1
|
Liu X, Zhang Z, Zhou J, Liu W, Zhou G, Lee C. Artificial Intelligence-Enhanced Waveguide "Photonic Nose"- Augmented Sensing Platform for VOC Gases in Mid-Infrared. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400035. [PMID: 38576121 DOI: 10.1002/smll.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Indexed: 04/06/2024]
Abstract
On-chip nanophotonic waveguide sensor is a promising solution for miniaturization and label-free detection of gas mixtures utilizing the absorption fingerprints in the mid-infrared (MIR) region. However, the quantitative detection and analysis of organic gas mixtures is still challenging and less reported due to the overlapping of the absorption spectrum. Here,an Artificial-Intelligence (AI) assisted waveguide "Photonic nose" is presented as an augmented sensing platform for gas mixture analysis in MIR. With the subwavelength grating cladding supported waveguide design and the help of machine learning algorithms, the MIR absorption spectrum of the binary organic gas mixture is distinguished from arbitrary mixing ratio and decomposed to the single-component spectra for concentration prediction. As a result, the classification of 93.57% for 19 mixing ratios is realized. In addition, the gas mixture spectrum decomposition and concentration prediction show an average root-mean-square error of 2.44 vol%. The work proves the potential for broader sensing and analytical capabilities of the MIR waveguide platform for multiple organic gas components toward MIR on-chip spectroscopy.
Collapse
Affiliation(s)
- Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Guangya Zhou
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu, 215123, China
- NUS Graduate School's Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
2
|
Sun H, Qiao Q, Guan Q, Zhou G. Silicon Photonic Phase Shifters and Their Applications: A Review. MICROMACHINES 2022; 13:1509. [PMID: 36144132 PMCID: PMC9504597 DOI: 10.3390/mi13091509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
With the development of silicon photonics, dense photonic integrated circuits play a significant role in applications such as light detection and ranging systems, photonic computing accelerators, miniaturized spectrometers, and so on. Recently, extensive research work has been carried out on the phase shifter, which acts as the fundamental building block in the photonic integrated circuit. In this review, we overview different types of silicon photonic phase shifters, including micro-electro-mechanical systems (MEMS), thermo-optics, and free-carrier depletion types, highlighting the MEMS-based ones. The major working principles of these phase shifters are introduced and analyzed. Additionally, the related works are summarized and compared. Moreover, some emerging applications utilizing phase shifters are introduced, such as neuromorphic computing systems, photonic accelerators, multi-purpose processing cores, etc. Finally, a discussion on each kind of phase shifter is given based on the figures of merit.
Collapse
Affiliation(s)
- Haoyang Sun
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Qifeng Qiao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Qingze Guan
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Guangya Zhou
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| |
Collapse
|
3
|
Abstract
Terahertz (THz) electromagnetic spectrum ranging from 0.1THz to 10THz has become critical for sixth generation (6G) applications, such as high-speed communication, fingerprint chemical sensing, non-destructive biosensing, and bioimaging. However, the limited response of naturally existing materials THz waves has induced a gap in the electromagnetic spectrum, where a lack of THz functional devices using natural materials has occurred in this gap. Metamaterials, artificially composed structures that can engineer the electromagnetic properties to manipulate the waves, have enabled the development of many THz devices, known as "metadevices". Besides, the tunability of THz metadevices can be achieved by tunable structures using microelectromechanical system (MEMS) technologies, as well as tunable materials including phase change materials (PCMs), electro-optical materials (EOMs), and thermo-optical materials (TOMs). Leveraging various tuning mechanisms together with metamaterials, tremendous research works have demonstrated reconfigurable functional THz devices, playing an important role to fill the THz gap toward the 6G applications. This review introduces reconfigurable metadevices from fundamental principles of metamaterial resonant system to the design mechanisms of functional THz metamaterial devices and their related applications. Moreover, we provide perspectives on the future development of THz photonic devices for state-of-the-art applications.
Collapse
|
4
|
Qiao Q, Sun H, Liu X, Dong B, Xia J, Lee C, Zhou G. Suspended Silicon Waveguide with Sub-Wavelength Grating Cladding for Optical MEMS in Mid-Infrared. MICROMACHINES 2021; 12:mi12111311. [PMID: 34832723 PMCID: PMC8623870 DOI: 10.3390/mi12111311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022]
Abstract
Mid-infrared (MIR) photonics are generating considerable interest because of the potential applications in spectroscopic sensing, thermal imaging, and remote sensing. Silicon photonics is believed to be a promising solution to realize MIR photonic integrated circuits (PICs). The past decade has seen a huge growth in MIR PIC building blocks. However, there is still a need for the development of MIR reconfigurable photonics to enable powerful on-chip optical systems and new functionalities. In this paper, we present an MIR (3.7~4.1 μm wavelength range) MEMS reconfiguration approach using the suspended silicon waveguide platform on the silicon-on-insulator. With the sub-wavelength grating claddings, the photonic waveguide can be well integrated with the MEMS actuator, thus offering low-loss, energy-efficient, and effective reconfiguration. We present a simulation study on the waveguide design and depict the MEMS-integration approach. Moreover, we experimentally report the suspended waveguide with propagation loss (−2.9 dB/cm) and bending loss (−0.076 dB each). The suspended waveguide coupler is experimentally investigated. In addition, we validate the proposed optical MEMS approach using a reconfigurable ring resonator design. In conclusion, we experimentally demonstrate the proposed waveguide platform’s capability for MIR MEMS-reconfigurable photonics, which empowers the MIR on-chip optical systems for various applications.
Collapse
Affiliation(s)
- Qifeng Qiao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore; (Q.Q.); (H.S.); (X.L.); (J.X.)
| | - Haoyang Sun
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore; (Q.Q.); (H.S.); (X.L.); (J.X.)
| | - Xinmiao Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore; (Q.Q.); (H.S.); (X.L.); (J.X.)
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore;
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore;
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Ji Xia
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore; (Q.Q.); (H.S.); (X.L.); (J.X.)
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore;
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Correspondence: (C.L.); (G.Z.); Tel.: +65-6516-1235 (G.Z.)
| | - Guangya Zhou
- Department of Mechanical Engineering, National University of Singapore, Singapore 117579, Singapore; (Q.Q.); (H.S.); (X.L.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Correspondence: (C.L.); (G.Z.); Tel.: +65-6516-1235 (G.Z.)
| |
Collapse
|
5
|
Chen X, Wang F, Gu Q, Yang J, Yu M, Kwong DL, Wong CW, Yang H, Zhou H, Zhou S. Multifunctional optoelectronic device based on graphene-coupled silicon photonic crystal cavities. OPTICS EXPRESS 2021; 29:11094-11105. [PMID: 33820228 DOI: 10.1364/oe.421596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
We present a hybrid device based on graphene-coupled silicon (Si) photonic crystal (PhC) cavities, featuring triple light detection, modulation, and switching. Through depositing single-layer graphene onto the PhC cavity, the light-graphene interaction can be enhanced greatly, which enables significant detection and modulation of the resonant wavelength. The device is designed to generate a photocurrent directly by the photovoltaic effect and has an external responsivity of ∼14 mA/W at 1530.8 nm (on resonance), which is about 10 times higher than that off-resonance. Based on the thermo-optical effect of silicon and graphene, the device is also demonstrated in electro-optical and all-optical modulation. Also, due to the high-quality (Q) factor of the resonate cavity, the device can implement low threshold optical bistable switching, and it promises a fast response speed, with a rise (fall) time of ∼0.4 μs (∼0.5 μs) in the all-optical switch and a rise (fall) time of ∼0.5 μs (∼0.5 μs) in the electro-optical hybrid switch. The multifunctional photodetector, modulator, and optical bistable switch are achieved in a single device, which greatly reduces the photonic overhead and provides potential applications for future integrated optoelectronics.
Collapse
|