1
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2
|
Lin Y, Leartprapun N, Luo JC, Adie SG. Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging. Nat Commun 2022; 13:3465. [PMID: 35710790 PMCID: PMC9203576 DOI: 10.1038/s41467-022-30995-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Quantitative characterisation of micro-scale mechanical properties of the extracellular matrix (ECM) and dynamic cell-ECM interactions can significantly enhance fundamental discoveries and their translational potential in the rapidly growing field of mechanobiology. However, quantitative 3D imaging of ECM mechanics with cellular-scale resolution and dynamic monitoring of cell-mediated changes to pericellular viscoelasticity remain a challenge for existing mechanical characterisation methods. Here, we present light-sheet photonic force optical coherence elastography (LS-pfOCE) to address this need by leveraging a light-sheet for parallelised, non-invasive, and localised mechanical loading. We demonstrate the capabilities of LS-pfOCE by imaging the micromechanical heterogeneity of fibrous collagen matrices and perform live-cell imaging of cell-mediated ECM micromechanical dynamics. By providing access to 4D spatiotemporal variations in the micromechanical properties of 3D biopolymer constructs and engineered cellular systems, LS-pfOCE has the potential to drive new discoveries in mechanobiology and contribute to the development of novel biomechanics-based clinical diagnostics and therapies.
Collapse
Affiliation(s)
- Yuechuan Lin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nichaluk Leartprapun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Justin C Luo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Steven G Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Zhang J, Fan F, Zhu L, Wang C, Chen X, Xinxiao G, Zhu J. Elasticity measurements of ocular anterior and posterior segments using optical coherence elastography. OPTICS EXPRESS 2022; 30:14311-14318. [PMID: 35473177 DOI: 10.1364/oe.456065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The changes of biomechanical properties, especially the elasticity of the ocular tissues, are closely related to some ophthalmic diseases. Currently, the ophthalmic optical coherence elastography (OCE) systems are dedicated either to the anterior segment or to the retina. The elasticity measurements of the whole eye remain challenging. Here we demonstrated an acoustic radiation force optical coherence elastography (ARF-OCE) method to quantify the elasticity of the cornea and the retina. The experiment results show that the Young's moduli of the cornea and the retina were 16.66 ± 6.51 kPa and 207.96 ± 4.75 kPa, respectively. Our method can measure the elasticity of the anterior segment and the posterior segment, and provides a powerful tool to enhance ophthalmology research.
Collapse
|
4
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Gee TW, Richards JM, Mahmut A, Butcher JT. Valve endothelial-interstitial interactions drive emergent complex calcific lesion formation in vitro. Biomaterials 2021; 269:120669. [PMID: 33482604 DOI: 10.1016/j.biomaterials.2021.120669] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is an actively regulated degenerative disease process. Clinical lesions exhibit marked 3D complexity not represented in current in vitro systems. We here present a unique mechanically stressed 3D culture system that recapitulates valve interstitial cell (VIC) induced matrix calcification through myofibroblastic activation and osteoblastic differentiation. We test the hypothesis that valve endothelial (VEC) - interstitial collaborative interactions modulate the risk and complexity of calcific pathogenesis within mechanically stressed and pro-inflammatory environments. APPROACH AND RESULTS Porcine aortic valve endothelial and interstitial cells (VEC and VIC) were seeded in a mechanically constrained collagen hydrogels alone or in co-culture configurations. Raised 3D VIC-filled lesions formed within 7 days when cultured in osteogenic media (OGM), and surprisingly exacerbated by endothelial coculture. We identified a spatially coordinated pro-endochondral vs. pro-osteogenic signaling program within the lesion. VEC underwent Endothelial-to-Mesenchymal Transformation (EndMT) and populated the lesion center. The spatial complexity of molecular and cellular signatures of this 3D in vitro CAVD system were consistent with human diseased aortic valve histology. SNAI1 was highly expressed in the VEC and subendothelial direct VIC corroborates with human CAVD lesions. Spatial distribution of Sox9 vs. Runx2 expression within the developed lesions (Sox9 peri-lesion vs. Runx2 predominantly within lesions) mirrored their expression in heavily calcified human aortic valves. Finally, we demonstrate the applicability of this platform for screening potential pharmacologic therapies through blocking the canonical NFκB pathway via BAY 11-7082. CONCLUSIONS Our results establish that VEC actively induce VIC pathological remodeling and calcification via EndMT and paracrine signaling. This mechanically constrained culture platform enables the interrogation of accelerated cell-mediated matrix remodeling behavior underpinned by this cellular feedback circuit. The high fidelity of this complex 3D model system to human CAVD mechanisms supports its use to test mechanisms of intercellular communication in valves and their pharmacological control.
Collapse
Affiliation(s)
- Terence W Gee
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Jennifer M Richards
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Ablajan Mahmut
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Li Y, Chen J, Chen Z. Advances in Doppler optical coherence tomography and angiography. TRANSLATIONAL BIOPHOTONICS 2019; 1:e201900005. [PMID: 33005888 PMCID: PMC7523705 DOI: 10.1002/tbio.201900005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Since the first demonstration of Doppler optical coherence tomography (OCT) in 1997, several functional extensions of Doppler OCT have been developed, including velocimetry, angiogram, and optical coherence elastography. These functional techniques have been widely used in research and clinical applications, particularly in ophthalmology. Here, we review the principles, representative methods, and applications of different Doppler OCT techniques, followed by discussion on the innovations, limitations, and future directions of each of these techniques.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Jason Chen
- Beckman Laser Institute, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
7
|
Lin Y, Leartprapun N, Adie SG. Spectroscopic photonic force optical coherence elastography. OPTICS LETTERS 2019; 44:4897-4900. [PMID: 31568470 PMCID: PMC6980340 DOI: 10.1364/ol.44.004897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/17/2019] [Indexed: 06/01/2023]
Abstract
We demonstrate spectroscopic photonic force optical coherence elastography (PF-OCE). Oscillations of microparticles embedded in viscoelastic hydrogels were induced by harmonically modulated optical radiation pressure and measured by phase-sensitive spectral-domain optical coherence tomography. PF-OCE can detect microparticle displacements with pico- to nano-meter sensitivity and millimeter-scale volumetric coverage. With spectroscopic PF-OCE, we quantified viscoelasticity over a broad frequency range from 1 Hz to 7 kHz, revealing rich microstructural dynamics of polymer networks across multiple microrheological regimes. Reconstructed frequency-dependent loss moduli of polyacrylamide hydrogels were observed to follow a general power scaling law G''∼ω0.75, consistent with that of semiflexible polymer networks. Spectroscopic PF-OCE provides an all-optical approach to microrheological studies with high sensitivity and high spatiotemporal resolution, and could be especially beneficial for time-lapse and volumetric mechanical characterization of viscoelastic materials.
Collapse
Affiliation(s)
- Yuechuan Lin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|