1
|
Abdelraouf OAM, Wang Z, Liu H, Dong Z, Wang Q, Ye M, Wang XR, Wang QJ, Liu H. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS NANO 2022; 16:13339-13369. [PMID: 35976219 DOI: 10.1021/acsnano.2c04628] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metasurfaces, a two-dimensional (2D) form of metamaterials constituted by planar meta-atoms, exhibit exotic abilities to tailor electromagnetic (EM) waves freely. Over the past decade, tremendous efforts have been made to develop various active materials and incorporate them into functional devices for practical applications, pushing the research of tunable metasurfaces to the forefront of nanophotonics. Those active materials include phase change materials (PCMs), semiconductors, transparent conducting oxides (TCOs), ferroelectrics, liquid crystals (LCs), atomically thin material, etc., and enable intriguing performances such as fast switching speed, large modulation depth, ultracompactness, and significant contrast of optical properties under external stimuli. Integration of such materials offers substantial tunability to the conventional passive nanophotonic platforms. Tunable metasurfaces with multifunctionalities triggered by various external stimuli bring in rich degrees of freedom in terms of material choices and device designs to dynamically manipulate and control EM waves on demand. This field has recently flourished with the burgeoning development of physics and design methodologies, particularly those assisted by the emerging machine learning (ML) algorithms. This review outlines recent advances in tunable metasurfaces in terms of the active materials and tuning mechanisms, design methodologies, and practical applications. We conclude this review paper by providing future perspectives in this vibrant and fast-growing research field.
Collapse
Affiliation(s)
- Omar A M Abdelraouf
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ziyu Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ming Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Jie Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
2
|
Abstract
Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here, we make an important step towards miniaturizing functional components on this platform, reporting high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz V−1, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 μm3. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb s−1 with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics. Lithium niobate (LN) devices are promising for future photonic integrated circuits. Here, the authors demonstrate an electro-optic LN modulator with a very small modal volume based on photonic crystal resonator architecture.
Collapse
|