1
|
Wang J, Sun J, Zhang Y, Liu Z, Li H. Observation of spectral splitting of whispering-gallery modes in asymmetrical photonic molecules. OPTICS LETTERS 2024; 49:4581-4584. [PMID: 39146108 DOI: 10.1364/ol.527543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This Letter investigates mode splitting via whispering gallery modes (WGMs) in asymmetrical photonic molecules (PMs) composed of size-mismatched dual microspheres fabricated from fused silica. The characteristics of asymmetrical PMs were analyzed both numerically and experimentally, focusing specifically on the separation and intensity differences of splitting peaks. The splitting spectra exhibited a redshift, and the separation of two splitting peaks reached a maximum in symmetrical PMs, with a minimal difference in intensity also observed. It was noted that the splitting peaks shifted in opposite directions for the same PMs when coupling points with the tapered fibers were varied. This phenomenon can be applied to select similarly sized microparticles and to recognize PMs in optical devices.
Collapse
|
2
|
Bianki MA, Guertin R, Lemieux-Leduc C, Peter YA. Temperature Sensitivity Control of an Inkjet-Printed Optical Resonator on Pillar. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5067-5074. [PMID: 38231197 DOI: 10.1021/acsami.3c14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a whispering gallery mode resonator on a pillar using inkjet printing combined with traditional microfabrication techniques. This approach enables several different polymers on the same chip for sensing applications. However, polymers inherently exhibit sensitivity to multiple stimuli. To mitigate temperature sensitivity, careful selection of design parameters is crucial. By precisely tuning the undercut-to-radius ratio of the resonator, a linear dependence in temperature sensitivity ranging from -41.5 pm/°C to 23.4 pm/°C, with a zero-crossing point at 47.6% is achieved. Consequently, it is feasible to fabricate sensing devices based on undercut microdroplets with minimal temperature sensitivity. The lowest measured temperature sensitivity obtained was 5.9 pm/°C, for a resonator with an undercut-to-radius ratio of 53%.
Collapse
Affiliation(s)
- Marc-Antoine Bianki
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Régis Guertin
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Cédric Lemieux-Leduc
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Yves-Alain Peter
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
3
|
Lee YC, Ho YL, Lin BW, Chen MH, Xing D, Daiguji H, Delaunay JJ. High-Q lasing via all-dielectric Bloch-surface-wave platform. Nat Commun 2023; 14:6458. [PMID: 37833267 PMCID: PMC10576087 DOI: 10.1038/s41467-023-41471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Controlling the propagation and emission of light via Bloch surface waves (BSWs) has held promise in the field of on-chip nanophotonics. BSW-based optical devices are being widely investigated to develop on-chip integration systems. However, a coherent light source that is based on the stimulated emission of a BSW mode has yet to be developed. Here, we demonstrate lasers based on a guided BSW mode sustained by a gain-medium guiding structure microfabricated on the top of a BSW platform. A long-range propagation length of the BSW mode and a high-quality lasing emission of the BSW mode are achieved. The BSW lasers possess a lasing threshold of 6.7 μJ/mm2 and a very narrow linewidth reaching a full width at half maximum as small as 0.019 nm. Moreover, the proposed lasing scheme exhibits high sensitivity to environmental changes suggesting the applicability of the proposed BSW lasers in ultra-sensitive devices.
Collapse
Affiliation(s)
- Yang-Chun Lee
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bo-Wei Lin
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mu-Hsin Chen
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Di Xing
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Kazanskiy NL, Khonina SN, Butt MA. A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications. MICROMACHINES 2023; 14:1080. [PMID: 37241703 PMCID: PMC10222003 DOI: 10.3390/mi14051080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Optical ring resonators (RRs) are a novel sensing device that has recently been developed for several sensing applications. In this review, RR structures based on three widely explored platforms, namely silicon-on-insulator (SOI), polymers, and plasmonics, are reviewed. The adaptability of these platforms allows for compatibility with different fabrication processes and integration with other photonic components, providing flexibility in designing and implementing various photonic devices and systems. Optical RRs are typically small, making them suitable for integration into compact photonic circuits. Their compactness allows for high device density and integration with other optical components, enabling complex and multifunctional photonic systems. RR devices realized on the plasmonic platform are highly attractive, as they offer extremely high sensitivity and a small footprint. However, the biggest challenge to overcome is the high fabrication demand related to such nanoscale devices, which limits their commercialization.
Collapse
Affiliation(s)
- Nikolay L. Kazanskiy
- Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana N. Khonina
- Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia
- IPSI RAS—Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Muhammad A. Butt
- Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia
| |
Collapse
|
6
|
Wang J, Li J, Sun S, Dong H, Wu L, Zhao E, He F, Ma X, Zhao YS. Revealing molecular diffusion dynamics in polymer microspheres by optical resonances. SCIENCE ADVANCES 2023; 9:eadf1725. [PMID: 37163586 PMCID: PMC10171802 DOI: 10.1126/sciadv.adf1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Understanding the diffusion of small molecules in polymer microsystems is of great interest in diverse fundamental and industrial research. Despite the rapidly advancing optical imaging and spectroscopic techniques, entities under investigation are usually limited to flat films or bulky samples. We demonstrate a route to in situ detection of diffusion dynamics in polymer micro-objects by means of optical whispering-gallery mode resonances. Through mode tracking, interactions between solvent molecules and polymer microspheres, including sorption, diffusion, and swelling can be quantitatively analyzed. A turning point of mode response is observed, while the diffusion exceeds the sub-wavelength-thick outermost layer as the radial extent of resonances and starts penetrating the inner core. The estimated solubility in the glassy polymer is consistent with the predicted value using Flory-Huggins theory. Besides, the non-Fickian contribution is analyzed in such a glassy polymer-penetrant system. Our work represents a high-precision and label-free approach to describing characteristics in diffusion dynamics.
Collapse
Affiliation(s)
- Jiawei Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jin Li
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shengqi Sun
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lan Wu
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Feng He
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055 China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Li C, Lohrey T, Nguyen PD, Min Z, Tang Y, Ge C, Sercel ZP, McLeod E, Stoltz BM, Su J. Part-per-Trillion Trace Selective Gas Detection Using Frequency Locked Whispering-Gallery Mode Microtoroids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42430-42440. [PMID: 36049126 DOI: 10.1021/acsami.2c11494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid detection of toxic and hazardous gases at trace concentrations plays a vital role in industrial, battlefield, and laboratory scenarios. Of interest are both sensitive as well as highly selective sensors. Whispering-gallery mode (WGM) microresonator-based biochemical sensors are among the most sensitive sensors in existence due to their long photon confinement times. One main concern with these devices, however, is their selectivity toward specific classes of target analytes. Here, we employ frequency locked WGM microtoroid optical resonators covalently modified with various polymer coatings to selectively detect the chemical warfare agent surrogate diisopropyl methylphosphonate (DIMP) as well as the toxic industrial chemicals formaldehyde and ammonia at parts-per-trillion concentrations (304, 434, and 117 ppt, respectively). This is 1-2 orders of magnitude better than previously reported, depending on the target, except for pristine graphene and pristine carbon nanotube sensors, which demonstrate similar detection levels but in vacuum and without selectivity. Selective polymer coatings include polyethylene glycol for DIMP sensing, accessed by the modification of commercially available materials, and 3-(triethoxysilyl) propyl-terminated polyvinyl acetate (PVAc) for ammonia sensing. Notably, we developed for the first time an efficient one-pot procedure to access 3-(triethoxysilyl) propyl-terminated PVAc that utilizes cobalt-mediated living radical polymerization and a nitroxyl polymer-terminating agent. Alkaline hydrolysis of PVAc coatings to form polyvinyl alcohol coatings directly bound to the microtoroid proved to be reliable and reproducible, leading to WGM sensors capable of the rapid and selective detection of formaldehyde vapors. The selectivity of these three polymer coatings as sensing media was predicted, in part, based on their functional group content and known reactivity patterns with the target analytes. Furthermore, we demonstrate that microtoroids coated with a mixture of polymers can serve as an all-in-one sensor that can detect multiple agents. We anticipate that our results will facilitate rapid early detection of chemical agents, as well as their surrogates and precursors.
Collapse
Affiliation(s)
- Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Trevor Lohrey
- The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Zhouyang Min
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Chang Ge
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Zachary P Sercel
- The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Euan McLeod
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Brian M Stoltz
- The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| |
Collapse
|
8
|
Ji P, Zhu M, Liao C, Zhao C, Yang K, Xiong C, Han J, Li C, Zhang L, Liu Y, Wang Y. In-Fiber Polymer Microdisk Resonator and Its Sensing Applications of Temperature and Humidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48119-48126. [PMID: 34585566 DOI: 10.1021/acsami.1c14499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We proposed and realized an all-in-fiber polymer microdisk whispering-gallery mode (WGM) resonator, which is composed of a nanoscale polymer waveguide in conjunction with a polymer microdisk. The resonator is manufactured by femtosecond laser-induced two-photon polymerization inside a single-mode optical fiber, and its transmission spectrum has been investigated theoretically and experimentally. The WGM resonance was excited successfully, exhibiting a high Q factor of 2.3 × 103 at a resonant wavelength of 1416.6 nm. The temperature and humidity responses of the resonator were tested as examples of possible application. Temperature sensitivity of -96 pm/°C when the temperature increased from 25 to 60 °C and humidity sensitivity of 54 pm/%RH when the relative humidity increased from 30 to 90% were obtained. The proposed in-fiber microdisk resonator is highly suitable for detection of microorganisms, bacteria, and single molecules.
Collapse
Affiliation(s)
- Peng Ji
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Meng Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Cong Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Kaiming Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Cong Xiong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Jinli Han
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Chi Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Lichao Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yifan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/GuangDong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Zhang R, Yang Z, Zhao M, Xu P, Zhang W, Kang Z, Zheng J, Dai S, Wang R, Majumdar A. High quality, high index-contrast chalcogenide microdisk resonators. OPTICS EXPRESS 2021; 29:17775-17783. [PMID: 34154053 DOI: 10.1364/oe.427054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate the high quality (Q) factor microdisk resonators in high index-contrast chalcogenide glass (ChG) film GeSbSe using electron-beam lithography followed by plasma dry etching. High confinement, low-loss, and single-point-coupled microdisk resonators with a loaded Q factor of 5×105 are measured. We also present pulley-coupled microdisk resonators for relaxing the requirements on the coupling gap. While adjusting the wrap-around coupling waveguides to be phase-matched to the resonator mode, a single specific microdisk radial mode can be excited. Moreover, the thermal characterization of microdisk resonators is carried out to estimate the thermo-optic coefficient of 6.7×10-5/K for bulk ChG.
Collapse
|