1
|
Andriani MS, Bianco M, Montinaro C, Balena A, Pisanello M, Pisano F, Vittorio MD, Pisanello F. Low-NA two-photon lithography patterning of metal/dielectric tapered optical fibers for depth-selective, volumetric optical neural interfaces. OPTICS EXPRESS 2024; 32:48772-48785. [PMID: 39876173 DOI: 10.1364/oe.541017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 01/30/2025]
Abstract
Optical neural implants allow neuroscientists to access deep brain regions, enabling to decipher complex patterns of neural activity. In this field, the use of optical fibers is rapidly increasing, and the ability to generate high-quality metal patterns on their non-planar surface would further extend their application. Here, we propose to use alternating metal shielding and dielectric confinement to engineer the mode-division properties of tapered optical fiber neural implants. This is accomplished through an unconventional application of two-photon lithography (TPL), which employs a low-numerical aperture objective to pattern extensive waveguide sections at both low and high curvature radii. The low-NA TPL is used to polymerize a mask of photoresist, while the rest of the taper undergoes wet metal etching. This implies no direct destructive interaction between the laser beam and the metal to be removed, preserving the optical properties of the dielectric waveguide and of the metal coating. The advantages provided by the presented fabrication method, combined with the intrinsic modal properties of the dielectric waveguide, enable the engineering of the light guiding mechanisms, achieving depth-selective light delivery with a high extinction ratio. The device's light emission and collection properties were investigated in quasi-transparent media and highly scattering brain slices, finding that our proposed method facilitates 360° symmetric light collection around the dielectric-confined section with depth resolution. This opens a perspective for the realization of optical neural implants that can interface the implant axis all-around, with low-NA TPL that can also be applied on other types of non-planar surfaces.
Collapse
|
2
|
Uhlířová H, Stibůrek M, Pikálek T, Gomes A, Turtaev S, Kolbábková P, Čižmár T. "There's plenty of room at the bottom": deep brain imaging with holographic endo-microscopy. NEUROPHOTONICS 2024; 11:S11504. [PMID: 38250297 PMCID: PMC10798506 DOI: 10.1117/1.nph.11.s1.s11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Significance Over more than 300 years, microscopic imaging keeps providing fundamental insights into the mechanisms of living organisms. Seeing microscopic structures beyond the reach of free-space light-based microscopy, however, requires dissection of the tissue-an intervention seriously disturbing its physiological functions. The hunt for low-invasiveness tools has led a growing community of physicists and engineers into the realm of complex media photonics. One of its activities represents exploiting multimode optical fibers (MMFs) as ultra-thin endoscopic probes. Employing wavefront shaping, these tools only recently facilitated the first peeks at cells and their sub-cellular compartments at the bottom of the mouse brain with the impact of micro-scale tissue damage. Aim Here, we aim to highlight advances in MMF-based holographic endo-microscopy facilitating microscopic imaging throughout the whole depth of the mouse brain. Approach We summarize the important technical and methodological prerequisites for stabile high-resolution imaging in vivo. Results We showcase images of the microscopic building blocks of brain tissue, including neurons, neuronal processes, vessels, intracellular calcium signaling, and red blood cell velocity in individual vessels. Conclusions This perspective article helps to understand the complexity behind the technology of holographic endo-microscopy, summarizes its recent advances and challenges, and stimulates the mind of the reader for further exploitation of this tool in the neuroscience research.
Collapse
Affiliation(s)
- Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miroslav Stibůrek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tomáš Pikálek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - André Gomes
- Leibniz Institute of Photonic Technology, Jena, Germany
| | | | - Petra Kolbábková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Applied Optics, Jena, Germany
| |
Collapse
|
3
|
Stibůrek M, Ondráčková P, Tučková T, Turtaev S, Šiler M, Pikálek T, Jákl P, Gomes A, Krejčí J, Kolbábková P, Uhlířová H, Čižmár T. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nat Commun 2023; 14:1897. [PMID: 37019883 PMCID: PMC10076269 DOI: 10.1038/s41467-023-36889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/16/2023] [Indexed: 04/07/2023] Open
Abstract
Light-based in-vivo brain imaging relies on light transport over large distances of highly scattering tissues. Scattering gradually reduces imaging contrast and resolution, making it difficult to reach structures at greater depths even with the use of multiphoton techniques. To reach deeper, minimally invasive endo-microscopy techniques have been established. These most commonly exploit graded-index rod lenses and enable a variety of modalities in head-fixed and freely moving animals. A recently proposed alternative is the use of holographic control of light transport through multimode optical fibres promising much less traumatic application and superior imaging performance. We present a 110 μm thin laser-scanning endo-microscope based on this prospect, enabling in-vivo volumetric imaging throughout the whole depth of the mouse brain. The instrument is equipped with multi-wavelength detection and three-dimensional random access options, and it performs at lateral resolution below 1 μm. We showcase various modes of its application through the observations of fluorescently labelled neurones, their processes and blood vessels. Finally, we demonstrate how to exploit the instrument to monitor calcium signalling of neurones and to measure blood flow velocity in individual vessels at high speeds.
Collapse
Affiliation(s)
- Miroslav Stibůrek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Tereza Tučková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Sergey Turtaev
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Tomáš Pikálek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Petr Jákl
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - André Gomes
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Petra Kolbábková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic.
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic.
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Institute of Applied Optics, Friedrich Schiller University Jena, Fröbelstieg 1, 07743, Jena, Germany.
| |
Collapse
|
4
|
Wen Z, Liu X, Yang Q. Multimode fiber imaging: a novel and fast-developing field. Sci Bull (Beijing) 2022; 67:1399-1401. [PMID: 36546177 DOI: 10.1016/j.scib.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhong Wen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
| | - Qing Yang
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China; State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
5
|
Collard L, Pisano F, Zheng D, Balena A, Kashif MF, Pisanello M, D'Orazio A, de la Prida LM, Ciracì C, Grande M, De Vittorio M, Pisanello F. Holographic Manipulation of Nanostructured Fiber Optics Enables Spatially-Resolved, Reconfigurable Optical Control of Plasmonic Local Field Enhancement and SERS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200975. [PMID: 35508706 DOI: 10.1002/smll.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Integration of plasmonic structures on step-index optical fibers is attracting interest for both applications and fundamental studies. However, the possibility to dynamically control the coupling between the guided light fields and the plasmonic resonances is hindered by the turbidity of light propagation in multimode fibers (MMFs). This pivotal point strongly limits the range of studies that can benefit from nanostructured fiber optics. Fortunately, harnessing the interaction between plasmonic modes on the fiber tip and the full set of guided modes can bring this technology to a next generation progress. Here, the intrinsic wealth of information of guided modes is exploited to spatiotemporally control the plasmonic resonances of the coupled system. This concept is shown by employing dynamic phase modulation to structure both the response of plasmonic MMFs on the plasmonic facet and their response in the corresponding Fourier plane, achieving spatial selective field enhancement and direct control of the probe's work point in the dispersion diagram. Such a conceptual leap would transform the biomedical applications of holographic endoscopic imaging by integrating new sensing and manipulation capabilities.
Collapse
Affiliation(s)
- Liam Collard
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| | - Filippo Pisano
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| | - Di Zheng
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| | - Antonio Balena
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| | - Muhammad Fayyaz Kashif
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, 70125, Italy
| | - Marco Pisanello
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| | - Antonella D'Orazio
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, 70125, Italy
| | | | - Cristian Ciracì
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| | - Marco Grande
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, 70125, Italy
| | - Massimo De Vittorio
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
- Dipartimento di Ingegneria Dell'Innovazione, Università del Salento, Lecce, 73100, Italy
| | - Ferruccio Pisanello
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy
| |
Collapse
|
6
|
Endoscopic Imaging Using a Multimode Optical Fibre Calibrated with Multiple Internal References. PHOTONICS 2022. [DOI: 10.3390/photonics9010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The interferometric acquisition of the transmission matrix (TM) of a multimode optical fibre (MMF), which is at the heart of multimode fibre-based endoscopic imaging methods, requires using a reference beam. Attempts to use an internal reference, that is to provide the reference in a common pathway geometry through the MMF itself, lead to a speckled reference intensity and consequential occurrence of “blind spots”—locations where insufficient optical power in the reference wave inflicts strong measurement errors. Here we show that combining a relatively small number of TMs, which are measured using different internal references, facilitates a complete elimination of blind spots, and thereby a significant enhancement of the imaging quality.
Collapse
|