1.7 mm, a FOV of 50.00°H × 29.92°V, and an eye-box of 12 mm × 12 mm at an eye-relief of 18 mm.
Collapse
|
10
|
Chen S, Wei Y, Sun Y, Li B, Zhao J. Off-axis three-mirror freeform systems design based on improved W-W differential equations. APPLIED OPTICS 2023; 62:3892-3903. [PMID: 37706698 DOI: 10.1364/ao.483753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/09/2023] [Indexed: 09/15/2023]
Abstract
Design of an off-axis system using the Wassermann-Wolf (W-W) differential equations can effectively eliminate the spherical aberration and coma problem; however, it is complicated and time consuming to calculate the discrete point coordinates on the freeform mirror surfaces due to multiple numbers of reference system transformation in the design process. This paper presents an improved W-W-differential-equations-based design method for off-axis three-mirror freeform systems. First, to reduce the number of coordinate transformations, a geometric relationship between different optical rays in an off-axis system is established using the distance between the central points of adjacent mirrors. Second, a three-dimensional rotation matrix is used to associate the optical paths passing through adjacent mirrors in different reference coordinate systems, and new simplified W-W differential equations based on the ray vectors are constructed. The experimental results show that our method can easily and effectively design off-axis three-mirror freeform systems with different parameters and structures, and the designed systems have good imaging quality.
Collapse
|
11
|
Lippman DH, Schmidt GR, Bentley JL, Moore DT, Akhavan H, Harmon JP, Williams GM. Gradient-index Alvarez lenses. APPLIED OPTICS 2023; 62:3485-3495. [PMID: 37132850 DOI: 10.1364/ao.487089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gradient-index Alvarez lenses (GALs), a new, to the best of our knowledge, type of freeform optical component, are surveyed in this work for their unique properties in generating variable optical power. GALs display similar behavior to conventional surface Alvarez lenses (SALs) by means of a freeform refractive index distribution that has only recently been achievable in fabrication. A first-order framework is described for GALs including analytical expressions for their refractive index distribution and power variation. A useful feature of Alvarez lenses for introducing bias power is also detailed and is helpful for both GALs and SALs. The performance of GALs is studied, and the value of three-dimensional higher-order refractive index terms is demonstrated in an optimized design. Last, a fabricated GAL is demonstrated along with power measurements agreeing closely with the developed first-order theory.
Collapse
|
12
|
Hu H, Jiang T, Chen Y, Xu Z, Li Q, Feng H. Elimination of varying chromatic aberrations based on diffractive optics. OPTICS EXPRESS 2023; 31:11041-11052. [PMID: 37155748 DOI: 10.1364/oe.480628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In telescopic systems consisting of Alvarez lenses, chromatic aberrations vary with the magnifications and the fields of view. Computational imaging has developed rapidly in recent years, therefore we propose a method of optimizing the DOE and the post-processing neural network in 2 stages for achromatic aberrations. We apply the iterative algorithm and the gradient descent method to optimize the DOE, respectively, and then adopt U-Net to further optimize the results. The results show that the optimized DOEs improve the results, the gradient descent optimized DOE with U-Net performs the best and has a very robust and good performance in the case of simulated chromatic aberrations. The results also verify the validity of our algorithm.
Collapse
|
13
|
Qiu Y, Zhao Z, Yang J, Cheng Y, Liu Y, Yang BR, Qin Z. Light field displays with computational vision correction for astigmatism and high-order aberrations with real-time implementation. OPTICS EXPRESS 2023; 31:6262-6280. [PMID: 36823887 DOI: 10.1364/oe.485547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Vision-correcting near-eye displays are necessary concerning the large population with refractive errors. However, varifocal optics cannot effectively address astigmatism (AST) and high-order aberration (HOAs); freeform optics has little prescription flexibility. Thus, a computational solution is desired to correct AST and HOA with high prescription flexibility and no increase in volume and hardware complexity. In addition, the computational complexity should support real-time rendering. We propose that the light field display can achieve such computational vision correction by manipulating sampling rays so that rays forming a voxel are re-focused on the retina. The ray manipulation merely requires updating the elemental image array (EIA), being a fully computational solution. The correction is first calculated based on an eye's wavefront map and then refined by a simulator performing iterative optimization with a schematic eye model. Using examples of HOA and AST, we demonstrate that corrected EIAs make sampling rays distributed within ±1 arcmin on the retina. Correspondingly, the synthesized image is recovered to nearly as clear as normal vision. We also propose a new voxel-based EIA generation method considering the computational complexity. All voxel positions and the mapping between voxels and their homogeneous pixels are acquired in advance and stored as a lookup table, bringing about an ultra-fast rendering speed of 10 ms per frame with no cost in computing hardware and rendering accuracy. Finally, experimental verification is carried out by introducing the HOA and AST with customized lenses in front of a camera. As a result, significantly recovered images are reported.
Collapse
|
14
|
Syed TA, Siddiqui MS, Abdullah HB, Jan S, Namoun A, Alzahrani A, Nadeem A, Alkhodre AB. In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns. SENSORS (BASEL, SWITZERLAND) 2022; 23:146. [PMID: 36616745 PMCID: PMC9824627 DOI: 10.3390/s23010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Augmented reality (AR) has gained enormous popularity and acceptance in the past few years. AR is indeed a combination of different immersive experiences and solutions that serve as integrated components to assemble and accelerate the augmented reality phenomena as a workable and marvelous adaptive solution for many realms. These solutions of AR include tracking as a means for keeping track of the point of reference to make virtual objects visible in a real scene. Similarly, display technologies combine the virtual and real world with the user's eye. Authoring tools provide platforms to develop AR applications by providing access to low-level libraries. The libraries can thereafter interact with the hardware of tracking sensors, cameras, and other technologies. In addition to this, advances in distributed computing and collaborative augmented reality also need stable solutions. The various participants can collaborate in an AR setting. The authors of this research have explored many solutions in this regard and present a comprehensive review to aid in doing research and improving different business transformations. However, during the course of this study, we identified that there is a lack of security solutions in various areas of collaborative AR (CAR), specifically in the area of distributed trust management in CAR. This research study also proposed a trusted CAR architecture with a use-case of tourism that can be used as a model for researchers with an interest in making secure AR-based remote communication sessions.
Collapse
Affiliation(s)
- Toqeer Ali Syed
- Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
| | - Muhammad Shoaib Siddiqui
- Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
| | - Hurria Binte Abdullah
- School of Social Sciences and Humanities, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Salman Jan
- Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
- Department of Computer Science, Bacha Khan University Charsadda, Charsadda 24420, Pakistan
| | - Abdallah Namoun
- Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
| | - Ali Alzahrani
- Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
| | - Adnan Nadeem
- Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
| | - Ahmad B. Alkhodre
- Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia
| |
Collapse
|
15
|
Han W, Han J, Ju YG, Jang J, Park JH. Super multi-view near-eye display with a lightguide combiner. OPTICS EXPRESS 2022; 30:46383-46403. [PMID: 36558594 DOI: 10.1364/oe.477517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
We propose a lightguide-type super multi-view near-eye display that uses a digital micromirror device and a LED array. The proposed method presents three-dimensional images with a natural monocular depth cue using a compact combiner optics which consists of a thin lightguide and holographic optical elements (HOEs). Feasibility of the proposed method is verified by optical experiments which demonstrate monocular three-dimensional image presentation over a wide depth range. We also analyze the degradation of the image quality stemming from the spectral spread of the HOEs and show its reduction by a pre-compensation exploiting an adaptive moment estimation (Adam) optimizer.
Collapse
|
16
|
Chao CH, Liu CL, Chen HH. Time-Division Multiplexing Light Field Display with Learned Coded Aperture. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; PP:350-363. [PMID: 37015682 DOI: 10.1109/tip.2022.3203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Conventional stereoscopic displays suffer from vergence-accommodation conflict and cause visual fatigue. Integral-imaging-based displays resolve the problem by directly projecting the sub-aperture views of a light field into the eyes using a microlens array or a similar structure. However, such displays have an inherent trade-off between angular and spatial resolutions. In this paper, we propose a novel coded time-division multiplexing technique that projects encoded sub-aperture views to the eyes of a viewer with correct cues for vergence-accommodation reflex. Given sparse light field sub-aperture views, our pipeline can provide a perception of high-resolution refocused images with minimal aliasing by jointly optimizing the sub-aperture views for display and the coded aperture pattern. This is achieved via deep learning in an end-to-end fashion by simulating light transport and image formation with Fourier optics. To our knowledge, this work is among the first that optimize the light field display pipeline with deep learning. We verify our idea with objective image quality metrics (PSNR, SSIM, and LPIPS) and perform an extensive study on various customizable design variables in our display pipeline. Experimental results show that light fields displayed using the proposed technique indeed have higher quality than that of baseline display designs.
Collapse
|
17
|
Cheng D, Chen H, Yao C, Hou Q, Hou W, Wei L, Yang T, Wang Y. Design, stray light analysis, and fabrication of a compact head-mounted display using freeform prisms. OPTICS EXPRESS 2022; 30:36931-36948. [PMID: 36258613 DOI: 10.1364/oe.472175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
It has been a challenge to design an optical see-through head-mounted display that is compact, lightweight, and stray-light-suppressed by using freeform optics. A new type of design based on freeform prisms is presented. The system consists of three optical elements and a micro-display. Two prisms serve as near-eye viewing optics that magnify the image displayed by the micro-display, and the other freeform lens is an auxiliary element attached to the main wedge-shaped prism to provide an undistorted see-through view of a real-world scene. The overall thickness of the optical system does not exceed 9.5 mm, and the weight is less than 9.8 g per eye. The final system is based on a 0.49-inch micro-display and features a diagonal field of view of 38°, an F/number of 1.8, with a 10 mm × 7 mm exit pupil diameter, and a 19 mm eye relief. The causes of stray light in the optical-mechanical system are investigated, and effective solutions or theoretical suppression of stray light are given. The freeform optical elements are successfully fabricated, and the system performance is carefully investigated. The results show that the performance of the optical see-through head-mounted display is adequate for practical applications.
Collapse
|
18
|
Chen S, Lin J, He Z, Li Y, Su Y, Wu ST. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements. OPTICS EXPRESS 2022; 30:34655-34664. [PMID: 36242473 DOI: 10.1364/oe.468647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Virtual reality (VR) and augmented reality (AR) have widespread applications. The vergence-accommodation conflict (VAC), which causes 3D visual fatigue, has become an urgent challenge for VR and AR displays. Alvarez lenses, with precise and continuously tunable focal length based on the lateral shift of its two sub-elements, are a promising candidate as the key electro-optical component in vari-focal AR display systems to solve the VAC problem. In this paper, we propose and fabricate a compact Alvarez lens based on planar polymetric liquid crystal Pancharatnam-Berry optical elements. It can provide continuous diopter change from -1.4 D to 1.4 D at the wavelength of 532 nm with the lateral shift ranging from -5 mm to 5 mm. We also demonstrate an AR display system using this proposed Alvarez lens, where virtual images are augmented on the real world at different depths.
Collapse
|
19
|
Kim D, Kim B, Shin B, Shin D, Lee CK, Chung JS, Seo J, Kim YT, Sung G, Seo W, Kim S, Hong S, Hwang S, Han S, Kang D, Lee HS, Koh JS. Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nat Commun 2022; 13:4155. [PMID: 35851053 PMCID: PMC9293895 DOI: 10.1038/s41467-022-31893-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
An artificial muscle actuator resolves practical engineering problems in compact wearable devices, which are limited to conventional actuators such as electromagnetic actuators. Abstracting the fundamental advantages of an artificial muscle actuator provides a small-scale, high-power actuating system with a sensing capability for developing varifocal augmented reality glasses and naturally fit haptic gloves. Here, we design a shape memory alloy-based lightweight and high-power artificial muscle actuator, the so-called compliant amplified shape memory alloy actuator. Despite its light weight (0.22 g), the actuator has a high power density of 1.7 kW/kg, an actuation strain of 300% under 80 g of external payload. We show how the actuator enables image depth control and an immersive tactile response in the form of augmented reality glasses and two-way communication haptic gloves whose thin form factor and high power density can hardly be achieved by conventional actuators. Artificial muscle actuators enabled by responsive functional materials like shape memory alloys are promising candidates for compact e-wearable devices. Here, authors demonstrate augmented reality glasses and two-way communication haptic gloves capable of image depth control and immersive tactile response.
Collapse
Affiliation(s)
- Dongjin Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Baekgyeom Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Bongsu Shin
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Dongwook Shin
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Chang-Kun Lee
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Jae-Seung Chung
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Juwon Seo
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Yun-Tae Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Geeyoung Sung
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Wontaek Seo
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sunil Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sunghoon Hong
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungwoo Hwang
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung SDS, 125, Olympic-ro, 35-gil, Songpa-gu, Seoul, 05510, Republic of Korea
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Hong-Seok Lee
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea. .,Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
20
|
Yang T, Zhou L, Cheng D, Wang Y. Designing reflective imaging systems with multiple-surfaces-integrated elements using a Gaussian function freeform surface. APPLIED OPTICS 2022; 61:5215-5225. [PMID: 36256204 DOI: 10.1364/ao.460955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 06/16/2023]
Abstract
We propose a design scheme and method of a freeform off-axis reflective imaging system with multiple mirrors integrated into one element. The use of a multiple-surfaces-integrated element, described by the Gaussian basis functions freeform surface with local and nonsymmetric properties, significantly decreases the system complexity, as well as reduces the assembly and fabrication difficulty, and achieves high imaging performance. The design theory and process including the initial system design, surface conversion, and system optimization are demonstrated in detail. Three design examples are demonstrated to validate the effect and feasibility of the proposed method, and good imaging performance is obtained.
Collapse
|
21
|
Shadalou S, Suleski TJ. General design method for dynamic freeform optics with variable functionality. OPTICS EXPRESS 2022; 30:19974-19989. [PMID: 36221759 DOI: 10.1364/oe.460078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 06/16/2023]
Abstract
We propose and demonstrate a general design method for refractive two-element systems enabling variable optical performance between two specified boundary conditions. Similar to the Alvarez lens, small, relative lateral shifts in opposite directions are applied to a pair of plano-freeform elements. The surface prescriptions of the boundary lenses and a maximum desired shift between freeform plates are the main design inputs. In contrast to previous approaches, this method is not limited to boundaries with similar optical functions and can enable a wide range of challenging, dynamic functions for both imaging and non-imaging applications. Background theory and design processes are presented both for cases that are conducive to analytical surface descriptions, as well as for non-analytic surfaces that must be described numerically. Multiple examples are presented to demonstrate the flexibility of the proposed method.
Collapse
|
22
|
Cheng D, Xu C, Yang T, Wang Y. Off-axis reflective imaging system design with a conicoid-based freeform surface. OPTICS EXPRESS 2022; 30:9590-9603. [PMID: 35299383 DOI: 10.1364/oe.455336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we propose an off-axis reflective system design method based on a non-rotational symmetric conicoid-based freeform (CBF) surface description. The base description avoids complicated calculation of decenter and tilt when using the conventional conic expression, thus simplify the system modeling and optimization process, and it can reduce the number of coefficients that needed to represent mild freeform surfaces. A design method that includes the automatic initial system searching, preliminary optimization with rotationally symmetric surface deviation and fine-tuning with non-symmetric surface deviation is proposed. Two three-mirror systems have been designed to demonstrate the feasibility and conveniences of the proposed method.
Collapse
|
23
|
Liu X, Zhu J. Automatic design method of starting points of freeform off-axis reflective imaging systems of small volume. OPTICS EXPRESS 2022; 30:7954-7967. [PMID: 35299547 DOI: 10.1364/oe.451511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
For off-axis reflective systems, there is no effective method that can obtain a small-volume starting point automatically. Reducing system volume using the optimization method is usually a difficult and cumbersome process, which usually takes the designer a long time. This paper proposes a method of designing small-volume starting points of freeform off-axis reflective imaging systems, which does not require human involvement after inputting a planar system, specifications and constraints. In the design example presented in this paper, it took only about ten minutes to obtain a small-volume starting point. The starting point obtained by this method makes the optimization process easier, takes less time of designers and more likely to succeed. In the design example, it is also demonstrated that the method has the ability of establishing small-volume starting points with different specifications, which can be used to quickly estimate the minimum volumes that systems with different specifications can achieve and provide guidance for determination of specifications and optimization.
Collapse
|
24
|
Moein S, Suleski TJ. Freeform optics for variable extended depth of field imaging. OPTICS EXPRESS 2021; 29:40524-40537. [PMID: 34809390 DOI: 10.1364/oe.439980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Imaging depth of field is shallow in applications with high magnification and high numerical aperture, such as microscopy, resulting in images with in- and out-of-focus regions. Therefore, methods to extend depth of field are of particular interest. Researchers have previously shown the advantages of using freeform components to extend depth of field, with each optical system requiring a specially designed phase plate. In this paper we present a method to enable extended depth-of-field imaging for a range of numerical apertures using freeform phase plates to create variable cubic wavefronts. The concept is similar to an Alvarez lens which creates variable spherical wavefronts through the relative translation of two transmissive elements with XY polynomial surfaces. We discuss design and optimization methods to enable extended depth of field for lenses with different numerical aperture values by considering through-focus variation of the point spread function and compare on- and off-axis performance through multiple metrics.
Collapse
|
25
|
Xiong J, Hsiang EL, He Z, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. LIGHT, SCIENCE & APPLICATIONS 2021; 10:216. [PMID: 34697292 PMCID: PMC8546092 DOI: 10.1038/s41377-021-00658-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 05/19/2023]
Abstract
With rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital interactions. Nonetheless, to simultaneously match the exceptional performance of human vision and keep the near-eye display module compact and lightweight imposes unprecedented challenges on optical engineering. Fortunately, recent progress in holographic optical elements (HOEs) and lithography-enabled devices provide innovative ways to tackle these obstacles in AR and VR that are otherwise difficult with traditional optics. In this review, we begin with introducing the basic structures of AR and VR headsets, and then describing the operation principles of various HOEs and lithography-enabled devices. Their properties are analyzed in detail, including strong selectivity on wavelength and incident angle, and multiplexing ability of volume HOEs, polarization dependency and active switching of liquid crystal HOEs, device fabrication, and properties of micro-LEDs (light-emitting diodes), and large design freedoms of metasurfaces. Afterwards, we discuss how these devices help enhance the AR and VR performance, with detailed description and analysis of some state-of-the-art architectures. Finally, we cast a perspective on potential developments and research directions of these photonic devices for future AR and VR displays.
Collapse
Affiliation(s)
- Jianghao Xiong
- College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - En-Lin Hsiang
- College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Ziqian He
- College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Tao Zhan
- College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
26
|
Chen W, Yang T, Cheng D, Wang Y. Generating starting points for designing freeform imaging optical systems based on deep learning. OPTICS EXPRESS 2021; 29:27845-27870. [PMID: 34615192 DOI: 10.1364/oe.432745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Deep learning is an important aspect of artificial intelligence and has been applied successfully in many optics-related fields. This paper proposes a generalized framework for generation of starting points for freeform imaging optical design based on deep learning. Compared with our previous work, this framework can be used for highly nonrotationally symmetric freeform refractive, reflective, and catadioptric systems. The system parameters can be advanced and the ranges of these system parameters can be wide. Using a special system evolution method and a K-nearest neighbor method, a full dataset consisting of the primary and secondary parts can be generated automatically. The deep neural network can then be trained in a supervised manner and can be used to generate good starting points directly. The convenience and feasibility of the proposed framework are demonstrated by designing a freeform off-axis three-mirror imaging system, a freeform off-axis four-mirror afocal telescope, and a freeform prism for an augmented reality near-eye display. The design framework reduces the designer's time and effort significantly and their dependence on advanced design skills. The framework can also be integrated into optical design software and cloud servers for the convenience of more designers.
Collapse
|
27
|
Ni J, Yang T, Cheng D, Wang Y. Design method of wide field-of-view imaging systems using Gaussian radial basis functions freeform surfaces. APPLIED OPTICS 2021; 60:4491-4501. [PMID: 34143143 DOI: 10.1364/ao.423022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
High optical performance systems with wide field-of-view (FOV) have important applications in remote sensing. The radial basis functions, which have a prominent local characteristic in surface description, have attracted much attention in recent years. In this paper, an effective design method for the wide FOV imaging system using Gaussian radial basis function freeform surfaces is proposed. The FOV of the optical system is extended from a relatively small value to a larger one, and the Gaussian radial basis function surfaces are extended stepwise based on certain criteria. A high image quality and small distortion off-axis freeform three-mirror system with a wide FOV (${{60}}^\circ \times {0.6}^\circ$) is designed as an example. Tolerance analysis considering both surface figure error and assembly error is performed. The design results demonstrate the effectiveness of the proposed method.
Collapse
|
28
|
Zhang Z, Liu J, Duan X, Wang Y. Enlarging field of view by a two-step method in a near-eye 3D holographic display. OPTICS EXPRESS 2020; 28:32709-32720. [PMID: 33114950 DOI: 10.1364/oe.403538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The narrow field of view (FOV) has always been one of the most with limitations that drag the development of holographic three-dimensional (3D) near-eye display (NED). The complex amplitude modulation (CAM) technique is one way to realize holographic 3D display in real time with the advantage of high image quality. Previously, we applied the CAM technique on the design and integration of a compact colorful 3D-NED system. In this paper, a viewing angle enlarged CAM based 3D-NED system using a Abbe-Porter scheme and curved reflective structure is proposed. The viewing angle is increased in two steps. An Abbe-Porter filter system, composed of a lens and a grating, is used to enlarge the FOV for the first step and, meanwhile, realize complex amplitude modulation. A curved reflective structure is used to realize the FOV enlargement for the second step. Besides, the system retains the ability of colorful 3D display with high image quality. Optical experiments are performed, and the results show the system could present a 45.2° diagonal viewing angle. The system is able to present dynamic display as well. A compact prototype is fabricated and integrated for wearable and lightweight design.
Collapse
|
29
|
Yang T, Cheng D, Wang Y. Designing freeform imaging systems based on reinforcement learning. OPTICS EXPRESS 2020; 28:30309-30323. [PMID: 33114913 DOI: 10.1364/oe.404808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The design of complex freeform imaging systems with advanced system specification is often a tedious task that requires extensive human effort. In addition, the lack of design experience or expertise that result from the complex and uncertain nature of freeform optics, in addition to the limited history of usage, also contributes to the design difficulty. In this paper, we propose a design framework of freeform imaging systems using reinforcement learning. A trial-and-error method employing different design routes that use a successive optimization process is applied in different episodes under an ε-greedy policy. An "exploitation-exploration, evaluation and back-up" approach is used to interact with the environment and discover optimal policies. Design results with good imaging performance and related design routes can be found automatically. The design experience can be further summarized using the obtained data directly or through other methods such as clustering-based machine learning. The experience offers valuable insight for completing other related design tasks. Human effort can be significantly reduced in both the design process and the tedious process of summarizing experience. This design framework can be integrated into optical design software and runs nonstop in the background or on servers to complete design tasks and acquire experience automatically for various types of systems.
Collapse
|
30
|
Xu M, Hua H. Geometrical-lightguide-based head-mounted lightfield displays using polymer-dispersed liquid-crystal films. OPTICS EXPRESS 2020; 28:21165-21181. [PMID: 32680162 DOI: 10.1364/oe.397319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Integrating the promising waveguide or lightguide optical combiners to head-mounted lightfield display (LF-HMD) systems offers a great opportunity to achieve both a compact optical see-through capability required for augmented or mixed reality applications and true 3D scene with correct focus cues required for mitigating the well-known vergence-accommodation conflict. Due to the non-sequential ray propagation nature of these flat combiners and the ray construction nature of a lightfield display engine, however, adapting these two technologies to each other confronts several significant challenges. In this paper, we explore the feasibility of combining an integral-imaging-based lightfield display engine with a geometrical lightguide based on microstructure mirror arrays. The image artifacts and the key challenges in a lightguide-based LF-HMD system are systematically analyzed and are further quantified via a non-sequential ray tracing simulation. We further propose to utilize polymer-dispersed liquid-crystal (PDLC) films to address the inherent problems associated with a lightguide combiner such as increasing the viewing density and improving the image coupling uniformity. We finally demonstrate, to our best knowledge, the first lightguide-based LF-HMD system that takes the advantages of both the compact form factor of a lightguide combiner and the true 3D virtual image rendering capability of a lightfield display.
Collapse
|
31
|
Wu JY, Kim J. Prescription AR: a fully-customized prescription-embedded augmented reality display. OPTICS EXPRESS 2020; 28:6225-6241. [PMID: 32225876 DOI: 10.1364/oe.380945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we present a fully-customized AR display design that considers the user's prescription, interpupillary distance, and taste of fashion. A free-form image combiner embedded inside the prescription lens provides augmented images onto the vision-corrected real world. The optics was optimized for each prescription level, which can reduce the mass production cost while satisfying the user's taste. The foveated optimization method was applied which distributes the pixels in accordance with human visual acuity. Our design can cover myopia, hyperopia, astigmatism, and presbyopia, and allows the eye-contact interaction with privacy protection. A 169g dynamic prototype showed a 40° × 20° virtual image with a 23 cpd resolution at center field and 6 mm × 4 mm eye-box, with the vision-correction and varifocal (0.5-3m) capability.
Collapse
|
32
|
Ultrathin Tunable Lens Based on Boundary Tension Effect. SENSORS 2019; 19:s19184018. [PMID: 31540368 PMCID: PMC6767671 DOI: 10.3390/s19184018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Solid and liquid lenses are commonly used in optical design. Such lenses have suitable thicknesses due to their working principle and processing mode. Thus, zoom optical systems comprising solid and liquid lenses are extremely large. This work presents a new ultrathin tunable lens (UTL) comprising two liquid film lenses (LFLs) obtained through aspheric deformation and produced from the surface of a micro-liquid under gravity and boundary tension. The UTL can flexibly change focal lengths between positive and negative lenses when the device thickness is merely 2.15 mm. The proposed lens has the advantages of small volume, light weight, simple fabrication, and independence from external force during zooming. This research makes up for the drawback that traditional solid and liquid lenses cannot further reduce their thicknesses. The proposed UTL provides a new lens form and fabrication method, and can be used to replace solid and liquid lenses for designing miniature zoom optical systems.
Collapse
|
33
|
AR Displays: Next-Generation Technologies to Solve the Vergence–Accommodation Conflict. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Augmenting reality (AR) holds many benefits in how people perceive information and use it in their workflow or leisure activities. A cohesive AR experience has many components; nevertheless, the key is display technologies. The current industry standard for the core solution is still conventional stereoscopy, which has proven to be inadequate for near-work due to the caused vergence–accommodation conflict and the inability to precisely overlay the 3D content on the real world. To overcome this, next-generation technologies have been proposed. While the holographic method holds the highest potential of being the ultimate solution, its current level of maturity is not sufficient to yield a practical product. Consequently, the next solution for near-work-capable AR displays will be of another type. LightSpace Technologies have developed a static multifocal display architecture based on stacked liquid crystal-based optical diffuser elements and a synchronized high-refresh rate image projector. A stream of 2D image depth planes comprising a 3D scene is projected onto respective physically-separated diffuser elements, causing the viewer to perceive a scene as continuous and having all relevant physical as well as psychological depth cues. A system with six image depth planes yielding 6 cpd resolution and 72° horizontal field-of-view has been demonstrated to provide perceptually continuous accommodation over 3.2 Diopter range. A further optimization by using a conventional image combiner resulted in the compact and practical design of the AR display.
Collapse
|