1
|
Wu R, Ni W, Yang C, He B, Lu P, Ran S, Zhao Z, Shum PP. Multiple optical path length reflections enhancement based on balloon-type photoacoustic cell for trace gas sensing. PHOTOACOUSTICS 2025; 41:100681. [PMID: 39811064 PMCID: PMC11731772 DOI: 10.1016/j.pacs.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
A novel balloon-type photoacoustic cell (BTPAC) is proposed to facilitate the detection limitations of acetylene (C2H2) gas achieving ppb level. Here, an ellipsoidal photoacoustic cavity is employed as the platform for gas-light interaction. By strategically directing the excitation source towards the focal point of the ellipsoidal cavity, ensuring its trajectory traverses the focal point upon each reflection from the interior walls. This path increases the gas absorption path length and improves the efficiency of the laser-gas interaction process. Experimental results show that the quality factor of the BTPAC is 224.24 under normal temperature and pressure conditions. Notably, the system maintains a high signal-to-noise ratio even at a C2H2 concentration of 0.1 ppm. Moreover, the minimum detection limit (MDL) and normalized noise equivalent absorption can be calculated to be 3.86 ppb, 6.94·10-10 cm-1·W·Hz-1/2, respectively. Finally, the MDL of the sensor reaches to 0.71 ppb when the integration time reaches 100 s.
Collapse
Affiliation(s)
- Ruiming Wu
- Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, 430074, China
| | - Wenjun Ni
- Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, 430074, China
| | - Chunyong Yang
- Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, 430074, China
| | - Bingze He
- Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, 430074, China
| | - Ping Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sixiang Ran
- College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongke Zhao
- College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Gao Z, Li L, Liu M, Tian S, Feng M, Qiao Y, Shan C. Photoacoustic trace gas detection of OCS using a 2.45 mL Helmholtz resonator and a 4823.3 nm ICL light source. PHOTOACOUSTICS 2024; 38:100612. [PMID: 38711869 PMCID: PMC11070921 DOI: 10.1016/j.pacs.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
A miniaturized photoacoustic spectroscopy-based gas sensor is proposed for the purpose of detecting sub-ppm-level carbonyl sulfide (OCS) using a tunable mid-infrared interband cascade laser (ICL) and a Helmholtz photoacoustic cell. The tuning characteristics of the tunable ICL with a center wavelength of 4823.3 nm were investigated to achieve the optimal driving parameters. A Helmholtz photoacoustic cell with a volume of ∼2.45 mL was designed and optimized to miniaturize the measurement system. By optimizing the modulation parameters and signal processing, the system was verified to have a good linear response to OCS concentration. With a lock-in amplifier integration time of 10 s, the 1σ noise standard deviation in differential mode was 0.84 mV and a minimum detection limit (MDL) of 409.2 ppbV was achieved at atmospheric pressure and room temperature.
Collapse
Affiliation(s)
| | | | - Minghui Liu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Tian
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyang Feng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Qiao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chongxin Shan
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhang C, He Y, Qiao S, Liu Y, Ma Y. High-sensitivity trace gas detection based on differential Helmholtz photoacoustic cell with dense spot pattern. PHOTOACOUSTICS 2024; 38:100634. [PMID: 39100198 PMCID: PMC11296056 DOI: 10.1016/j.pacs.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024]
Abstract
A high-sensitivity photoacoustic spectroscopy (PAS) sensor based on differential Helmholtz photoacoustic cell (DHPAC) with dense spot pattern is reported in this paper for the first time. A multi-pass cell based on two concave mirrors was designed to achieve a dense spot pattern, which realized 212 times excitation of incident laser. A finite element analysis was utilized to simulate the sound field distribution and frequency response of the designed DHPAC. An erbium-doped fiber amplifier (EDFA) was employed to amplify the output optical power of the laser to achieve strong excitation. In order to assess the designed sensor's performance, an acetylene (C2H2) detection system was established using a near infrared diode laser with a central wavelength 1530.3 nm. According to experimental results, the differential characteristics of DHPAC was verified. Compared to the sensor without dense spot pattern, the photoacoustic signal with dense spot pattern had a 44.73 times improvement. The minimum detection limit (MDL) of the designed C2H2-PAS sensor can be improved to 5 ppb when the average time of the sensor system is 200 s.
Collapse
Affiliation(s)
- Chu Zhang
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Ying He
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Shunda Qiao
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Yahui Liu
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| | - Yufei Ma
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Si G, Wang Y, Liu X, Sun C, Xu H, Li Z. Highly sensitive photoacoustic gas sensor based on near-concentric cavity. OPTICS EXPRESS 2024; 32:22759-22770. [PMID: 39538755 DOI: 10.1364/oe.525307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024]
Abstract
The precise detection of trace gases in the atmosphere is vital for both environmental preservation and human health. Addressing the inherent challenges in enhancing the sensitivity of photoacoustic spectroscopy, a highly sensitive photoacoustic gas detection method utilizing a near-concentric cavity was proposed. By constructing a near-concentric optical cavity, laser reflections within the photoacoustic cell were substantially amplified, resulting in enhanced sensitivity of photoacoustic signal detection. Additionally, to align with the optical path characteristics of the near-concentric cavity, a miniaturized dumbbell-like photoacoustic cell was designed. Characterized by its high-frequency resonance, this design effectively mitigated background noise while maintaining a high sound pressure level. Experimental results demonstrated a remarkable enhancement in both signal intensity and signal-to-noise ratio by factors of 22.06 and 21.26, respectively, compared to traditional excitation methods. According to the 1σ standard, with a laser power of 21 mW, the setup achieved a detection limit of 10.15 ppb for NO2. The corresponding normalized noise equivalent absorption was calculated to be 2.84 × 10-9 cm-1WHz-1/2, with a gas consumption rate of merely 15.19 mL.
Collapse
|
5
|
Guo G, Li L, Zhou Y, Gong T, Tian Y, Sun X, Cui J, Shi S, Guo Z, He X, Qiu X, Sun J, Jiang C, Fittschen C, Li C. High-Sensitivity Differential Helmholtz Photoacoustic System Combined with the Herriott Multipass Cell and Its Application in Seed Respiration. Anal Chem 2024; 96:7730-7737. [PMID: 38703107 DOI: 10.1021/acs.analchem.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
A highly sensitive photoacoustic detection system using a differential Helmholtz resonator (DHR) combined with a Herriott multipass cell is presented, and its implementation to sub-ppm level carbon dioxide (CO2) detection is demonstrated. Through the utilization of erbium-doped optical fiber amplifier (EDFA), the laser power was amplified to 150 mW. Within the multipass cell, a total of 22 reflections occurred, contributing to an impressive 33.6 times improvement in the system sensitivity. The normalized noise equivalent absorption coefficient (NNEA) was 8.64 × 10-11 cm-1·W·Hz-1/2 [signal-to-noise ratio, (SNR) = 1] and according to the Allan variance analysis, a minimum detection limit of 500 ppb could be achieved for CO2 at 1204 s, which demonstrates the long-term stability of the system. The system was applied to detect the respiration of rice and upland rice seeds. It is demonstrated that the system can monitor and distinguish the respiration intensity and respiration rate of different seeds in real time.
Collapse
Affiliation(s)
- Guqing Guo
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Lin Li
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yueting Zhou
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Ting Gong
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yali Tian
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaocong Sun
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jiahua Cui
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Shuai Shi
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhenyu Guo
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaohu He
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xuanbing Qiu
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jing Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Christa Fittschen
- CNRS, UMR 8522-PC2A─Physicochimie des Processus de Combustion et de l'Atmosphère, Université Lille, Lille F-59000, France
| | - Chuanliang Li
- Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
6
|
Li Z, Liu J, Ning Z, Xu H, Miao J, Pan Y, Yang C, Fang Y. Compact gas cell for simultaneous detection of atmospheric aerosol optical properties based on photoacoustic spectroscopy and integrating sphere scattering enhancement. PHOTOACOUSTICS 2024; 36:100591. [PMID: 38322617 PMCID: PMC10844632 DOI: 10.1016/j.pacs.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Atmospheric aerosols play a pivotal role in the earth-atmospheric system. Analyzing their optical properties, specifically absorption and scattering coefficients, is essential for comprehending the impact of aerosols on climate. When different optical properties of aerosols are individually measured using multiple devices, cumulative errors in the detection results inevitably occur. To address this challenge, based on photoacoustic spectroscopy (PAS) and integrating sphere (IS) scattering enhancement, a compact gas cell (PASIS-Cell) was developed. The PASIS-Cell comprises a dual-T-type photoacoustic cell (DTPAC) and an IS. IS is coupled with DTPAC through a transparent quartz tube, thereby enhancing the scattering signal without compromising the acoustic characteristics of DTPAC. Concurrently, DTPAC can realize high-performance photoacoustic detection of absorption signal. Experimental results demonstrate that PASIS-Cell can simultaneously invert atmospheric aerosol absorption and scattering coefficients, with a minimum detection limit of less than 1 Mm-1, showcasing its potential in the analysis of aerosol optical properties.
Collapse
Affiliation(s)
- Zhengang Li
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jiaxiang Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhiqiang Ning
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haichun Xu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Junfang Miao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ying Pan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changping Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yonghua Fang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Zhang C, Qiao S, He Y, Ma Y. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. OPTICS EXPRESS 2024; 32:848-856. [PMID: 38175104 DOI: 10.1364/oe.512104] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
A high-sensitive photoacoustic spectroscopy (PAS) sensor, which is based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell (DHPAC) and a high power diode laser amplified by erbium-doped fiber amplifier (EDFA), is presented in this work for the first time. In order to improve the interaction length between the light and target gas, the incident light was reflected four times through a multi-pass-retro-reflection-cell constructed by two right-angle prisms. A 1.53 µm distributed feedback (DFB) diode laser was selected to excite photoacoustic signal. Moreover, its power was amplified by an EDFA to 1000 mW to improve the amplitude of photoacoustic signal. Acetylene (C2H2) was chosen as the target analysis to verify the reported sensor performance. Compared to double channel without multiple reflections, the 2f signal of double channel with four reflections was improved by 3.71 times. In addition, when the output optical power of EDFA was 1000 mW, the 2f signal has a 70.57-fold improvement compared with the multi-pass-retro-reflection-cell without EDFA. An Allan deviation analysis was carried out to evaluate the long-term stability of such PAS sensor. When the averaging time was 400 s, the minimum detection limit (MDL) of such PAS sensor was 14 ppb.
Collapse
|
8
|
Wang F, Wu J, Cheng Y, Fu L, Zhang J, Wang Q. Simultaneous detection of greenhouse gases CH 4 and CO 2 based on a dual differential photoacoustic spectroscopy system. OPTICS EXPRESS 2023; 31:33898-33913. [PMID: 37859159 DOI: 10.1364/oe.503454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
In addition to the atmospheric measurement, detection of dissolved carbon oxides and hydrocarbons in a water region is also an important aspect of greenhouse gas monitoring, such as CH4 and CO2. The first step of measuring dissolved gases is the separation process of water and gases. However, slow degassing efficiency is a big challenge which requires the gas detection technology itself with low gas consumption. Photoacoustic spectroscopy (PAS) is a good choice with advantages of high sensitivity, low gas consumption, and zero background, which has been rapidly developed in recent years and is expected to be applied in the field of dissolved gas detection. In this study, a miniaturized differential photoacoustic cell with a volume of 7.9 mL is designed for CH4 and CO2 detection, and a dual differential method with four microphones is proposed to enhance the photoacoustic signal. What we believe to be a new method increases photoacoustic signal by 4 times and improves the signal to noise ratio (SNR) over 10 times compared with the conventional single-microphone mode. Two distributed feedback (DFB) lasers at 1651 nm and 2004nm are employed to construct the PAS system for CH4 and CO2 detection respectively. Wavelength modulation spectroscopy (WMS) and 2nd harmonic demodulation techniques are applied to further improve the SNR. As a result, sensitivity of 0.44 ppm and 7.39 ppm for CH4 and CO2 are achieved respectively with an integration time of 10 s. Allan deviation analysis indicates that the sensitivity can be further improved to 42 ppb (NNEA=4.7×10-10cm-1WHz-1/2) for CH4 and 0.86 ppm (NNEA=5.3×10-10cm-1WHz-1/2) for CO2 when the integration time is extended to 1000 s.
Collapse
|
9
|
Zhang C, He Y, Qiao S, Ma Y. Differential integrating sphere-based photoacoustic spectroscopy gas sensing. OPTICS LETTERS 2023; 48:5089-5092. [PMID: 37773392 DOI: 10.1364/ol.500214] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
In this Letter, a differential integrating sphere-based photoacoustic spectroscopy (PAS) gas sensor is proposed for the first time to our knowledge. The differential integrating sphere system consists of two integrating spheres and a tube. Based on differential characteristics, the photoacoustic signal of the designed differential integrating sphere was doubly enhanced and the noise was suppressed. Compared with a single channel integrating sphere, the differential integrating sphere sensing system had a 1.86 times improvement in signal level. An erbium-doped fiber amplifier (EDFA) was adopted to amplify the output of diode laser to enhance the optical excitation. The second harmonic (2f) signal of differential integrating sphere-based acetylene (C2H2) PAS sensor with an amplified 1000 mW optical output power was 104.67 mV, which was 22.80 times improved compared to the sensing system without EDFA. When the integration time was 100 s, the minimum detection limit (MDL) of the differential integrating sphere-based C2H2 PAS sensor was 416.7 ppb. The differential integrating sphere provides a new method, to the best of our knowledge, for the development of PAS sensor, which has the advantages of photoacoustic signal enhancement, strong noise immunity, and no need for optical adjustment.
Collapse
|
10
|
Zhang Z, Fan X, Xu Y, Wang Y, Tang Y, Zhao R, Li C, Wang H, Chen K. Silicon-Cantilever-Enhanced Single-Fiber Photoacoustic Acetylene Gas Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7644. [PMID: 37688100 PMCID: PMC10490797 DOI: 10.3390/s23177644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
A single-fiber photoacoustic (PA) sensor with a silicon cantilever beam for trace acetylene (C2H2) gas analysis was proposed. The miniature gas sensor mainly consisted of a microcantilever and a non-resonant PA cell for the real-time detection of acetylene gas. The gas diffused into the photoacoustic cell through the silicon cantilever beam gap. The volume of the PA cell in the sensor was about 14 μL. By using a 1 × 2 fiber optical coupler, a 1532.8 nm distributed feedback (DFB) laser and a white light interference demodulation module were connected to the single-fiber photoacoustic sensor. A silicon cantilever was utilized to improve the performance when detecting the PA signal. To eliminate the interference of the laser-reflected light, a part of the Fabry-Perot (F-P) interference spectrum was used for phase demodulation to achieve the highly sensitive detection of acetylene gas. The minimum detection limit (MDL) achieved was 0.2 ppm with 100 s averaging time. In addition, the calculated normalized noise equivalent absorption (NNEA) coefficient was 4.4 × 10-9 W·cm-1·Hz-1/2. The single-fiber photoacoustic sensor designed has great application prospects in the early warning of transformer faults.
Collapse
Affiliation(s)
- Zhengyuan Zhang
- State Grid Gansu Electric Power Research Institute, Lanzhou 730030, China; (Z.Z.); (X.F.); (Y.W.); (Y.T.); (R.Z.)
| | - Xinhong Fan
- State Grid Gansu Electric Power Research Institute, Lanzhou 730030, China; (Z.Z.); (X.F.); (Y.W.); (Y.T.); (R.Z.)
| | - Yufu Xu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (C.L.); (H.W.)
| | - Yongqi Wang
- State Grid Gansu Electric Power Research Institute, Lanzhou 730030, China; (Z.Z.); (X.F.); (Y.W.); (Y.T.); (R.Z.)
| | - Yiyao Tang
- State Grid Gansu Electric Power Research Institute, Lanzhou 730030, China; (Z.Z.); (X.F.); (Y.W.); (Y.T.); (R.Z.)
| | - Rui Zhao
- State Grid Gansu Electric Power Research Institute, Lanzhou 730030, China; (Z.Z.); (X.F.); (Y.W.); (Y.T.); (R.Z.)
| | - Chenxi Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (C.L.); (H.W.)
| | - Heng Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (C.L.); (H.W.)
| | - Ke Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China; (C.L.); (H.W.)
| |
Collapse
|
11
|
Starecki T, Pietrzak MH, Ścisłowski MK. Properties of a Symmetrical Photoacoustic Helmholtz Cell Operating with Imbalanced Counterphase Light Stimulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:7150. [PMID: 37631687 PMCID: PMC10457826 DOI: 10.3390/s23167150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The output signal from a photoacoustic cell based on a symmetrical Helmholtz resonator structure can be substantially increased if a counterphase light stimulation is applied to the cell cavities. However even slight differences in the intensity of the light beams irradiating the cavities may affect the frequency response of the cell and the output signal level. This paper shows the influence of the imbalanced light irradiation on the properties of such a cell. It was found that even at relatively high irradiation mismatch, and even with the photoacoustic signal detection implemented with a single microphone, the influence of the irradiation imbalance on the frequency response of the cell around the resonance frequency is not critical. In the case of differential detection of the photoacoustic signal, the imbalance of the light irradiation does not affect the frequency response of the cell, but only the output signal level.
Collapse
Affiliation(s)
- Tomasz Starecki
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Michał Henryk Pietrzak
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
- XIV LO im. Stanisława Staszica, Nowowiejska 37A, 02-010 Warsaw, Poland
| | - Marcin Kamil Ścisłowski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- XLVIII LO im. Edwarda Dembowskiego, Barska 32, 02-315 Warsaw, Poland
| |
Collapse
|
12
|
Fan E, Liu H, Wang C, Ma J, Guan BO. Compact optical fiber photoacoustic gas sensor with integrated multi-pass cell. PHOTOACOUSTICS 2023; 32:100524. [PMID: 37448558 PMCID: PMC10336158 DOI: 10.1016/j.pacs.2023.100524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Optical fiber acoustic sensors with miniature size and high sensitivity are attractive to develop compact photoacoustic spectroscopy. Here, a compact photoacoustic gas sensor was demonstrated by utilizing a diaphragm-based fiber-optic Fabry-Perot cavity as both the acoustic sensor and the multipass cell. A nanoscale graphite film was used as the flexible diaphragm to increase the acoustic sensitivity of the Fabry-Perot cavity and the cavity inner surface was coated with highly-reflective Au film to form a multipass cell for amplification of the photoacoustic signal. With a laser power of 20 mW at 1532.8 nm, the sensor demonstrated a low detection limit of ∼ 50 ppb for C2H2 gas with an integration time of ∼ 100 s. The optical fiber photoacoustic gas sensor with a millimeter-scale diameter and ppb-level detection limit is promising for trace gas sensing in various areas including industrial process and environmental monitoring.
Collapse
Affiliation(s)
- Enbo Fan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Haojie Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Chao Wang
- The Center for Smart Sensing System, Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| |
Collapse
|
13
|
Ma Q, Li L, Gao Z, Tian S, Yu J, Du X, Qiao Y, Shan C. Near-infrared sensitive differential Helmholtz-based hydrogen sulfide photoacoustic sensors. OPTICS EXPRESS 2023; 31:14851-14861. [PMID: 37157340 DOI: 10.1364/oe.488835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A near-infrared (NIR) sub-ppm level photoacoustic sensor for hydrogen sulfide (H2S) using a differential Helmholtz resonator (DHR) as the photoacoustic cell (PAC) was presented. The core detection system was composed of a NIR diode laser with a center wavelength of 1578.13 nm, an Erbium-doped optical fiber amplifier (EDFA) with an output power of ∼120 mW, and a DHR. Finite element simulation software was used to analyze the influence of the DHR parameters on the resonant frequency and acoustic pressure distribution of the system. Through simulation and comparison, the volume of the DHR was 1/16 that of the conventional H-type PAC for a similar resonant frequency. The performance of the photoacoustic sensor was evaluated after optimizing the DHR structure and modulation frequency. The experimental results showed that the sensor had an excellent linear response to the gas concentration and the minimum detection limit (MDL) for H2S detection in differential mode can reach 460.8 ppb.
Collapse
|
14
|
Luo H, Wang C, Lin H, Wu Q, Yang Z, Zhu W, Zhong Y, Kan R, Yu J, Zheng H. Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy. OPTICS LETTERS 2023; 48:1678-1681. [PMID: 37221739 DOI: 10.1364/ol.481457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/11/2023] [Indexed: 05/25/2023]
Abstract
In this work, Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy (HR-QEPAS) was developed for trace gas sensing. A pair of Helmholtz resonators with high-order resonance frequency was designed and coupled with a quartz tuning fork (QTF). Detailed theoretical analysis and experimental research were carried out to optimize the HR-QEPAS performance. As a proof-of-concept experiment, the water vapor in the ambient air was detected using a 1.39 µm near-infrared laser diode. Benefiting from the acoustic filtering of the Helmholtz resonance, the noise level of QEPAS was reduced by >30%, making the QEPAS sensor immune to environmental noise. In addition, the photoacoustic signal amplitude was improved significantly by >1 order of magnitude. As a result, the detection signal-to-noise ratio was enhanced by >20 times, compared with a bare QTF.
Collapse
|
15
|
Zhang C, Qiao S, Ma Y. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. PHOTOACOUSTICS 2023; 30:100467. [PMID: 36874591 PMCID: PMC9982609 DOI: 10.1016/j.pacs.2023.100467] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 05/25/2023]
Abstract
In this paper, a highly sensitive photoacoustic spectroscopy (PAS) sensor based on retro-reflection-cavity-enhanced differential photoacoustic cell (DPAC) is demonstrated for the first time. Acetylene (C2H2) was selected as the analyte. The DPAC was designed to effectively suppress noise and increase signal level. The retro-reflection-cavity consisted of two right-angle prisms was designed to reflect the incident light to realize four passes. The photoacoustic response of the DPAC was simulated and investigated based on the finite element method. Wavelength modulation and second harmonic demodulation technologies were applied for sensitive trace gas detection. The first-order resonant frequency of the DPAC was found to be 1310 Hz. The differential characteristics were investigated and the 2f signal amplitude for this C2H2-PAS sensor based on retro-reflection-cavity-enhanced DPAC had a 3.55 times improvement compared to the system without the retro-reflection-cavity. An Allan deviation analysis was performed to investigate the long-term stability of the system. The minimum detection limit (MDL) was measured to be 15.81 ppb with an integration time of 100 s.
Collapse
Affiliation(s)
- Chu Zhang
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| | - Shunda Qiao
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| | - Yufei Ma
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
16
|
Li Z, Liu J, Si G, Ning Z, Fang Y. Active noise reduction for a differential Helmholtz photoacoustic sensor excited by an intensity-modulated light source. OPTICS EXPRESS 2023; 31:1154-1166. [PMID: 36785156 DOI: 10.1364/oe.478966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
A highly sensitive differential Helmholtz photoacoustic sensor with active noise reduction was reported. Coupled to one cavity of the photoacoustic cell, an intensity-modulated excitation light would reflect multiple times to produce photoacoustic signal, and meanwhile cause the solid-state photoacoustic effect forming differential mode noise with the frequency same as the photoacoustic signal, which could not be suppressed by conventional differential technology. Wavelength modulation technology is a splendid method to restrain this effect, which is not suitable for light sources with not adjustable wavelength. To suppress this kind of noise, an intensity-modulated compensation light was coupled to another cavity, whose central wavelength was at the non-absorption line of the measured gas. The compensation light was of the same frequency, phase, and power as the excitation light, by which the solid-state photoacoustic effects were produced to form destructive interference called active noise reduction. The experiment results showed that the active noise reduction significantly improved the signal-to-noise ratio and signal-to-background ratio. Compared with the differential, the differential with active noise reduction improved signal-to- noise ratio by about 1.2 times and signal-to-background ratio by about 9.4 times. When low-power near-infrared lasers were employed as the two light sources, the minimum detection limits for acetylene and methane reached 21 and 200 ppb, respectively.
Collapse
|