1
|
Dong J, Wang S, Zeng Y, Luo W, Xu O, Fu S, Qin Y. Transverse mode switchable mode-locked laser with narrow bandwidth. OPTICS EXPRESS 2024; 32:21606-21615. [PMID: 38859510 DOI: 10.1364/oe.524230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Transverse mode switchable ultrashort optical pulses with narrow bandwidths can create potential for exploring what we believe are new physical effects. We demonstrate the generation of transverse mode switchable ultrashort pulses with narrow bandwidths in an all-fiber mode-locked laser by exploring a mode-selective photonic lantern (MSPL). The laser cavity serves not only as a ring resonator but also as an intrinsic spectral filter. For mode-locking with the LP01, LP11a, and LP11b modes, the bandwidths are 3.0 nm, 86.7 pm and 101.7 pm, respectively. The narrowband pulses with higher-order modes are generated by an intrinsic spectral filter due to the spectral-domain intermodal interference. Mode-locked pulses with a signal-to-noise ratio better than 60 dB for LP01, LP11a, and LP11b modes are independently generated, i.e., transverse mode switchable by changing the input port of the MSPL. The mode-locked wavelength can be tuned for the LP11a mode and LP11b mode by adjusting the state of polarization. Furthermore, our experimental results also show that, the slope efficiency of LP11a and LP11b modes can be improved, by the use of LP11 mode pump scheme. We anticipate that, narrowband pulses with complex mode profiles can be generated by simultaneously phase-locked transverse and longitudinal modes.
Collapse
|
2
|
Ge B, Lou Y, Guo S, Cai Y, Zhang X. A High-Energy, Wide-Spectrum, Spatiotemporal Mode-Locked Fiber Laser. MICROMACHINES 2024; 15:644. [PMID: 38793217 PMCID: PMC11123148 DOI: 10.3390/mi15050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
In this article, we demonstrate a high-energy, wide-spectrum, spatiotemporal mode-locked (STML) fiber laser. Unlike traditional single-mode fiber lasers, STML fiber lasers theoretically enable mode-locking with various combinations of transverse modes. The laser can deliver two different STML pulse sequences with different pulse widths, spectra and beam profiles, due to the different compositions of transverse modes in the output pulses. Moreover, we achieve a wide-spectrum pulsed output with a single-pulse energy of up to 116 nJ, by weakening the spectral filtering and utilizing self-cleaning. Strong spatial and spectral filtering are usually thought to be necessary for achieving STML. Our experiment verifies the necessity of spatial filtering for achieving STML, and we show that weakening unnecessary spectral filtering provides an effective way to increase the pulse energy and spectrum width of mode-locked fiber lasers.
Collapse
Affiliation(s)
| | | | | | | | - Xinhai Zhang
- Department of Electrical Electronic and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (B.G.); (Y.L.); (S.G.); (Y.C.)
| |
Collapse
|
3
|
Xu G, Peng J, Zhang H, Zhang Y, Cui M, Su Y, Zheng Y. All-multimode fiber spatiotemporal mode-locked figure-eight laser based on multimode gain fiber. OPTICS EXPRESS 2023; 31:44603-44610. [PMID: 38178527 DOI: 10.1364/oe.507857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024]
Abstract
In this paper, we report for the first time on an all-multimode fiber spatiotemporal mode-locked figure-eight laser operating at 1.0 µm. This laser utilizes a multimode gain fiber and a nonlinear amplifying loop mirror mechanism. It can generate mode-locked noise-like pulses at different central wavelengths. Additionally, we observed the presence of a multi-soliton state within the cavity by reducing intracavity gain. This study contributes to a broader investigation of various pulse phenomena in spatiotemporal mode-locked lasers and provides valuable insights into further exploring the evolution of spatiotemporal dynamics in such systems.
Collapse
|
4
|
Sun J, Wang G, Chao J, Wang X, Yang H, Fu B. Buildup of multiple spatiotemporal nonlinear dynamics in an all-fiber multimode laser. OPTICS LETTERS 2023; 48:6019-6022. [PMID: 37966778 DOI: 10.1364/ol.505331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Ultrafast lasers based on multimode fibers have attracted extensive attention owing to the large mode-field area and nonlinear tolerance. The high spatial degree of freedom of multimode fibers is significant for spatiotemporal pulses locked both in transverse and longitudinal modes, where the energy of output pulses can be remarkably improved. Herein, the 1.5-μm all-fiber spatiotemporal mode-locked laser was realized based on carbon nanotubes as a saturable absorber. Moreover, by tuning the polarization controller and the pump power carefully, the output wavelengths can be ranged from 1529 to 1565 nm based on the multimode interference filter. In addition, Q-switched mode-locking and spatiotemporal mode-locked dual combs were also observed by further adjusting the polarization controller. Such a kind of an all-fiber multimode laser offers a crucial insight into the spatiotemporal nonlinear dynamics, which is of great significance in scientific research and practical applications.
Collapse
|
5
|
Cao B, Gao C, Liu K, Xiao X, Yang C, Bao C. Spatiotemporal mode-locking and dissipative solitons in multimode fiber lasers. LIGHT, SCIENCE & APPLICATIONS 2023; 12:260. [PMID: 37903756 PMCID: PMC10616099 DOI: 10.1038/s41377-023-01305-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Multimode fiber (MMF) lasers are emerging as a remarkable testbed to study nonlinear spatiotemporal physics with potential applications spanning from high energy pulse generation, precision measurement to nonlinear microscopy. The underlying mechanism for the generation of ultrashort pulses, which can be understood as a spatiotempoal dissipative soliton (STDS), in the nonlinear multimode resonators is the spatiotemporal mode-locking (STML) with simultaneous synchronization of temporal and spatial modes. In this review, we first introduce the general principles of STML, with an emphasize on the STML dynamics with large intermode dispersion. Then, we present the recent progress of STML, including measurement techniques for STML, exotic nonlinear dynamics of STDS, and mode field engineering in MMF lasers. We conclude by outlining some perspectives that may advance STML in the near future.
Collapse
Affiliation(s)
- Bo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Chenxin Gao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Kewei Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Xiaosheng Xiao
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| | - Chengying Bao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Zhao B, Zhao TX, Liu GX, Zhao N, Cui H, Luo ZC, Xu WC, Luo AP. Dissipative soliton resonance in a figure-eight multimode fiber laser. OPTICS EXPRESS 2023; 31:17354-17363. [PMID: 37381472 DOI: 10.1364/oe.491454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
We report, for the first time to the best of our knowledge, a spatiotemporal mode-locked (STML) multimode fiber laser based on nonlinear amplifying loop mirror (NALM), generating dissipative soliton resonance (DSR) pulses. Due to the complex filtering characteristics caused by the inherent multimode interference filtering structure and NALM in the cavity, the STML DSR pulse has wavelength tunable function. What's more, kinds of DSR pulses are also achieved, including multiple DSR pulses, and the period doubling bifurcations of single DSR pulse and multiple DSR pulses. These results contribute to further understand the nonlinear properties of STML lasers and may shed some light on improving the performance of the multimode fiber lasers.
Collapse
|
7
|
Xing D, Feng M, Liu C, He J, Chang K, Li J, Wang P, Liu Y, Wang Z. Spatiotemporal mode-locked fiber laser based on dual-resonance coupling long-period fiber grating. OPTICS EXPRESS 2023; 31:7134-7143. [PMID: 36859850 DOI: 10.1364/oe.481559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Spatiotemporal mode-locked (STML) fiber lasers have become an excellent platform in nonlinear optics research due to the rich nonlinear evolution process. In order to overcome modal walk-off and realize phase locking of different transverse modes, it is usually crucial to reduce the modal group delay difference in the cavity. In this paper, we use long-period fiber grating (LPFG) to compensate the large modal dispersion and differential modal gain in the cavity, realizing the spatiotemporal mode-locking in step-index fibers cavity. The LPFG inscribed in few-mode fiber could induce strong mode coupling, which has wide operation bandwidth based on dual-resonance coupling mechanism. By using dispersive Fourier transform involved intermodal interference, we show that there is a stable phase difference between the transverse modes constituting the spatiotemporal soliton. These results would be beneficial for the study of spatiotemporal mode-locked fiber lasers.
Collapse
|
8
|
Fu G, Tian J, Qi T, Wu Y, Zhao Y, Xiao Q, Li D, Gong M, Yan P. Spatiotemporal analysis of an all-fiber multimode interference-based saturable absorber via a mode-resolved nonlinear Schrodinger equation. OPTICS EXPRESS 2022; 30:39086-39100. [PMID: 36258457 DOI: 10.1364/oe.471143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This paper presents an approach that combines the generalized multimode nonlinear Schrodinger equation with a transmission model to analyze spatiotemporal characteristics of multimode interference in single mode/large mode area fiber-graded-index multimode fiber-single mode fiber (SMF/LMA-GIMF-SMF) structures for the first time. Approximated self-imaging (ASIM) behavior in GIMF and the study of the latter structure used in spatiotemporal mode-locked fiber lasers are first demonstrated. Simulations show that these structures can work as saturable absorbers enabling high-energy pulse output due to nonlinear intermodal interactions and intensity-dependent multimode interference. Otherwise, underlying ASIM is proven that it can perturb the transmission of SMF/LMA-GIMF-SMF, causing instability of their saturable-absorption characteristics. This paper provides a theoretical guide for many applications, such as beam shaping, mode conversion, and high-energy ultrafast fiber laser.
Collapse
|
9
|
Abd-Elsamee S, Areed NFF, El-Mikati HA, Obayya SSA. Tunable Multi-Channels Bandpass InGaAsP Plasmonic Filter Using Coupled Arrow Shape Cavities. PHOTONICS 2022; 9:720. [DOI: 10.3390/photonics9100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A new design for a tunable multi-channel plasmonic bandpass filter was numerically investigated using the two-dimensional finite element method (2D-FEM). The proposed multi-channel plasmonic bandpass filter consists of a metal-insulator-metal waveguide (MIM-WG) and double-sided arrow-shaped cavities. Silver (Ag) and a non-linear optical medium (InGaAsP) are used in the designed filter. InGaAsP fills the bus waveguide and arrow-shaped cavities. The refractive index of InGaAsP is sensitive to the incident light intensity, therefore the resonance wavelengths can be controlled. Utilizing different incident light intensities (such as 1017 v2/m2 and 2 × 1017 v2/m2) on the InGaAsP, the filter wavelengths can be tuned over a range from 600 nm to 1200 nm. The proposed filter with a confinement area of 0.5 μm2 can be used in wavelength division multiplexing (WDM), photonic systems, coloring filters, sensing, and 5G+ communication.
Collapse
|
10
|
Zhao TX, Liu GX, Dai LL, Zhao B, Cui H, Mou CB, Luo ZC, Xu WC, Luo AP. Narrow bandwidth spatiotemporal mode-locked Yb-doped fiber laser. OPTICS LETTERS 2022; 47:3848-3851. [PMID: 35913330 DOI: 10.1364/ol.465533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
We report a narrow bandwidth spatiotemporal mode-locked (STML) ytterbium-doped fiber laser, based on a homemade carbon nanotube/polyvinyl alcohol composite film and the multimode interference filtering effect. The wavelength-tunable narrow bandwidth STML operations combined with different pulse states are achieved, including single pulse, multiple pulses, and harmonics. The 3-dB bandwidth at the single-pulse state is 103 pm, while at the harmonic state, it is as narrow as 26 pm. To give an insight into the generation of the narrow bandwidth STML pulses, numerical simulations are performed. Such a laser has a wide range of potential applications in fields of optical communication and optical measurement, as well as provides a favorable platform for studying the evolution dynamics of multimode solitons.
Collapse
|
11
|
Zhang X, Wang Z, Shen C, Guo T. Spatiotemporal self-mode-locked operation in a compact partial multimode Er-doped fiber laser. OPTICS LETTERS 2022; 47:2081-2084. [PMID: 35427342 DOI: 10.1364/ol.451832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
We report spatiotemporal self-mode-locked operation at 1.55 µm with a low pump threshold of 32 mW in a compact partial multimode fiber laser system. Spatial filtering and the saturable absorber, both of which originate from the multimode interference (linear or nonlinear) of the single mode-multimode structure in this hybrid configuration, are well suited to the spatiotemporal self-mode-locked operation. Not only stable multimode conventional solitons with different spectral bandwidths but also a multimode soliton molecule complex with different structural bound-state patterns are obtained. It is found that the spatiotemporal evolution of the multimode solitons is dependent on many factors, such as the operating state, the involved frequency component, and the interaction between solitons. Furthermore, an unstable spatiotemporal mode-locked (STML) state where the beam profiles of the solitons change spontaneously is also observed for a specific multimode fiber state and pump power.
Collapse
|
12
|
Xie S, Jin L, Zhang H, Li X, Zhang X, Xu Y, Ma X. All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering. OPTICS EXPRESS 2022; 30:2909-2917. [PMID: 35209422 DOI: 10.1364/oe.443505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Multimode interference (MMI) has been considered to be critical and investigated extensively in mode-locked laser based on single transverse mode systems, whereas there are few researches related to three-dimensional nonlinear dynamics within lasers. In this paper, we demonstrate all-fiber high-power spatiotemporal mode-locked (STML) laser by optimizing MMI filtering, where we find that the MMI filtering plays an important role in counteracting the coupling of high-order modes and improving output power of STML laser. The results under weak coupling condition when the length of graded-index multimode fiber (GIMF) is integral multiple of beat length show that the oscillator generates dissipative soliton pulses at 1036.86 nm with pulse width of 5.65 ps, and the slope efficiency of pump-signal is up to 10.3% with average power/energy of 215 mW/6 nJ, which is the highest among all-fiber STML lasers in normal dispersion regime. Besides, the multiple-soliton of STML, including multiple pulses and harmonic mode-locking can be observed in the experiment. Our work significantly broadens the dimensions of design for all-fiber high-power STML and makes them much more accessible for being put into applications.
Collapse
|
13
|
Ma ZL, Long JG, Lin W, Hong WY, Cui H, Luo ZC, Xu WC, Likhachev ME, Aleshkina SS, Mashinsky VM, Yashkov MV, Luo AP. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm. OPTICS EXPRESS 2021; 29:9465-9473. [PMID: 33820374 DOI: 10.1364/oe.415318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
We report the spatiotemporal mode-locked multimode fiber laser operating at 1.55 µm based on semiconductor saturable absorber mirrors with the mode-locking threshold as low as 104 mW. Benefiting from the multimode interference filtering effect introduced in the laser cavity not only the central wavelength can be continuously tuned from 1557 nm to 1567 nm, but also the number of the output pulses can be adjusted from 1 to 4 by simply adjusting the polarization controllers. This work provides a new platform for exploring the dynamic characteristics of spatiotemporal mode-locked pulses at negative dispersion regime. Moreover, this kind of tunable laser has potential applications in fields of all-optical signal processing, fiber sensing and information coding.
Collapse
|
14
|
Pan W, Jin L, Wang J, Wang R, Zhang H, Yingtian X, Zhao X, Li Y, Ma X. All-normal-dispersion dissipative soliton fiber laser using an offset-splicing graded-index-multimode-fiber-based saturable absorber. APPLIED OPTICS 2021; 60:923-928. [PMID: 33690399 DOI: 10.1364/ao.413601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
All-normal-dispersion (ANDi) dissipative soliton mode-locking is realized based on nonlinear multimode interference (NMI), which is implemented by offset-splicing three pieces of graded-index multimode fibers (GIMFs) and acts as a saturable absorber. The higher-order modes can be excited by offset-splicing GIMFs (OS-GIMFs), which eliminates adding the step multimode fiber (SIMF) into the resonant cavity and the precise length requirement of the SIMF. In the experiment, the stable dissipative soliton mode-locking at 1030 nm can be obtained with the pulse width of 7.3 ps and the repetition rate of 20.52 MHz, and the bandwidth is 6.98 nm. The maximum output is 3.2 mW with the pump power of 257 mW. The OS-GIMFs can significantly improve the saturated absorption and can easily realize dissipative soliton mode-locking in ANDi regions, which makes it attractive in ultrafast photonics.
Collapse
|
15
|
Long JG, Gao YX, Lin W, Wu JW, Lin XB, Hong WY, Cui H, Luo ZC, Xu WC, Luo AP. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser. OPTICS LETTERS 2021; 46:588-591. [PMID: 33528415 DOI: 10.1364/ol.412086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
We report a switchable and spacing tunable dual-wavelength spatiotemporal mode-locked (STML) laser based on the multimode interference filtering effect in an all-fiber linear cavity. The dual-wavelength STML operations combined with different pulse patterns are achieved. By adjusting the polarization controllers, the dual-wavelength STML pulses can be switched to single wavelength operation, which is tunable up to 35 nm under certain pump powers. Moreover, the dual-wavelength spacing can also be tuned from 8 nm to 22 nm. The obtained results contribute to understanding and exploring the spatiotemporal characteristics operating in the multi-wavelength regime of STML fiber lasers. All-fiber STML lasers with lasing wavelength tunability and flexibility may have applications in the fields of optical communications and optical measurements.
Collapse
|