1
|
Garner D, Kind E, Lai JYH, Nern A, Zhao A, Houghton L, Sancer G, Wolff T, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts visual features used for navigation. Nature 2024; 634:181-190. [PMID: 39358517 PMCID: PMC11446847 DOI: 10.1038/s41586-024-07967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Many animals use visual information to navigate1-4, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction5 by integrating visual input from ER neurons6-12, which are part of the anterior visual pathway (AVP)10,13-16. Here we densely reconstruct all neurons in the AVP using electron-microscopy data17. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons10,14,15, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons9,16, which connect the AOTUsu to the bulb neuropil; and ER neurons6-12, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jennifer Yuet Ha Lai
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mathias F Wernet
- Department of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
- Dynamical Neuroscience, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Shinotsuka T, Tanaka YR, Terada SI, Hatano N, Matsuzaki M. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement. J Neurosci 2023; 43:7130-7148. [PMID: 37699714 PMCID: PMC10601372 DOI: 10.1523/jneurosci.0428-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
The primary motor cortex (M1) and the dorsal striatum play a critical role in motor learning and the retention of learned behaviors. Motor representations of corticostriatal ensembles emerge during motor learning. In the coordinated reorganization of M1 and the dorsal striatum for motor learning, layer 5a (L5a) which connects M1 to the ipsilateral and contralateral dorsal striatum, should be a key layer. Although M1 L5a neurons represent movement-related activity in the late stage of learning, it is unclear whether the activity is retained as a memory engram. Here, using Tlx3-Cre male transgenic mice, we conducted two-photon calcium imaging of striatum-projecting L5a intratelencephalic (IT) neurons in forelimb M1 during late sessions of a self-initiated lever-pull task and in sessions after 6 d of nontraining following the late sessions. We found that trained male animals exhibited stable motor performance before and after the nontraining days. At the same time, we found that M1 L5a IT neurons strongly represented the well-learned forelimb movement but not uninstructed orofacial movements. A subset of M1 L5a IT neurons consistently coded the well-learned forelimb movement before and after the nontraining days. Inactivation of M1 IT neurons after learning impaired task performance when the lever was made heavier or when the target range of the pull distance was narrowed. These results suggest that a subset of M1 L5a IT neurons continuously represent skilled movement after learning and serve to fine-tune the kinematics of well-learned movement.SIGNIFICANCE STATEMENT Motor memory persists even when it is not used for a while. IT neurons in L5a of the M1 gradually come to represent skilled forelimb movements during motor learning. However, it remains to be determined whether these changes persist over a long period and how these neurons contribute to skilled movements. Here, we show that a subset of M1 L5a IT neurons retain information for skilled forelimb movements even after nontraining days. Furthermore, suppressing the activity of these neurons during skilled forelimb movements impaired behavioral stability and adaptability. Our results suggest the importance of M1 L5a IT neurons for tuning skilled forelimb movements over a long period.
Collapse
Affiliation(s)
- Takanori Shinotsuka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhiro R Tanaka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Natsuki Hatano
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
3
|
González-Solares EA, Dariush A, González-Fernández C, Küpcü Yoldaş A, Molaeinezhad A, Al Sa’d M, Smith L, Whitmarsh T, Millar N, Chornay N, Falciatori I, Fatemi A, Goodwin D, Kuett L, Mulvey CM, Páez Ribes M, Qosaj F, Roth A, Vázquez-García I, Watson SS, Windhager J, Aparicio S, Bodenmiller B, Boyden E, Caldas C, Harris O, Shah SP, Tavaré S, Bressan D, Hannon GJ, Walton NA. Imaging and Molecular Annotation of Xenographs and Tumours (IMAXT): High throughput data and analysis infrastructure. BIOLOGICAL IMAGING 2023; 3:e11. [PMID: 38487685 PMCID: PMC10936408 DOI: 10.1017/s2633903x23000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/17/2024]
Abstract
With the aim of producing a 3D representation of tumors, imaging and molecular annotation of xenografts and tumors (IMAXT) uses a large variety of modalities in order to acquire tumor samples and produce a map of every cell in the tumor and its host environment. With the large volume and variety of data produced in the project, we developed automatic data workflows and analysis pipelines. We introduce a research methodology where scientists connect to a cloud environment to perform analysis close to where data are located, instead of bringing data to their local computers. Here, we present the data and analysis infrastructure, discuss the unique computational challenges and describe the analysis chains developed and deployed to generate molecularly annotated tumor models. Registration is achieved by use of a novel technique involving spherical fiducial marks that are visible in all imaging modalities used within IMAXT. The automatic pipelines are highly optimized and allow to obtain processed datasets several times quicker than current solutions narrowing the gap between data acquisition and scientific exploitation.
Collapse
Affiliation(s)
| | - Ali Dariush
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - Mohammad Al Sa’d
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| | - Leigh Smith
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| | - Tristan Whitmarsh
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| | - Neil Millar
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Chornay
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| | - Ilaria Falciatori
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Atefeh Fatemi
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Goodwin
- McGovern Institute, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Kuett
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Claire M. Mulvey
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marta Páez Ribes
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Fatime Qosaj
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Roth
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio Vázquez-García
- Herbert and Florence Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Spencer S. Watson
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Jonas Windhager
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ed Boyden
- McGovern Institute, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Physics, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Carlos Caldas
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | | | - Sohrab P. Shah
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Tavaré
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
- Herbert and Florence Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Dario Bressan
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Gregory J. Hannon
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas A. Walton
- Institute of Astronomy, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Masuda T, Hiramoto A, Ang DG, Meisenhelder C, Panda CD, Sasao N, Uetake S, Wu X, DeMille DP, Doyle JM, Gabrielse G, Yoshimura K. High-sensitivity low-noise photodetector using a large-area silicon photomultiplier. OPTICS EXPRESS 2023; 31:1943-1957. [PMID: 36785218 DOI: 10.1364/oe.475109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
The application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs. This work presents a SiPM-embedded compact large-area photon detection module. Various techniques are adopted to overcome the disadvantages of SiPMs so that it can be generally utilized as an upgrade from a PMT. A simple cooling component and recently developed optical crosstalk suppression method are adopted to reduce the noise which is more serious for larger-area SiPMs. A dedicated readout circuit increases the response frequency and reduces the number of readout channels. We favorably compare this design with a conventional PMT and obtain both higher photon detection efficiency and larger-area acceptance.
Collapse
|
5
|
Yan T, Wang X, Liu S, Fan D, Xu X, Zeng Q, Xie H, Yang X, Zhu S, Ma X, Yuan Z, Chen X. Confocal Laser Scanning Microscopy Based on a Silicon Photomultiplier for Multicolor In Vivo Imaging in Near-Infrared Regions I and II. SMALL METHODS 2022; 6:e2201105. [PMID: 36351753 DOI: 10.1002/smtd.202201105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is expected to exhibit a better imaging performance in the second near-infrared (NIR-II) windows with weak tissue scattering and autofluorescence. However, the indium gallium arsenide (InGaAs) detectors currently used for imaging in the NIR-II region are prohibitively expensive, hampering its extensive biomedical applications. In this study, a novel NIR-II CLSM system is developed by using the inexpensive silicon photomultiplier (SiPM) that can perform the multicolor biological imaging in vivo. Using IR-780 iodide as the contrast agent, the NIR-II imaging capability of constructed CLSM is inspected, demonstrating a spatial resolution of 1.68 µm (close to the diffraction limit) and a fluorophore detection sensitivity as low as 100 nm. In particular, it is discovered that the multicolor imaging performance in both NIR-I and NIR-II windows is comparable to those from multialkali and InGaAs photomultiplier tubes. In addition, 3D NIR-II CLSM is also conducted for in vivo imaging of the vascular structure in mouse ear and subcutaneous tumors. To the best of authors' knowledge, this is the first time that a low-cost detector based on a SiPM has been used for microscopic imaging of trailing fluorescence signals in the NIR-II region of an NIR fluorescent probe.
Collapse
Affiliation(s)
- Tianyu Yan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xinyu Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Siting Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Dawei Fan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xinyi Xu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Qi Zeng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hui Xie
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaoli Yang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shouping Zhu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 51055, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xueli Chen
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 51055, China
| |
Collapse
|
6
|
Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022; 185:9-41. [PMID: 34995519 PMCID: PMC8849612 DOI: 10.1016/j.cell.2021.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.
Collapse
Affiliation(s)
- Tony Hyun Kim
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
8
|
Huang C, Ching-Roa V, Liu Y, Giacomelli MG. High-speed mosaic imaging using scanner-synchronized stage position sampling. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:016502. [PMID: 35075830 PMCID: PMC8786391 DOI: 10.1117/1.jbo.27.1.016502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Two-photon and confocal microscopy can obtain high frame rates; however, mosaic imaging of large tissue specimens remains time-consuming and inefficient, with higher imaging rates leading to a larger fraction of time wasted translating between imaging locations. Strip scanning obtains faster mosaic imaging rates by translating a specimen at constant velocity through a line scanner at the expense of more complex stitching and geometric distortion due to the difficulty of translating at completely constant velocity. AIM We aim to develop an approach to mosaic imaging that can obtain higher accuracy and faster imaging rates while reducing computational complexity. APPROACH We introduce an approach based on scanner-synchronous position sampling that enables subwavelength accurate imaging of specimens moving at a nonuniform velocity, eliminating distortion. RESULTS We demonstrate that this approach increases mosaic imaging rates while reducing computational complexity, retaining high SNR, and retaining geometric accuracy. CONCLUSIONS Scanner synchronous strip scanning enables accurate, high-speed mosaic imaging of large specimens by reducing acquisition and processing time.
Collapse
Affiliation(s)
- Chi Huang
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - Vincent Ching-Roa
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - Yihan Liu
- University of Rochester, Institute of Optics, Rochester, New York, United States
| | - Michael G. Giacomelli
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
- University of Rochester, Institute of Optics, Rochester, New York, United States
| |
Collapse
|
9
|
Masuda T, Ang DG, Hutzler NR, Meisenhelder C, Sasao N, Uetake S, Wu X, DeMille D, Gabrielse G, Doyle JM, Yoshimura K. Suppression of the optical crosstalk in a multi-channel silicon photomultiplier array. OPTICS EXPRESS 2021; 29:16914-16926. [PMID: 34154244 DOI: 10.1364/oe.424460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression. The proposed technique can be easily applied to suppress the optical crosstalk in SiPMs in cases where filtering near infrared light is compatible with the application.
Collapse
|
10
|
Abstract
Over the years, fluorescence microscopy has evolved and has become a necessary element of life science studies. Microscopy has elucidated biological processes in live cells and organisms, and also enabled tracking of biomolecules in real time. Development of highly sensitive photodetectors and light sources, in addition to the evolution of various illumination methods and fluorophores, has helped microscopy acquire single-molecule fluorescence sensitivity, enabling single-molecule fluorescence imaging and detection. Low-light photodetectors used in microscopy are classified into two categories: point photodetectors and wide-field photodetectors. Although point photodetectors, notably photomultiplier tubes (PMTs), have been commonly used in laser scanning microscopy (LSM) with a confocal illumination setup, wide-field photodetectors, such as electron-multiplying charge-coupled devices (EMCCDs) and scientific complementary metal-oxide-semiconductor (sCMOS) cameras have been used in fluorescence imaging. This review focuses on the former low-light point photodetectors and presents their fluorescence microscopy applications and recent progress. These photodetectors include conventional PMTs, single photon avalanche diodes (SPADs), hybrid photodetectors (HPDs), in addition to newly emerging photodetectors, such as silicon photomultipliers (SiPMs) (also known as multi-pixel photon counters (MPPCs)) and superconducting nanowire single photon detectors (SSPDs). In particular, this review shows distinctive features of HPD and application of HPD to wide-field single-molecule fluorescence detection.
Collapse
|
11
|
Ching-Roa VD, Olson EM, Ibrahim SF, Torres R, Giacomelli MG. Ultrahigh-speed point scanning two-photon microscopy using high dynamic range silicon photomultipliers. Sci Rep 2021; 11:5248. [PMID: 33664354 PMCID: PMC7933192 DOI: 10.1038/s41598-021-84522-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Conventional two-photon microscopes use photomultiplier tubes, which enable high sensitivity but can detect relatively few photons per second, forcing longer pixel integration times and limiting maximum imaging rates. We introduce novel detection electronics using silicon photomultipliers that greatly extend dynamic range, enabling more than an order of magnitude increased photon detection rate as compared to state-of-the-art photomultiplier tubes. We demonstrate that this capability can dramatically improve both imaging rates and signal-to-noise ratio (SNR) in two-photon microscopy using human surgical specimens. Finally, to enable wider use of more advanced detection technology, we have formed the OpenSiPM project, which aims to provide open source detector designs for high-speed two-photon and confocal microscopy.
Collapse
Affiliation(s)
- Vincent D Ching-Roa
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, BOX 270168, Rochester, NY, 14627, USA
| | - Eben M Olson
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Sherrif F Ibrahim
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Rochester Dermatologic Surgery, PC,, Victor, NY, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Michael G Giacomelli
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, BOX 270168, Rochester, NY, 14627, USA.
| |
Collapse
|
12
|
Petersen BV, Gallion L, Allbritton NL. Silicon Photomultipliers as a Low-Cost Fluorescence Detector for Capillary Electrophoresis. Anal Chem 2020; 92:13683-13687. [PMID: 32967426 PMCID: PMC7728455 DOI: 10.1021/acs.analchem.0c03105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary electrophoresis (CE) is a highly efficient separation method capable of handling small sample volumes (∼pL) and low (∼yoctomole) detection limits and, as such, is ideal for applications that require high sensitivity, such as single-cell analysis (Chen et al. Anal. Chem. 1996, 68 (4), 690-696; Cohen et al. Annu. Rev. Anal. Chem. 2008, 1 (1), 165-190; Vickerman et al. ACS Chem. Biol. 2018, 13 (7), 1741-1751). Low-cost CE instrumentation is quickly expanding, but low-cost, open-source fluorescence detectors with ultrasensitive detection limits are lacking (Vickerman et al. ACS Chem. Biol. 2018, 13 (7), 1741-1751; Fang et al. Electrophoresis 2016, 37 (17-18), 2376-2383; Casto et al. Anal. Chem. 2019, 40 (1), 65-78). Silicon photomultipliers (SiPM) are inexpensive, low-footprint detectors with the potential to fill the role as a detector when cost, size, and customization are important. In this work, we demonstrate the use of a SiPM in CE with zeptomolar detection limits and a dynamic range spanning 5 orders of magnitude, comparable to photomultiplier detectors. The performance of these detectors was measured using a continuous wave excitation laser in an epifluorescence detection configuration. We characterize the performance of the SiPM as a highly sensitive detector by measuring enzyme activity in single cells. This simple, small footprint, and low-cost (<$130) light detection circuit will be beneficial for open-source, portable, and budget-friendly instrumentation requiring high sensitivity.
Collapse
Affiliation(s)
- Brae V. Petersen
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luke Gallion
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Koho SV, Slenders E, Tortarolo G, Castello M, Buttafava M, Villa F, Tcarenkova E, Ameloot M, Bianchini P, Sheppard CJR, Diaspro A, Tosi A, Vicidomini G. Two-photon image-scanning microscopy with SPAD array and blind image reconstruction. BIOMEDICAL OPTICS EXPRESS 2020; 11:2905-2924. [PMID: 32637232 DOI: 10.1101/563288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 05/25/2023]
Abstract
Two-photon excitation (2PE) laser scanning microscopy is the imaging modality of choice when one desires to work with thick biological samples. However, its spatial resolution is poor, below confocal laser scanning microscopy. Here, we propose a straightforward implementation of 2PE image scanning microscopy (2PE-ISM) that, by leveraging our recently introduced single-photon avalanche diode (SPAD) array detector and a novel blind image reconstruction method, is shown to enhance the effective resolution, as well as the overall image quality of 2PE microscopy. With our adaptive pixel reassignment procedure ∼1.6 times resolution increase is maintained deep into thick semi-transparent samples. The integration of Fourier ring correlation based semi-blind deconvolution is shown to further enhance the effective resolution by a factor of ∼2 - and automatic background correction is shown to boost the image quality especially in noisy images. Most importantly, our 2PE-ISM implementation requires no calibration measurements or other input from the user, which is an important aspect in terms of day-to-day usability of the technique.
Collapse
Affiliation(s)
- Sami V Koho
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- University of Turku, Department of Cell Biology and Anatomy, Institute of Biomedicine and Medicity Research Laboratories, Laboratory of Biophysics, Turku, Finland
- These authors contributed equally to this work
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Hasselt University, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- These authors contributed equally to this work
| | - Giorgio Tortarolo
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Informatiche, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genoa, Italy
| | - Marco Castello
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mauro Buttafava
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Federica Villa
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Elena Tcarenkova
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- University of Turku, Department of Cell Biology and Anatomy, Institute of Biomedicine and Medicity Research Laboratories, Laboratory of Biophysics, Turku, Finland
| | - Marcel Ameloot
- Hasselt University, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | | | | | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Fisica, University of Genoa, Genoa, Italy
| | - Alberto Tosi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
14
|
Koho SV, Slenders E, Tortarolo G, Castello M, Buttafava M, Villa F, Tcarenkova E, Ameloot M, Bianchini P, Sheppard CJR, Diaspro A, Tosi A, Vicidomini G. Two-photon image-scanning microscopy with SPAD array and blind image reconstruction. BIOMEDICAL OPTICS EXPRESS 2020; 11:2905-2924. [PMID: 32637232 PMCID: PMC7316014 DOI: 10.1364/boe.374398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 05/07/2023]
Abstract
Two-photon excitation (2PE) laser scanning microscopy is the imaging modality of choice when one desires to work with thick biological samples. However, its spatial resolution is poor, below confocal laser scanning microscopy. Here, we propose a straightforward implementation of 2PE image scanning microscopy (2PE-ISM) that, by leveraging our recently introduced single-photon avalanche diode (SPAD) array detector and a novel blind image reconstruction method, is shown to enhance the effective resolution, as well as the overall image quality of 2PE microscopy. With our adaptive pixel reassignment procedure ∼1.6 times resolution increase is maintained deep into thick semi-transparent samples. The integration of Fourier ring correlation based semi-blind deconvolution is shown to further enhance the effective resolution by a factor of ∼2 - and automatic background correction is shown to boost the image quality especially in noisy images. Most importantly, our 2PE-ISM implementation requires no calibration measurements or other input from the user, which is an important aspect in terms of day-to-day usability of the technique.
Collapse
Affiliation(s)
- Sami V. Koho
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- University of Turku, Department of Cell Biology and Anatomy, Institute of Biomedicine and Medicity Research Laboratories, Laboratory of Biophysics, Turku, Finland
- These authors contributed equally to this work
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Hasselt University, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- These authors contributed equally to this work
| | - Giorgio Tortarolo
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Informatiche, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genoa, Italy
| | - Marco Castello
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mauro Buttafava
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Federica Villa
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Elena Tcarenkova
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- University of Turku, Department of Cell Biology and Anatomy, Institute of Biomedicine and Medicity Research Laboratories, Laboratory of Biophysics, Turku, Finland
| | - Marcel Ameloot
- Hasselt University, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | | | | | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Fisica, University of Genoa, Genoa, Italy
| | - Alberto Tosi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
15
|
Allen CH, Hansson B, Raiche-Tanner O, Murugkar S. Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers. OPTICS LETTERS 2020; 45:2299-2302. [PMID: 32287218 DOI: 10.1364/ol.390050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Silicon photomultipliers (SiPMs) are an emerging solid-state alternative to photomultiplier tubes (PMTs) for low light detection, with similar gain but lower cost and lower operating voltage. We demonstrate coherent anti-Stokes Raman scattering (CARS) imaging in a side-by-side comparison of an uncooled SiPM with an uncooled multialkali PMT as well as a state-of-the-art cooled GaAsP PMT. We determine the optimum reverse-bias voltage for acquiring the best signal-to-noise ratio (SNR) for CARS imaging of lipids at ${2850}\;{{\rm cm}^{ - 1}}$2850cm-1. We find that despite the higher dark counts, the SNR of CARS images acquired with the uncooled SiPM biased at an optimum voltage is better than that of the multialkali PMT and close to that of the cooled GaAsP PMT (${\sim}{1.5}$∼1.5 and ${\sim}{0.8}$∼0.8 times, respectively). This is due to the higher gain and lower excess noise factor related to the pulse height variability in the SiPM.
Collapse
|