1
|
Zitzmann FD, Schmidt S, Frank R, Weigel W, Meier M, Jahnke HG. Microcavity well-plate for automated parallel bioelectronic analysis of 3D cell cultures. Biosens Bioelectron 2024; 250:116042. [PMID: 38266619 DOI: 10.1016/j.bios.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Three-dimensional (3D) in vitro cell culture models serve as valuable tools for accurately replicating cellular microenvironments found in vivo. While cell culture technologies are rapidly advancing, the availability of non-invasive, real-time, and label-free analysis methods for 3D cultures remains limited. To meet the demand for higher-throughput drug screening, there is a demanding need for analytical methods that can operate in parallel. Microelectrode systems in combination with microcavity arrays (MCAs), offer the capability of spatially resolved electrochemical impedance analysis and field potential monitoring of 3D cultures. However, the fabrication and handling of small-scale MCAs have been labour-intensive, limiting their broader application. To overcome this challenge, we have established a process for creating MCAs in a standard 96-well plate format using high-precision selective laser etching. In addition, to automate and ensure the accurate placement of 3D cultures on the MCA, we have designed and characterized a plug-in tool using SLA-3D-printing. To characterize our new 96-well plate MCA-based platform, we conducted parallel analyses of human melanoma 3D cultures and monitored the effect of cisplatin in real-time by impedance spectroscopy. In the following we demonstrate the capabilities of the MCA approach by analysing contraction rates of human pluripotent stem cell-derived cardiomyocyte aggregates in response to cardioactive compounds. In summary, our MCA system significantly expands the possibilities for label-free analysis of 3D cell and tissue cultures, offering an order of magnitude higher parallelization capacity than previous devices. This advancement greatly enhances its applicability in real-world settings, such as drug development or clinical diagnostics.
Collapse
Affiliation(s)
- Franziska D Zitzmann
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; b-ACT Matter, Research and Transfer Centre for bioactive Matter, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Winnie Weigel
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Matthias Meier
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany.
| |
Collapse
|
2
|
Reitz B, Evertz A, Basten R, Wurz MC, Overmeyer L. Integrated multimode optical waveguides in glass using laser induced deep etching. APPLIED OPTICS 2024; 63:895-903. [PMID: 38437385 DOI: 10.1364/ao.506670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 03/06/2024]
Abstract
Glass is an ideal material for optical applications, even though only a few micromachining technologies for material ablation are available. These microstructuring methods are limited regarding precision and freedom of design. A micromachining process for glass is laser induced deep etching (LIDE). Without generating micro-cracks, introducing stress, or other damages, it can precisely machine many types of glass. This work uses LIDE to subtractive manufacture structures in glass carrier substrates. Due to its transmission characteristics and refractive index, the glass substrate serves as optical cladding for polymer waveguides. In this paper, the described fabrication process can be divided into two sub-steps. The doctor blade technique and subsequent additive process step is used in manufacturing cavities with U-shaped cross-sections in glass in order to fill the trenches with liquid optical polymers, which are globally UV-cured. Based on the higher refractive index of the polymer, it enables optical waveguiding in the visible to near-infrared wavelength range. This novel, to the best of our knoowledge, manufacturing method is called LDB (LIDE-doctor-blade); it can be the missing link between long-distance transmissions and on-chip solutions on the packaging level. For validation, optical waveguides are examined regarding their geometrical dimensions, surface roughness, and waveguiding ability, such as intensity distribution and length-dependent attenuation.
Collapse
|
3
|
Zhu Z, Zhou T, Yu Q, Wang X, Xie J, Yan T, Ruan H, Cheung C. Study of Interfacial Adhesion and Re-Ir Alloy Coating in Chalcogenide Glass Molding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37369105 DOI: 10.1021/acs.langmuir.3c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Precision glass molding (PGM) has become an efficacious technique to fabricate high-precision optics. Chalcogenide (ChG) glass is increasingly used in thermal imaging, night vision, etc., because of its excellent infrared optical properties. Nevertheless, glass-mold interfacial adhesion has emerged as a pivotal issue within the PGM process. The interfacial adhesion during PGM has the potential to significantly undermine the performance of molded optics and reduce the longevity of molds. It is important to investigate interfacial adhesion behaviors in the PGM. In this study, the interfacial adhesion mechanism between ChG glass and the nickel-phosphorus (Ni-P) mold is analyzed using the cylindrical compression test. The effect of ChG glass internal stress on physical adhesion is investigated by finite element method (FEM) simulation. The spherical preform is proven to be capable of reducing the stress concentration and preventing physical adhesion. More importantly, a rhenium-iridium (Re-Ir) alloy coating is deposited on the Ni-P mold surface by ion sputtering to prevent atomic diffusion and resolve the problem of chemical adhesion. Finally, ChG glass microstructures with high accuracy are fabricated using the spherical ChG glass preform and the Re-Ir-coated Ni-P mold by PGM.
Collapse
Affiliation(s)
- Zhanchen Zhu
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China
- State Key Laboratory of Ultra-precision Machining Technology, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Tianfeng Zhou
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China
| | - Qian Yu
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China
| | - Xibin Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, P. R. China
| | - Jiaqing Xie
- College of Mechanical and Electronic Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, P. R. China
| | - Tao Yan
- Phenix Optics Co., Ltd., No. 197, W Phenix Road, Shangrao, Jiangxi Province 334000, P. R. China
| | - Haihui Ruan
- State Key Laboratory of Ultra-precision Machining Technology, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Chifai Cheung
- State Key Laboratory of Ultra-precision Machining Technology, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| |
Collapse
|
4
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
5
|
Butkutė A, Jurkšas T, Baravykas T, Leber B, Merkininkaitė G, Žilėnaitė R, Čereška D, Gulla A, Kvietkauskas M, Marcinkevičiūtė K, Schemmer P, Strupas K. Combined Femtosecond Laser Glass Microprocessing for Liver-on-Chip Device Fabrication. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2174. [PMID: 36984055 PMCID: PMC10056550 DOI: 10.3390/ma16062174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, lab-on-chip (LOC) devices are attracting more and more attention since they show vast prospects for various biomedical applications. Usually, an LOC is a small device that serves a single laboratory function. LOCs show massive potential for organ-on-chip (OOC) device manufacturing since they could allow for research on the avoidance of various diseases or the avoidance of drug testing on animals or humans. However, this technology is still under development. The dominant technique for the fabrication of such devices is molding, which is very attractive and efficient for mass production, but has many drawbacks for prototyping. This article suggests a femtosecond laser microprocessing technique for the prototyping of an OOC-type device-a liver-on-chip. We demonstrate the production of liver-on-chip devices out of glass by using femtosecond laser-based selective laser etching (SLE) and laser welding techniques. The fabricated device was tested with HepG2(GS) liver cancer cells. During the test, HepG2(GS) cells proliferated in the chip, thus showing the potential of the suggested technique for further OOC development.
Collapse
Affiliation(s)
- Agnė Butkutė
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Tomas Jurkšas
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
| | | | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, AT-8036 Graz, Austria
| | - Greta Merkininkaitė
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | | | | | - Aiste Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Mindaugas Kvietkauskas
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Kristina Marcinkevičiūtė
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, AT-8036 Graz, Austria
| | - Kęstutis Strupas
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| |
Collapse
|
6
|
Butkutė A, Sirutkaitis R, Gailevičius D, Paipulas D, Sirutkaitis V. Sapphire Selective Laser Etching Dependence on Radiation Wavelength and Etchant. MICROMACHINES 2022; 14:7. [PMID: 36677068 PMCID: PMC9861229 DOI: 10.3390/mi14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Transparent and high-hardness materials have become the object of wide interest due to their optical and mechanical properties; most notably, concerning technical glasses and crystals. A notable example is sapphire-one of the most rigid materials having impressive mechanical stability, high melting point and a wide transparency window reaching into the UV range, together with impressive laser-induced damage thresholds. Nonetheless, using this material for 3D micro-fabrication is not straightforward due to its brittle nature. On the microscale, selective laser etching (SLE) technology is an appropriate approach for such media. Therefore, we present our research on C-cut crystalline sapphire microprocessing by using femtosecond radiation-induced SLE. Here, we demonstrate a comparison between different wavelength radiation (1030 nm, 515 nm, 343 nm) usage for material modification and various etchants (hydrofluoric acid, sodium hydroxide, potassium hydroxide and sulphuric and phosphoric acid mixture) comparison. Due to the inability to etch crystalline sapphire, regular SLE etchants, such as hydrofluoric acid or potassium hydroxide, have limited adoption in sapphire selective laser etching. Meanwhile, a 78% sulphuric and 22% phosphoric acid mixture at 270 °C temperature is a good alternative for this process. We present the changes in the material after the separate processing steps. After comparing different processing protocols, the perspective is demonstrated for sapphire structure formation.
Collapse
Affiliation(s)
- Agnė Butkutė
- Laser Research Center, Vilnius University, Saulėtekio ave. 10, LT-10223 Vilnius, Lithuania
| | - Romualdas Sirutkaitis
- Institute of Biochemistry, Vilnius University, Mokslininkų str. 12, LT-08622 Vilnius, Lithuania
| | - Darius Gailevičius
- Laser Research Center, Vilnius University, Saulėtekio ave. 10, LT-10223 Vilnius, Lithuania
| | - Domas Paipulas
- Laser Research Center, Vilnius University, Saulėtekio ave. 10, LT-10223 Vilnius, Lithuania
| | - Valdas Sirutkaitis
- Laser Research Center, Vilnius University, Saulėtekio ave. 10, LT-10223 Vilnius, Lithuania
| |
Collapse
|
7
|
Allert RD, Bruckmaier F, Neuling NR, Freire-Moschovitis FA, Liu KS, Schrepel C, Schätzle P, Knittel P, Hermans M, Bucher DB. Microfluidic quantum sensing platform for lab-on-a-chip applications. LAB ON A CHIP 2022; 22:4831-4840. [PMID: 36398977 DOI: 10.1039/d2lc00874b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lab-on-a-chip (LOC) applications have emerged as invaluable physical and life sciences tools. The advantages stem from advanced system miniaturization, thus, requiring far less sample volume while allowing for complex functionality, increased reproducibility, and high throughput. However, LOC applications necessitate extensive sensor miniaturization to leverage these inherent advantages fully. Atom-sized quantum sensors are highly promising to bridge this gap and have enabled measurements of temperature, electric and magnetic fields on the nano- to microscale. Nevertheless, the technical complexity of both disciplines has so far impeded an uncompromising combination of LOC systems and quantum sensors. Here, we present a fully integrated microfluidic platform for solid-state spin quantum sensors, like the nitrogen-vacancy (NV) center in diamond. Our platform fulfills all technical requirements, such as fast spin manipulation, enabling full quantum sensing capabilities, biocompatibility, and easy adaptability to arbitrary channel and chip geometries. To illustrate the vast potential of quantum sensors in LOC systems, we demonstrate various NV center-based sensing modalities for chemical analysis in our microfluidic platform, ranging from paramagnetic ion detection to high-resolution microscale NV-NMR. Consequently, our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high-throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
Collapse
Affiliation(s)
- R D Allert
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - F Bruckmaier
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - N R Neuling
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - F A Freire-Moschovitis
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - K S Liu
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
| | - C Schrepel
- LightFab GmbH, Talbotstr. 25, 52068 Aachen, Germany
| | - P Schätzle
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Str. 2, 79110 Freiburg, Germany
| | - P Knittel
- Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg, Germany
| | - M Hermans
- LightFab GmbH, Talbotstr. 25, 52068 Aachen, Germany
| | - D B Bucher
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, 85748 Garching b. München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| |
Collapse
|
8
|
Peculiarities of Integrating Mechanical Valves in Microfluidic Channels Using Direct Laser Writing. Appl Bionics Biomech 2022; 2022:9411024. [PMID: 36245929 PMCID: PMC9568359 DOI: 10.1155/2022/9411024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
Regenerative medicine is a fast expanding scientific topic. One of the main areas of development directions in this field is the usage of additive manufacturing to fabricate functional components that would be later integrated directly into the human body. One such structure could be a microfluidic valve which could replace its biological counterpart in veins as it is worn out over the lifetime of a patient. In this work, we explore the possibility to produce such a structure by using multiphoton polymerization (MPP). This technology allows the creation of 3D structures on a micro- and nanometric scale. In this work, the fabrication of microfluidic systems by direct laser writing was carried out. These devices consist of a 100 μm diameter channel and within it a 200 μm long three-dimensional one-way mechanical valve. The idea of this device is to have a single flow direction for a fluid. For testing purposes, the valve was integrated into a femtosecond laser-made glass microfluidic system. Such a system acts as a platform for testing such small and delicate devices. Measurements of the dimensions of the device within such a testing platform were taken and the repeatability of this process was analyzed. The capability to use it for flow direction control is measured. Possible implications to the field of regenerative medicine are discussed.
Collapse
|
9
|
McArthur SR, Thomson RR, Ross CA. Investigating focus elongation using a spatial light modulator for high-throughput ultrafast-laser-induced selective etching in fused silica. OPTICS EXPRESS 2022; 30:18903-18918. [PMID: 36221681 DOI: 10.1364/oe.454280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Ultrafast-laser-induced selective chemical etching is an enabling microfabrication technology compatible with optical materials such as fused silica. The technique offers unparalleled three-dimensional manufacturing freedom and feature resolution but can be limited by long laser inscription times and widely varying etching selectivity depending on the laser irradiation parameters used. In this paper, we aim to overcome these limitations by employing beam shaping via a spatial light modulator to generate a vortex laser focus with controllable depth-of-focus (DOF), from diffraction limited to several hundreds of microns. We present the results of a thorough parameter-space investigation of laser irradiation parameters, documenting the observed influence on etching selectivity and focus elongation in the polarization-insensitive writing regime, and show that etching selectivity greater than 800 is maintained irrespective of the DOF. To demonstrate high-throughput laser writing with an elongated DOF, geometric shapes are fabricated with a 12-fold reduction in writing time compared to writing with a phase-unmodulated Gaussian focus.
Collapse
|
10
|
Butkutė A, Merkininkaitė G, Jurkšas T, Stančikas J, Baravykas T, Vargalis R, Tičkūnas T, Bachmann J, Šakirzanovas S, Sirutkaitis V, Jonušauskas L. Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant. MATERIALS 2022; 15:ma15082817. [PMID: 35454510 PMCID: PMC9030282 DOI: 10.3390/ma15082817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/20/2023]
Abstract
Selective laser etching (SLE) is a technique that allows the fabrication of arbitrarily shaped glass micro-objects. In this work, we show how the capabilities of this technology can be improved in terms of selectivity and etch rate by applying an etchant solution based on a Potassium Hydroxide, water, and isopropanol mixture. By varying the concentrations of these constituents, the wetting properties, as well as the chemical reaction of fused silica etching, can be changed, allowing us to achieve etching rates in modified fused silica up to 820 μm/h and selectivity up to ∼3000. This is used to produce a high aspect ratio (up to 1:1000), straight and spiral microfluidic channels which are embedded inside a volume of glass. Complex 3D glass micro-structures are also demonstrated.
Collapse
Affiliation(s)
- Agnė Butkutė
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
- Correspondence:
| | - Greta Merkininkaitė
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
- Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Tomas Jurkšas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Jokūbas Stančikas
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
| | - Tomas Baravykas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Rokas Vargalis
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Titas Tičkūnas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Julien Bachmann
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany;
| | - Simas Šakirzanovas
- Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Valdas Sirutkaitis
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
| | - Linas Jonušauskas
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
| |
Collapse
|
11
|
Multielectrode biosensor chip for spatial resolution screening of 3D cell models based on microcavity arrays. Biosens Bioelectron 2022; 202:114010. [DOI: 10.1016/j.bios.2022.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
12
|
Skora JL, Gaiffe O, Bargiel S, Cote JM, Tavernier L, de Labachelerie M, Passilly N. High-fidelity glass micro-axicons fabricated by laser-assisted wet etching. OPTICS EXPRESS 2022; 30:3749-3759. [PMID: 35209627 DOI: 10.1364/oe.446740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We report on the fabrication of micro-axicons made of glass by laser-assisted wet etching (LAE) and laser polishing. The employed technique, relying on a direct-writing process using a femtosecond laser, allows revealing high fidelity profiles when the exposed glass samples are etched in a heated potassium hydroxide (KOH) solution. The remaining surface roughness is then decreased by carbon dioxide (CO2) laser polishing. Such polishing is limited to the superficial layer of the component so that the tip is only slightly rounded, with a radius of curvature of nearly 200 µm. It is then shown with 500 µm-diameter axicons that a quasi-Bessel beam is generated closely after the tip and features a 5.3 µm diameter maintained over a propagation distance of almost 3.5 mm.
Collapse
|
13
|
Kim J, Kim SI, Joung YH, Choi J, Koo C. Two-step hybrid process of movable part inside glass substrate using ultrafast laser. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00142-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractWe demonstrate a two-step hybrid process for fabricating movable parts inside glass substrate using the selective laser-induced etching (SLE) process that is consisted of laser-direct writing and wet chemical etching. To obtain an influence by the optical characteristics of a glass substrate when fabricating a 3D microstructure using the SLE, we analyzed the relationship of their dimensions between the designed and the fabricated devices. Two 3D microfluidic devices are designed and fabricated on glass substrates as the demonstrations of the hybrid process: a 3D microfluidic valve device with a movable plug and a 3D microfluidic mixer with a rotatable impeller and multilayer microchannels. The valving plug and the impeller of each device are successfully moved and rotated. The smallest structure is a pillar of the impeller device, and its size is 29 μm (diameter) × 277 μm (height). We expect this study to be extended to potential applications in 3D glass microfabrication and microfluidic systems.
Collapse
|
14
|
Stankevič V, Račiukaitis G, Gečys P. Chemical etching of fused silica after modification with two-pulse bursts of femtosecond laser. OPTICS EXPRESS 2021; 29:31393-31407. [PMID: 34615232 DOI: 10.1364/oe.431306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Bursts of femtosecond laser pulses were used to record internal modifications inside fused silica for selective chemical etching. Two-pulse bursts with a variable energy ratio between those pulses at a fixed inter-pulse duration of 14.5 ns were applied for the first time. The selective chemical etching rate of the laser-modified material with the burst of two pulses was compared to the single-pulse regime when etching in HF and KOH etchants. The advantage of the burst-mode processing was demonstrated when etching was performed in the KOH solution. More regular nanogratings were formed, and the etching initiation was more stable when burst pulses were applied for fused silica modification. The vertical planar structures were obtained using the two-pulse bursts with an energy ratio of 1:2, increasing the etching rate by more than 35% compared to the single-pulse processing. The highest ever reported selectivity of 1:2000 was demonstrated by introducing the two-pulse burst mode.
Collapse
|