1
|
Chen W, Li M, Zhang W, Chen Y. Dual-resonance sensing for environmental refractive index based on quasi-BIC states in all-dielectric metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1147-1157. [PMID: 39634934 PMCID: PMC11501798 DOI: 10.1515/nanoph-2022-0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/12/2023] [Indexed: 12/07/2024]
Abstract
Metasurface provides a novel way to modulate light energy at specific wavelengths, namely resonances, where there is a sharp drop in the transmission spectrum. Based on the relationship between the resonant position and the environmental condition, various refractive index detection methods have been developed. However, the resonance spectrum is strongly affected by the environmental and instrumental fluctuations, and current researches usually focus on the improvement of a single sensing performance metric, such as the Q factor, sensitivity, detection range, etc. In this work, we proposed an all-dielectric metasurface for environmental refractive index sensing based on quasi-BIC with an enhanced stability, simultaneously taken into account an enlarged detection range, a high Q factor and a relatively high sensitivity. With this designed metasurface, dual-resonance sensing is realized because the interval between the two resonance peaks in the transmission spectrum decreases near linearly with the environmental refractive index. We experimentally demonstrated that compared to traditional single-resonance sensing, the errors caused by environmental and instrumental fluctuations can be minimized, and the stability can be improved. This metasurface has great potential for applications such as refractive index sensing, concentration detection, biomacromolecule identification, and cancerous cell screening.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| | - Ming Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| | - Wenhao Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| | - Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| |
Collapse
|
2
|
Lobry M, Loyez M, Debliquy M, Chah K, Goormaghtigh E, Caucheteur C. Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber. Biosens Bioelectron 2022; 220:114867. [DOI: 10.1016/j.bios.2022.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
|
3
|
Sypabekova M, Amantayeva A, Vangelista L, González-Vila Á, Caucheteur C, Tosi D. Ultralow Limit Detection of Soluble HER2 Biomarker in Serum with a Fiber-Optic Ball-Tip Resonator Assisted by a Tilted FBG. ACS MEASUREMENT SCIENCE AU 2022; 2:309-316. [PMID: 36785571 PMCID: PMC9885947 DOI: 10.1021/acsmeasuresciau.2c00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An optical-fiber biosensor has been developed for the detection of the breast cancer biomarker soluble human epidermal growth factor receptor-2 (sHER2). The sensor was fabricated by combining a tilted fiber Bragg grating (TFBG) with a ball resonator, allowing us to achieve an excellent sensitivity compared to other optical-fiber-based sensors. The sensor exhibits a resonance comb excited by the TFBG and the spectral profile of the ball resonator. The detection of sHER2 at extremely low concentrations was carried out by tracking the amplitude change of selected resonances. The therapeutic anti-HER2 monoclonal antibody Trastuzumab has been used to functionalize the biosensor with silane surface chemistry. The sensor features a sensitivity of 4034 dB/RIU with a limit of detection (LoD) in buffer and in a 1/10 diluted serum of 151.5 ag/mL and 3.7 pg/mL, respectively. At relatively high protein concentrations (64 ng/mL) binding to sHER (7.36 dB) as compared to control proteins (below 0.7 dB) attested the high specificity of sHER2 detection.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- Baylor
Research and Innovative Collaborative, Baylor
University, 100 Research
Pkwy, Waco, Texas 76704, United States
| | - Aida Amantayeva
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
| | - Álvaro González-Vila
- Electromagnetism
and Telecommunication Department, University
of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism
and Telecommunication Department, University
of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Daniele Tosi
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- National
Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000 Nur-Sultan, Kazakhstan
| |
Collapse
|
4
|
A Review of Apta-POF-Sensors: The Successful Coupling between Aptamers and Plastic Optical Fibers for Biosensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aptamers represent the next frontier as biorecognition elements in biosensors thanks to a smaller size and lower molecular weight with respect to antibodies, more structural flexibility with the possibility to be regenerated, reduced batch-to-batch variation, and a potentially lower cost. Their high specificity and small size are particularly interesting for their application in optical biosensors since the perturbation of the evanescent field are low. Apart from the conventional plasmonic optical sensors, platforms based on silica and plastic optical fibers represent an interesting class of devices for point-of-care testing (POCT) in different applications. The first example of the coupling between aptamers and silica optical fibers was reported by Pollet in 2009 for the detection of IgE molecules. Six years later, the first example was published using a plastic optical fiber (POF) for the detection of Vascular Endothelial Growth Factor (VEGF). The excellent flexibility, great numerical aperture, and the large diameter make POFs extremely promising to be coupled to aptamers for the development of a sensitive platform easily integrable in portable, small-size, and simple devices. Starting from silica fiber-based surface plasmon resonance devices, here, a focus on significant biological applications based on aptamers, combined with plasmonic-POF probes, is reported.
Collapse
|
5
|
Chen X, Xu P, Lin W, Jiang J, Qu H, Hu X, Sun J, Cui Y. Label-free detection of breast cancer cells using a functionalized tilted fiber grating. BIOMEDICAL OPTICS EXPRESS 2022; 13:2117-2129. [PMID: 35519261 PMCID: PMC9045894 DOI: 10.1364/boe.454645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023]
Abstract
The detection of circulating tumor cells (CTCs) still faces a huge challenge partially because of low abundance of CTCs (1-10 cells/mL). In this work, a plasmonic titled fiber Bragg grating biosensor is proposed for detection of breast cancer cells. The biosensor is made by an 18° TFBG with a 50 nm-thick gold nanofilm coating over the surface of the fiber, further immobilized with a specific antibody against GPR30, which is a membrane receptor expressed in many breast cancers, serving as bait. In vitro tests have confirmed that the proposed biosensor can detect breast cancer cells in concentration of 5 cells/mL within 20 minutes and has good linearity in the range of 5-1000 cells/mL, which has met the requirement of CTC detection in real conditions. Furthermore, theoretical analysis based on the experimental results shows that the limit of detection can even reach single-cell level. Our proposed biosensor has a simple structure, is easy to manufacture, is of small size, and has a good performance, making it a good choice for real-time, label-free, and milliliter-volume detection of cancer cells in future.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Pin Xu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Wenwei Lin
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Jiang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, Shantou 515041, China
| | - Hang Qu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Xuehao Hu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jinghua Sun
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Yukun Cui
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, Shantou 515041, China
| |
Collapse
|
6
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
7
|
Rahman BMA, Viphavakit C, Chitaree R, Ghosh S, Pathak AK, Verma S, Sakda N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. BIOSENSORS 2022; 12:bios12010042. [PMID: 35049670 PMCID: PMC8773603 DOI: 10.3390/bios12010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 05/22/2023]
Abstract
The increasing use of nanomaterials and scalable, high-yield nanofabrication process are revolutionizing the development of novel biosensors. Over the past decades, researches on nanotechnology-mediated biosensing have been on the forefront due to their potential application in healthcare, pharmaceutical, cell diagnosis, drug delivery, and water and air quality monitoring. The advancement of nanoscale science relies on a better understanding of theory, manufacturing and fabrication practices, and the application specific methods. The topology and tunable properties of nanoparticles, a part of nanoscale science, can be changed by different manufacturing processes, which separate them from their bulk counterparts. In the recent past, different nanostructures, such as nanosphere, nanorods, nanofiber, core-shell nanoparticles, nanotubes, and thin films, have been exploited to enhance the detectability of labelled or label-free biological molecules with a high accuracy. Furthermore, these engineered-materials-associated transducing devices, e.g., optical waveguides and metasurface-based scattering media, widened the horizon of biosensors over a broad wavelength range from deep-ultraviolet to far-infrared. This review provides a comprehensive overview of the major scientific achievements in nano-biosensors based on optical fiber, nanomaterials and terahertz-domain metasurface-based refractometric, labelled and label-free nano-biosensors.
Collapse
Affiliation(s)
- B. M. Azizur Rahman
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Correspondence:
| | - Charusluk Viphavakit
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Ratchapak Chitaree
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Souvik Ghosh
- Department of Electronic and Electrical Engineering, University College London, Gower St., London WC1E 6AE, UK;
| | - Akhilesh Kumar Pathak
- International School of Engineering and Intelligent Control Automation of Process Systems Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (C.V.); (A.K.P.)
| | - Sneha Verma
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
| | - Natsima Sakda
- School of Mathematics, Computer Science and Engineering, University of London, London EC1V 0HB, UK; (S.V.); (N.S.)
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
8
|
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, Nugmanova A, Shaimerdenova M, Ayupova T, Tosi D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11:19583. [PMID: 34599251 PMCID: PMC8486867 DOI: 10.1038/s41598-021-99099-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Increased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhuldyz Myrkhiyeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aigerim Nugmanova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
9
|
Nan YG, Kinet D, Chah K, Chapalo I, Caucheteur C, Mégret P. Ultra-fast fiber Bragg grating inscription in CYTOP polymer optical fibers using phase mask and 400 nm femtosecond laser. OPTICS EXPRESS 2021; 29:25824-25835. [PMID: 34614902 DOI: 10.1364/oe.428592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Fiber Bragg gratings (FBGs) in cyclic transparent fluoropolymer (CYTOP) optical fiber are the subject of a lot of research as they can be of interest for many applications, such as temperature, humidity, strain, and radiation sensing. We report here a new technique to produce high quality FBGs in CYTOP fiber. It uses a femtosecond laser system operating at 400 nm and a phase mask. In contrast to previously reported results, the gratings are obtained in a few seconds with a writing power as low as 80 μW. With this setup, 2 mm-long gratings with reflectivity up to 92 % and full width at half maximum bandwidth around 0.5 nm were obtained in less than 10 s. The resonance wavelengths of the FBGs are confirmed by numerical computation in the graded-index multimode CYTOP fiber, and the mode selection characteristic of FBGs in CYTOP is investigated. Finally, the temperature sensitivity of CYTOP FBG is measured in different mode groups for heating up and cooling down, showing values independent of the mode group measured, but with a small hysteresis.
Collapse
|
10
|
Loyez M, Wells M, Hambÿe S, Hubinon F, Blankert B, Wattiez R, Caucheteur C. PfHRP2 detection using plasmonic optrodes: performance analysis. Malar J 2021; 20:332. [PMID: 34320995 PMCID: PMC8320217 DOI: 10.1186/s12936-021-03863-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Early malaria diagnosis and its profiling require the development of new sensing platforms enabling rapid and early analysis of parasites in blood or saliva, aside the widespread rapid diagnostic tests (RDTs). Methods This study shows the performance of a cost-effective optical fiber-based solution to target the presence of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Unclad multimode optical fiber probes are coated with a thin gold film to excite Surface Plasmon Resonance (SPR) yielding high sensitivity to bio-interactions between targets and bioreceptors grafted on the metal surface. Results Their performances are presented in laboratory conditions using PBS spiked with growing concentrations of purified target proteins and within in vitro cultures. Two probe configurations are studied through label-free detection and amplification using secondary antibodies to show the possibility to lower the intrisic limit of detection. Conclusions As malaria hits millions of people worldwide, the improvement and multiplexing of this optical fiber technique can be of great interest, especially for a future purpose of using multiple receptors on the fiber surface or several coated-nanoparticles as amplifiers. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03863-3.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000, Mons, Belgium. .,Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Mathilde Wells
- Laboratory of Pharmaceutical Analysis, University of Mons, Avenue Maistriau 15, 7000, Mons, Belgium
| | - Stéphanie Hambÿe
- Laboratory of Pharmaceutical Analysis, University of Mons, Avenue Maistriau 15, 7000, Mons, Belgium
| | - François Hubinon
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, University of Mons, Avenue Maistriau 15, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000, Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| |
Collapse
|
11
|
Study on a Plasmonic Tilted Fiber Grating-Based Biosensor for Calmodulin Detection. BIOSENSORS-BASEL 2021; 11:bios11060195. [PMID: 34198490 PMCID: PMC8231783 DOI: 10.3390/bios11060195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Tilted fiber Bragg grating, which has the advantages of both fiber Bragg grating and long-period fiber grating, has been widely studied for sensing in many fields, especially in the field of biochemistry. Calmodulin, which has a wide distribution in eukaryotes, can regulate several enzymes such as adenylate cyclase and guanylate cyclase and mediates several cellular processes such as cell proliferation and cyclic nucleotide metabolism. The abnormal levels of calmodulin in the body will result in serious effects from metabolism to nerve growth and memory. Therefore, it is important to measure the calmodulin concentration in the body. In this work, we propose and experimentally demonstrate a plasmonic tilted fiber Bragg grating-based biosensor for calmodulin detection. The biosensor was made using an 18° tilted fiber Bragg grating with a 50 nm-thick gold nanofilm coating the surface of the fiber, and transient receptor potential channels were bonded onto the surface of the gold nanofilm to serve as bio-detectors for calmodulin detection. Experimental results showed that the limit of detection using our biosensor was 0.44 nM. Furthermore, we also demonstrated that the interaction between calmodulin and transient receptor potential channels was quite weak without calcium in the solution, which agrees with the biology. Our proposed biosensor has a simple structure, is easy to manufacture, and is of small size, making it a good choice for real-time, label-free, and microliter-volume biomolecule detection.
Collapse
|
12
|
Ortega-Gomez A, Loyez M, Lobry M, Chah K, Zubia J, Villatoro J, Caucheteur C. Plasmonic sensors based on tilted Bragg gratings in multicore optical fibers. OPTICS EXPRESS 2021; 29:18469-18480. [PMID: 34154102 DOI: 10.1364/oe.430181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Bare and gold-coated tilted fiber Bragg gratings (TFBGs) can nowadays be considered as a mature technology for volume and surface refractometric sensing, respectively. As for other technologies, a continuous effort is made towards the production of even more sensitive sensors, thereby enabling a high-resolution screening of the surroundings and the possible detection of rare events. To this aim, we study in this work the development of TFBG refractometers in 4-core fibers. In particular, we show that the refractometric sensitivity of the cut-off mode can reach 100 nm/RIU for a bare grating. Using another demodulation method, a tenfold sensitivity increase is obtained when tracking the extremum of the SPR (surface plasmon resonance) envelope for a gold-coated TFBG configuration. Immobilization of DNA probes was performed as a proof-of-concept to assess the high surface sensitivity of the device.
Collapse
|
13
|
Esfahani Monfared Y. Overview of Recent Advances in the Design of Plasmonic Fiber-Optic Biosensors. BIOSENSORS-BASEL 2020; 10:bios10070077. [PMID: 32660135 PMCID: PMC7400712 DOI: 10.3390/bios10070077] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Plasmonic fiber-optic biosensors combine the flexibility and compactness of optical fibers and high sensitivity of nanomaterials to their surrounding medium, to detect biological species such as cells, proteins, and DNA. Due to their small size, accuracy, low cost, and possibility of remote and distributed sensing, plasmonic fiber-optic biosensors are promising alternatives to traditional methods for biomolecule detection, and can result in significant advances in clinical diagnostics, drug discovery, food process control, disease, and environmental monitoring. In this review article, we overview the key plasmonic fiber-optic biosensing design concepts, including geometries based on conventional optical fibers like unclad, side-polished, tapered, and U-shaped fiber designs, and geometries based on specialty optical fibers, such as photonic crystal fibers and tilted fiber Bragg gratings. The review will be of benefit to both engineers in the field of optical fiber technology and scientists in the fields of biosensing.
Collapse
|