1
|
Zhang T, Liao J, Zhang Y, Huang Z, Li C. Robust Ultrafast Projection Pipeline for Structural and Angiography Imaging of Fourier-Domain Optical Coherence Tomography. Diagnostics (Basel) 2024; 14:1509. [PMID: 39061645 PMCID: PMC11275292 DOI: 10.3390/diagnostics14141509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The current methods to generate projections for structural and angiography imaging of Fourier-Domain optical coherence tomography (FD-OCT) are significantly slow for prediagnosis improvement, prognosis, real-time surgery guidance, treatments, and lesion boundary definition. This study introduced a robust ultrafast projection pipeline (RUPP) and aimed to develop and evaluate the efficacy of RUPP. RUPP processes raw interference signals to generate structural projections without the need for Fourier Transform. Various angiography reconstruction algorithms were utilized for efficient projections. Traditional methods were compared to RUPP using PSNR, SSIM, and processing time as evaluation metrics. The study used 22 datasets (hand skin: 9; labial mucosa: 13) from 8 volunteers, acquired with a swept-source optical coherence tomography system. RUPP significantly outperformed traditional methods in processing time, requiring only 0.040 s for structural projections, which is 27 times faster than traditional summation projections. For angiography projections, the best RUPP variation took 0.15 s, making it 7518 times faster than the windowed eigen decomposition method. However, PSNR decreased by 41-45% and SSIM saw reductions of 25-74%. RUPP demonstrated remarkable speed improvements over traditional methods, indicating its potential for real-time structural and angiography projections in FD-OCT, thereby enhancing clinical prediagnosis, prognosis, surgery guidance, and treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Chunhui Li
- Centre for Medical Engineering and Technology (CMET), School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK; (T.Z.); (J.L.); (Y.Z.); (Z.H.)
| |
Collapse
|
2
|
Nguyen VP, Zhe J, Hu J, Ahmed U, Paulus YM. Molecular and cellular imaging of the eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:360-386. [PMID: 38223186 PMCID: PMC10783915 DOI: 10.1364/boe.502350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
The application of molecular and cellular imaging in ophthalmology has numerous benefits. It can enable the early detection and diagnosis of ocular diseases, facilitating timely intervention and improved patient outcomes. Molecular imaging techniques can help identify disease biomarkers, monitor disease progression, and evaluate treatment responses. Furthermore, these techniques allow researchers to gain insights into the pathogenesis of ocular diseases and develop novel therapeutic strategies. Molecular and cellular imaging can also allow basic research to elucidate the normal physiological processes occurring within the eye, such as cell signaling, tissue remodeling, and immune responses. By providing detailed visualization at the molecular and cellular level, these imaging techniques contribute to a comprehensive understanding of ocular biology. Current clinically available imaging often relies on confocal microscopy, multi-photon microscopy, PET (positron emission tomography) or SPECT (single-photon emission computed tomography) techniques, optical coherence tomography (OCT), and fluorescence imaging. Preclinical research focuses on the identification of novel molecular targets for various diseases. The aim is to discover specific biomarkers or molecular pathways associated with diseases, allowing for targeted imaging and precise disease characterization. In parallel, efforts are being made to develop sophisticated and multifunctional contrast agents that can selectively bind to these identified molecular targets. These contrast agents can enhance the imaging signal and improve the sensitivity and specificity of molecular imaging by carrying various imaging labels, including radionuclides for PET or SPECT, fluorescent dyes for optical imaging, or nanoparticles for multimodal imaging. Furthermore, advancements in technology and instrumentation are being pursued to enable multimodality molecular imaging. Integrating different imaging modalities, such as PET/MRI (magnetic resonance imaging) or PET/CT (computed tomography), allows for the complementary strengths of each modality to be combined, providing comprehensive molecular and anatomical information in a single examination. Recently, photoacoustic microscopy (PAM) has been explored as a novel imaging technology for visualization of different retinal diseases. PAM is a non-invasive, non-ionizing radiation, and hybrid imaging modality that combines the optical excitation of contrast agents with ultrasound detection. It offers a unique approach to imaging by providing both anatomical and functional information. Its ability to utilize molecularly targeted contrast agents holds great promise for molecular imaging applications in ophthalmology. In this review, we will summarize the application of multimodality molecular imaging for tracking chorioretinal angiogenesis along with the migration of stem cells after subretinal transplantation in vivo.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Umayr Ahmed
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Kim H, Kang D, Seong D, Saleah SA, Luna JA, Kim Y, Kim H, Han S, Jeon M, Kim J. Skin pore imaging using spectral-domain optical coherence tomography: a case report. Biomed Eng Lett 2023; 13:729-737. [PMID: 37872989 PMCID: PMC10590360 DOI: 10.1007/s13534-023-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 10/25/2023] Open
Abstract
Sebum is an important component of the skin that has attracted attention in many fields, including dermatology and cosmetics. Pore expansion due to sebum on the skin can lead to various problems. Therefore, it is necessary to analyze the morphological characteristics of sebum. In this study, we used optical coherence tomography (OCT) to evaluate facial sebum areas. We obtained the OCT maximum amplitude projection (MAP) image and a cross-sectional image of skin pores in the facial area. Subsequently, we detected the sebum in skin pores using the detection algorithm of the ImageJ software to quantitatively determine the size of randomly selected pores in the proposed MAP images. Additionally, the pore size was analyzed by acquiring images before and after facial sebum extraction. According to our research, facial sebum can be morphologically described using the OCT system. Since OCT imaging enables specific analysis of skin parameters, including pores and sebum, skin analysis employing OCT could be an effective method for further research.
Collapse
Affiliation(s)
- Hyunmo Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Dongwan Kang
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sm Abu Saleah
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jannat Amrin Luna
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Yoonseok Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hayoung Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
- School of Medicine, Institute of Biomedical Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
4
|
Ma F, Wang S, Dai C, Qi F, Meng J. A new retinal OCT-angiography diabetic retinopathy dataset for segmentation and DR grading. JOURNAL OF BIOPHOTONICS 2023; 16:e202300052. [PMID: 37421596 DOI: 10.1002/jbio.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE Diabetic retinopathy (DR) is one of the most common diseases caused by diabetes and can lead to vision loss or even blindness. The wide-field optical coherence tomography (OCT) angiography is non-invasive imaging technology and convenient to diagnose DR. METHODS A newly constructed Retinal OCT-Angiography Diabetic retinopathy (ROAD) dataset is utilized for segmentation and grading tasks. It contains 1200 normal images, 1440 DR images, and 1440 ground truths for DR image segmentation. To handle the problem of grading DR, we propose a novel and effective framework, named projective map attention-based convolutional neural network (PACNet). RESULTS The experimental results demonstrate the effectiveness of our PACNet. The accuracy of the proposed framework for grading DR is 87.5% on the ROAD dataset. CONCLUSIONS The information on ROAD can be viewed at URL https://mip2019.github.io/ROAD. The ROAD dataset will be helpful for the development of the early detection of DR field and future research. TRANSLATIONAL RELEVANCE The novel framework for grading DR is a valuable research and clinical diagnosis method.
Collapse
Affiliation(s)
- Fei Ma
- Qufu Normal University, Rizhao, Shandong, China
| | | | - Cuixia Dai
- College Science, Shanghai Institute of Technology, Shanghai, China
| | - Fumin Qi
- National Supercomputing Center in Shenzhen, Shenzhen, Guangdong, China
| | - Jing Meng
- Qufu Normal University, Rizhao, Shandong, China
| |
Collapse
|
5
|
Zhang Y, Yu S, Pu S, Wang Y, Wang K, Sun H, Wang H. 3D CNN-based fingerprint anti-spoofing through optical coherence tomography. Heliyon 2023; 9:e20052. [PMID: 37809748 PMCID: PMC10559826 DOI: 10.1016/j.heliyon.2023.e20052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
Optical coherence tomography (OCT) is a noninvasive high-resolution imaging technology that can accurately acquire the internal characteristics of tissues within a few millimeters. Using OCT technology, the internal fingerprint structure, which is consistent with external fingerprints and sweat glands, can be collected, leading to high anti-spoofing capabilities. In this paper, an OCT fingerprint anti-spoofing method based on a 3D convolutional neural network (CNN) is proposed, considering the spatial continuity of 3D biometrics in fingertips. Experiments were conducted on self-built and public datasets to test the feasibility of the proposed anti-spoofing method. The anti-spoofing strategy using a 3D CNN achieved the best results compared with classic networks.
Collapse
Affiliation(s)
- Yilong Zhang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Shichang Yu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Shiliang Pu
- Hikvision Research Institute, Hangzhou, 310023, China
| | - Yingyu Wang
- Hikvision Research Institute, Hangzhou, 310023, China
| | - Kanlei Wang
- Hikvision Research Institute, Hangzhou, 310023, China
| | - Haohao Sun
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Haixia Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
6
|
Muñoz-Ortiz T, Alayeto I, Lifante J, Ortgies DH, Marin R, Martín Rodríguez E, Iglesias de la Cruz MDC, Lifante-Pedrola G, Rubio-Retama J, Jaque D. 3D Optical Coherence Thermometry Using Polymeric Nanogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301819. [PMID: 37352307 DOI: 10.1002/adma.202301819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Indexed: 06/25/2023]
Abstract
In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice.
Collapse
Affiliation(s)
- Tamara Muñoz-Ortiz
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Idoia Alayeto
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José Lifante
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid, 28029, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Dirk H Ortgies
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Riccardo Marin
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Emma Martín Rodríguez
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - María Del Carmen Iglesias de la Cruz
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid, 28029, Spain
| | - Ginés Lifante-Pedrola
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Daniel Jaque
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
7
|
Suzuki T, Kaneko Y, Choi S, Sasaki O. External-cavity laser diode using acousto-optic deflector as tunable grating. OPTICS LETTERS 2022; 47:1871-1874. [PMID: 35363757 DOI: 10.1364/ol.454021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel, to the best of our knowledge, external-cavity laser diode (ECLD) without a diffraction grating is proposed and demonstrated. In the proposed configuration, an acousto-optic deflector (AOD) acts not only as a deflector but also as a diffraction grating. Thus, the AOD functions as a wavelength-selective device, which helps improve the overall performance of the ECLD. In fact, the proposed configuration realizes a wide range of wavelength scanning with a simple configuration, highly efficient optical feedback, and a steady optical resonator with a constant cavity length. We confirm that the wavelengths scanned with the proposed ECLD agree well with theoretical calculations. The scanning range and maximum frequency response reached approximately 60 nm and 50 kHz, respectively. Moreover, reproducible measurements of the three-dimensional thickness distribution of a thin glass plate indicates that the proposed ECLD can be used for optical coherence tomography imaging systems.
Collapse
|
8
|
Visualizing nanometric structures with sub-millimeter waves. Nat Commun 2021; 12:7091. [PMID: 34876583 PMCID: PMC8651651 DOI: 10.1038/s41467-021-27264-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
The resolution along the propagation direction of far field imagers can be much smaller than the wavelength by exploiting coherent interference phenomena. We demonstrate a height profile precision as low as 31 nm using wavelengths between 0.375 mm and 0.5 mm (corresponding to 0.6 THz-0.8 THz) by evaluating the Fabry-Pérot oscillations within surface-structured samples. We prove the extreme precision by visualizing structures with a height of only 49 nm, corresponding to 1:7500 to 1:10000 vacuum wavelengths, a height difference usually only accessible to near field measurement techniques at this wavelength range. At the same time, the approach can determine thicknesses in the centimeter range, surpassing the dynamic range of any near field measurement system by orders of magnitude. The measurement technique combined with a Hilbert-transform approach yields the (optical) thickness extracted from the relative phase without any extraordinary wavelength stabilization.
Collapse
|
9
|
Shao PL, Liao JD, Wu SC, Chen YH, Wong TW. Microplasma Treatment versus Negative Pressure Therapy for Promoting Wound Healing in Diabetic Mice. Int J Mol Sci 2021; 22:10266. [PMID: 34638608 PMCID: PMC8508803 DOI: 10.3390/ijms221910266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
The delayed healing response of diabetic wounds is a major challenge for treatment. Negative pressure wound therapy (NPWT) has been widely used to treat chronic wounds. However, it usually requires a long treatment time and results in directional growth of wound healing skin tissue. We investigated whether nonthermal microplasma (MP) treatment can promote the healing of skin wounds in diabetic mice. Splint excision wounds were created on diabetic mice, and various wound healing parameters were compared among MP treatment, NPWT, and control groups. Quantitative analysis of the re-epithelialization percentage by detecting Ki67 and DSG1 expression in the extending epidermal tongue (EET) of the wound area and the epidermal proliferation index (EPI) was subsequently performed. Both treatments promoted wound healing by enhancing wound closure kinetics and wound bed blood flow; this was confirmed through histological analysis and optical coherence tomography. Both treatments also increased Ki67 and DSG1 expression in the EET of the wound area and the EPI to enhance re-epithelialization. Increased Smad2/3/4 mRNA expression was observed in the epidermis layer of wounds, particularly after MP treatment. The results suggest that the Smad-dependent transforming growth factor β signaling contributes to the enhancement of re-epithelialization after MP treatment with an appropriate exposure time. Overall, a short-term MP treatment (applied for 30 s twice a day) demonstrated comparable or better efficacy to conventional NPWT (applied for 4 h once a day) in promoting wound healing in diabetic mice. Thus, MP treatment exhibits promise for treating diabetic wounds clinically.
Collapse
Affiliation(s)
- Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354, Taiwan;
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Yu-Hsing Chen
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan;
| |
Collapse
|
10
|
Luo Y, Wang X, Yu X, Jin R, Liu L. Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification. JOURNAL OF BIOPHOTONICS 2021; 14:e202100015. [PMID: 33710798 DOI: 10.1002/jbio.202100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Imaging sebaceous glands and evaluating morphometric parameters are important for diagnosis and treatment of serum problems. In this article, we investigate the feasibility of high-resolution optical coherence tomography (OCT) in combination with deep learning assisted automatic identification for these purposes. Specifically, with a spatial resolution of 2.3 μm × 6.2 μm (axial × lateral, in air), OCT is capable of clearly differentiating sebaceous gland from other skin structures and resolving the sebocyte layer. In order to achieve efficient and timely imaging analysis, a deep learning approach built upon ResNet18 is developed to automatically classify OCT images (with/without sebaceous gland), with a classification accuracy of 97.9%. Based on the result of automatic identification, we further demonstrate the possibility to measure gland size, sebocyte layer thickness and gland density.
Collapse
Affiliation(s)
- Yuemei Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Ruibing Jin
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Shen Z, Xi M, Tang C, Xu M, Lei Z. Double-path parallel convolutional neural network for removing speckle noise in different types of OCT images. APPLIED OPTICS 2021; 60:4345-4355. [PMID: 34143124 DOI: 10.1364/ao.419871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Speckle noises widely exist in optical coherence tomography (OCT) images. We propose an improved double-path parallel convolutional neural network (called DPNet) to reduce speckles. We increase the network width to replace the network depth to extract deeper information from the original OCT images. In addition, we use dilated convolution and residual learning to increase the learning ability of our DPNet. We use 100 pairs of human retinal OCT images as the training dataset. Then we test the DPNet model for denoising speckles on four different types of OCT images, mainly including human retinal OCT images, skin OCT images, colon crypt OCT images, and quail embryo OCT images. We compare the DPNet model with the adaptive complex diffusion method, the curvelet shrinkage method, the shearlet-based total variation method, and the OCTNet method. We qualitatively and quantitatively evaluate these methods in terms of image smoothness, structural information protection, and edge clarity. Our experimental results prove the performance of the DPNet model, and it allows us to batch and quickly process different types of poor-quality OCT images without any parameter fine-tuning under a time-constrained situation.
Collapse
|
12
|
Nikitkina AI, Bikmulina PY, Gafarova ER, Kosheleva NV, Efremov YM, Bezrukov EA, Butnaru DV, Dolganova IN, Chernomyrdin NV, Cherkasova OP, Gavdush AA, Timashev PS. Terahertz radiation and the skin: a review. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200356VSSR. [PMID: 33583155 PMCID: PMC7881098 DOI: 10.1117/1.jbo.26.4.043005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Terahertz (THz) radiation has demonstrated a great potential in biomedical applications over the past three decades, mainly due to its non-invasive and label-free nature. Among all biological specimens, skin tissue is an optimal sample for the application of THz-based methods because it allows for overcoming some intrinsic limitations of the technique, such as a small penetration depth (0.1 to 0.3 mm for the skin, on average). AIM We summarize the modern research results achieved when THz technology was applied to the skin, considering applications in both imaging/detection and treatment/modulation of the skin constituents. APPROACH We perform a review of literature and analyze the recent research achievements in THz applications for skin diagnosis and investigation. RESULTS The reviewed results demonstrate the possibilities of THz spectroscopy and imaging, both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer, dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties. The possibility of modulating cell activity and treatment of various diseases by THz-wave exposure is shown as well. CONCLUSIONS The rapid development of THz technologies and the obtained research results for skin tissue highlight the potential of THz waves as a research and therapeutic instrument. The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimulation and control of different processes in a living skin tissue for regeneration and cancer treatment.
Collapse
Affiliation(s)
| | - Polina Y. Bikmulina
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Elvira R. Gafarova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Nastasia V. Kosheleva
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- Federal State Budgetary Scientific Institution “Institute of General Pathology and Pathophysiology,” Moscow, Russia
| | - Yuri M. Efremov
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
| | - Evgeny A. Bezrukov
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Denis V. Butnaru
- Sechenov University, Institute for Urology and Reproductive Health, Moscow, Russia
| | - Irina N. Dolganova
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Nikita V. Chernomyrdin
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Olga P. Cherkasova
- Russian Academy of Sciences, Institute of Laser Physics of the Siberian Branch, Novosibirsk, Russia
- Novosibirsk State Technical University, Novosibirsk, Russia
| | - Arsenii A. Gavdush
- Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Moscow, Russia
- N. N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Moscow, Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
- Address all correspondence to Peter S. Timashev,
| |
Collapse
|
13
|
Li R, Yin H, Hong J, Wang C, He B, Chen Z, Li Q, Xue P, Zhang X. Speckle reducing OCT using optical chopper. OPTICS EXPRESS 2020; 28:4021-4031. [PMID: 32122062 DOI: 10.1364/oe.382369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Optical coherence tomography (OCT) has been an important and powerful tool for biological research and clinical applications. However, speckle noise significantly degrades the image quality of OCT and has a negative impact on the clinical diagnosis accuracy. In this paper, we propose a novel speckle noise suppression technique which changes the spatial distribution of sample beam using a special optical chopper. Then a series of OCT images with uncorrelated speckle patterns could be captured and compounded to improve the image quality without degradation of resolution. Typical signal-to-noise ratio improvement of ∼6.4 dB is experimentally achieved in tissue phantom imaging with average number n = 100. Furthermore, compared with conventional OCT, the proposed technique is demonstrated to view finer and clearer biological structures in human skin in vivo, such as sweat glands and blood vessels. The advantages of low cost, simple structure and compact integration will benefit the future design of handheld or endoscopic probe for biomedical imaging in research and clinical applications.
Collapse
|
14
|
Leitgeb RA. En face optical coherence tomography: a technology review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:2177-2201. [PMID: 31143489 PMCID: PMC6524600 DOI: 10.1364/boe.10.002177] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
A review on the technological development of en face optical coherence tomography (OCT) and optical coherence microscopy (OCM) is provided. The terminology originally referred to time domain OCT, where the preferential scanning was performed in the en face plane. Potentially the fastest realization of en face image recording is full-field OCT, where the full en face plane is illuminated and recorded simultaneously. The term has nowadays been adopted for high-speed Fourier domain approaches, where the en face image is reconstructed from full 3D volumes either by direct slicing or through axial projection in post processing. The success of modern en face OCT lies in its immediate and easy image interpretation, which is in particular of advantage for OCM or OCT angiography. Applications of en face OCT with a focus on ophthalmology are presented. The review concludes by outlining exciting technological prospects of en face OCT based both on time as well as on Fourier domain OCT.
Collapse
Affiliation(s)
- R A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
15
|
Dubois A, Levecq O, Azimani H, Davis A, Ogien J, Siret D, Barut A. Line-field confocal time-domain optical coherence tomography with dynamic focusing. OPTICS EXPRESS 2018; 26:33534-33542. [PMID: 30650800 DOI: 10.1364/oe.26.033534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A time-domain optical coherence tomography technique is introduced for high-resolution B-scan imaging in real-time. The technique is based on a two-beam interference microscope with line illumination and line detection using a broadband spatially coherent light source and a line-scan camera. Multiple (2048) A-scans are acquired in parallel by scanning the sample depth while adjusting the focus. Quasi-isotropic spatial resolution of 1.3 µm × 1.1 µm (lateral × axial) is achieved. In vivo cellular-level resolution imaging of human skin is demonstrated at 10 frames per second with a penetration depth of ∼500 µm.
Collapse
|
16
|
Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin. Burns 2018; 45:659-670. [PMID: 30385061 DOI: 10.1016/j.burns.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
Accurate depth assessment of burn wounds is a critical task to provide the right treatment and care. Currently, laser Doppler imaging is able to provide better accuracy compared to the standard clinical evaluation. However, its clinical applicability is limited by factors like scanning distance, time, and cost. Precise diagnosis of burns requires adequate structural and functional details. In this work, we evaluated the combined potential of two non-invasive optical modalities, optical coherence tomography (OCT) and Raman spectroscopy (RS), to identify degrees of burn wounds (superficial partial-thickness (SPT), deep partial-thickness (DPT), and full-thickness (FT)). OCT provides morphological information, whereas, RS provides biochemical aspects. OCT images and Raman spectra were obtained from burns created on ex-vivo porcine skin. Algorithms were developed to segment skin region and extract textural features from OCT images, and derive spectral wave features from RS. These computed features were fed into machine learning classifiers for categorization of burns. Histological results obtained from trichrome staining were used as ground-truth. The combined performance of RS-OCT reported an overall average accuracy of 85% and ROC-AUC=0.94, in distinguishing the burn wounds. The significant performance on ex vivo skin motivates to assess the feasibility of combined RS-OCT in in vivo models.
Collapse
|
17
|
Hitzenberger CK. Optical coherence tomography in Optics Express [Invited]. OPTICS EXPRESS 2018; 26:24240-24259. [PMID: 30184910 DOI: 10.1364/oe.26.024240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Optical coherence tomography (OCT) is one of the most successful technologies in the history of biomedical optics. Optics Express played an important role in communicating groundbreaking technological achievements in the field of OCT, and, conversely, OCT papers are among the most frequently cited papers published in Optics Express. On the occasion of the 20th anniversary of the journal, this review analyzes the reasons for the success of OCT papers in Optics Express and discusses possible motivations for researchers to submit some of their best OCT papers to the journal.
Collapse
|
18
|
Evaluating the effects of organic matter bioavailability on nanofiltration membrane using real-time monitoring. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Singh JN, Nowlin TM, Seedorf GJ, Abman SH, Shepherd DP. Quantifying three-dimensional rodent retina vascular development using optical tissue clearing and light-sheet microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76011. [PMID: 28717817 PMCID: PMC5514054 DOI: 10.1117/1.jbo.22.7.076011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/23/2017] [Indexed: 05/03/2023]
Abstract
Retinal vasculature develops in a highly orchestrated three-dimensional (3-D) sequence. The stages of retinal vascularization are highly susceptible to oxygen perturbations. We demonstrate that optical tissue clearing of intact rat retinas and light-sheet microscopy provides rapid 3-D characterization of vascular complexity during retinal development. Compared with flat mount preparations that dissect the retina and primarily image the outermost vascular layers, intact cleared retinas imaged using light-sheet fluorescence microscopy display changes in the 3-D retinal vasculature rapidly without the need for point scanning techniques. Using a severe model of retinal vascular disruption, we demonstrate that a simple metric based on Sholl analysis captures the vascular changes observed during retinal development in 3-D. Taken together, these results provide a methodology for rapidly quantifying the 3-D development of the entire rodent retinal vasculature.
Collapse
Affiliation(s)
- Jasmine N. Singh
- University of Colorado Denver, Department of Physics, Denver, Colorado, United States
- University of Colorado Anschutz Medical Campus, Pediatric Heart Lung Center, Department of Pediatrics, Aurora, Colorado, United States
| | - Taylor M. Nowlin
- University of Colorado Anschutz Medical Campus, Pediatric Heart Lung Center, Department of Pediatrics, Aurora, Colorado, United States
| | - Gregory J. Seedorf
- University of Colorado Anschutz Medical Campus, Pediatric Heart Lung Center, Department of Pediatrics, Aurora, Colorado, United States
| | - Steven H. Abman
- University of Colorado Anschutz Medical Campus, Pediatric Heart Lung Center, Department of Pediatrics, Aurora, Colorado, United States
| | - Douglas P. Shepherd
- University of Colorado Denver, Department of Physics, Denver, Colorado, United States
- University of Colorado Anschutz Medical Campus, Pediatric Heart Lung Center, Department of Pediatrics, Aurora, Colorado, United States
- Address all correspondence to: Douglas P. Shepherd, E-mail:
| |
Collapse
|
20
|
Thouvenin O, Grieve K, Xiao P, Apelian C, Boccara AC. En face coherence microscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:622-639. [PMID: 28270972 PMCID: PMC5330590 DOI: 10.1364/boe.8.000622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 05/13/2023]
Abstract
En face coherence microscopy or flying spot or full field optical coherence tomography or microscopy (FF-OCT/FF-OCM) belongs to the OCT family because the sectioning ability is mostly linked to the source coherence length. In this article we will focus our attention on the advantages and the drawbacks of the following approaches: en face versus B scan tomography in terms of resolution, coherent versus incoherent illumination and influence of aberrations, and scanning versus full field imaging. We then show some examples to illustrate the diverse applications of en face coherent microscopy and show that endogenous or exogenous contrasts can add valuable information to the standard morphological image. To conclude we discuss a few domains that appear promising for future development of en face coherence microscopy.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France
| | - Kate Grieve
- CHNO des Quinze Vingts/Institut de la Vision, 28 rue de Charenton, Paris F75012, France
| | - Peng Xiao
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France
| | - Clement Apelian
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France; LLTech Pépinière Paris Santé Cochin 29 rue du Faubourg Saint Jacques Paris F75014, France
| | - A Claude Boccara
- Institut Langevin ESPCI, PSL Research University, CNRS UMR7587 1rue Jussieu, Paris F75005, France
| |
Collapse
|
21
|
Shao PL, Liao JD, Wong TW, Wang YC, Leu S, Yip HK. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds. PLoS One 2016; 11:e0156699. [PMID: 27248979 PMCID: PMC4889145 DOI: 10.1371/journal.pone.0156699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically.
Collapse
Affiliation(s)
- Pei-Lin Shao
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jiunn-Der Liao
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
- * E-mail:
| | - Tak-Wah Wong
- Department of Dermatology, Department of Biochemistry and Molecular Biology, Medical College and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Cheng Wang
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Steve Leu
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
22
|
Lehmann M, Wolff B, Vasseur V, Martinet V, Manasseh N, Sahel JA, Mauget-Faÿsse M. Retinal and choroidal changes observed with 'En face' enhanced-depth imaging OCT in central serous chorioretinopathy. Br J Ophthalmol 2013; 97:1181-6. [PMID: 23823080 DOI: 10.1136/bjophthalmol-2012-302974] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To describe retinal and choroidal changes in acute and quiescent central serous chorioretinopathy (CSC) observed with 'En face' spectral domain optical coherence tomography (SD OCT) combined with enhanced-depth imaging (EDI). METHODS A prospective and descriptive study at the Rothschild Ophthalmologic Foundation (Paris, France) between September 2011 and February 2012. Eyes with a clinical diagnosis of CSC were examined using SD OCT with EDI, fluorescein and indocyanine green angiography. 3D reconstruction of 197 transverse sections with SD OCT, spaced of 30 μ, provided a virtual macular brick through which 496 sections in the coronal plane resulted in a C-scan or En face OCT image. RESULTS 23 of 29 eyes (79%) had serous retinal detachment (all active CSC) and 22 had pigment epithelial detachment (75%). Pigment epithelial hyperplasia was visualised in nine eyes (31%). Posterior cystoid retinal degenerations were present in five eyes (17%). The mean choroidal thickness was 491.5 μ. In 11 eyes (38%), En face OCT showed multiple hyper reflective points located at the level of the choriocapillary layer and choroidal cavitations were found in two patients. CONCLUSIONS En face OCT imaging using SD OCT is an easy, reproducible, non-invasive and effective tool to understand choroidal changes in acute and quiescent CSCR. It provides complementary morphological information, describes new semiological entities and might substitute other exams in the future.
Collapse
Affiliation(s)
- Mathieu Lehmann
- Department of Vitreo-Retinal Surgery, Rothschild Ophthalmologic Foundation, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Mujat M, Greco K, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, Mulhall P, Sharma P, Pikal MJ, Kessler WJ. Optical coherence tomography-based freeze-drying microscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:55-63. [PMID: 22254168 PMCID: PMC3255342 DOI: 10.1364/boe.3.000055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
A new type of freeze-drying microscope based upon time-domain optical coherence tomography is presented here (OCT-FDM). The microscope allows for real-time, in situ 3D imaging of pharmaceutical formulations in vials relevant for manufacturing processes with a lateral resolution of <7 μm and an axial resolution of <5 μm. Correlation of volumetric structural imaging with product temperature measured during the freeze-drying cycle allowed investigation of structural changes in the product and determination of the temperature at which the freeze-dried cake collapses. This critical temperature is the most important parameter in designing freeze-drying processes of pharmaceutical products.
Collapse
Affiliation(s)
- Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Alex A, Weingast J, Hofer B, Eibl M, Binder M, Pehamberger H, Drexler W, Považay B. 3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.11.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Non-destructive analysis of tablet coatings with optical coherence tomography. Eur J Pharm Sci 2011; 44:142-8. [PMID: 21787865 DOI: 10.1016/j.ejps.2011.06.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/31/2011] [Accepted: 06/30/2011] [Indexed: 11/22/2022]
Abstract
Optical coherence tomography (OCT) is a non-invasive analysis technique allowing fast and high-quality cross-sectional imaging of scattering media. OCT is based on the physical phenomenon of low coherence interferometry and is thus well suited to image layered structures. In this paper, high-speed spectral domain OCT was used for the characterization of pharmaceutical tablet coatings, sampled at different stages of an industrial drum spray coating process, comprising tablets with a coating thickness ranging from uncoated to a target coating thickness of about 70 μm. In addition to the OCT investigation of layer thickness and homogeneity, tablet weight gain and tablet diameters were determined on a single-tablet level. Scanning electron microscopy (SEM) was applied for referencing the coating thickness obtained with OCT. We demonstrated that OCT allows rapid evaluation of coating properties, such as thickness and homogeneity independently from variations of the tablet core. In contrast to indirect methods, deviations observed with OCT can be related directly to the coating properties. Furthermore, for an extended morphological coating characterization, three dimensional images were reconstructed. Pending further developments, the high axial resolution and fast data acquisition rate of OCT has the potential for highly accurate, fast and low-cost coating control during and after manufacturing.
Collapse
|
26
|
Wojtkowski M. High-speed optical coherence tomography: basics and applications. APPLIED OPTICS 2010; 49:D30-61. [PMID: 20517358 DOI: 10.1364/ao.49.000d30] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the past decade we have observed a rapid development of ultrahigh-speed optical coherence tomography (OCT) instruments, which currently enable performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000 A-scans/s. This progress in OCT technology has been achieved by the development of Fourier-domain detection techniques. Introduction of high-speed imaging capabilities lifts the primary limitation of early OCT technology by giving access to in vivo three-dimensional volumetric reconstructions on large scales within reasonable time constraints. As result, novel tools can be created that add new perspective for existing OCT applications and open new fields of research in biomedical imaging. Especially promising is the capability of performing functional imaging, which shows a potential to enable the differentiation of tissue pathologies via metabolic properties or functional responses. In this contribution the fundamental limitations and advantages of time-domain and Fourier-domain interferometric detection methods are discussed. Additionally the progress of high-speed OCT instruments and their impact on imaging applications is reviewed. Finally new perspectives on functional imaging with the use of state-of-the-art high-speed OCT technology are demonstrated.
Collapse
Affiliation(s)
- Maciej Wojtkowski
- Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5, 87-100, Torun, Poland.
| |
Collapse
|
27
|
Fercher AF. Optical coherence tomography - development, principles, applications. Z Med Phys 2009; 20:251-76. [PMID: 21134630 DOI: 10.1016/j.zemedi.2009.11.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/09/2009] [Accepted: 11/18/2009] [Indexed: 12/17/2022]
Abstract
This paper presents a review of the development of optical coherence tomography (OCT), its principles and important applications. Basic OCT systems are described and the physical foundations of OCT signal properties and signal recording systems are reviewed. Recent examples of OCT applications in ophthalmology, cardiology, gastroenterology and dermatology outline the relevance of this advanced imaging modality in the medical field.
Collapse
Affiliation(s)
- Adolf Friedrich Fercher
- ZBMTP - Medizinische Physik, Medizinische Universität Wien, Währinger Straße 13, A-1090 Wien.
| |
Collapse
|
28
|
Rao KD, Alex A, Verma Y, Thampi S, Gupta PK. Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography. JOURNAL OF BIOPHOTONICS 2009; 2:288-91. [PMID: 19434615 DOI: 10.1002/jbio.200910032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report noninvasive imaging of the brain of adult zebrafish (Danio rerio) using real time optical coherence tomography (OCT) capable of acquiring cross sectional 2D OCT images @ 8 frames/sec. Anatomic features such as telencephalon, tectum opticum, eminentia Granularis and cerebellum were clearly resolved in the OCT images. A 3D model of zebrafish brain was reconstructed, for the first time to our knowledge, using these 2D OCT images.
Collapse
Affiliation(s)
- K Divakar Rao
- Laser Biomedical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, India.
| | | | | | | | | |
Collapse
|
29
|
Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009; 135:252-9. [PMID: 19201333 DOI: 10.1016/j.ajodo.2007.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Optical coherence tomography (OCT) is a diagnostic tool that can make near-histologic tomographic images without a biohazard. Due to its high resolution (average, 4 microm) and safety (using light as the source), it has been applied widely in medical fields to replace invasive biopsies. But the trials in dentistry have been restricted to mainly detecting dental caries and oral cancer. In this preliminary study for successive human studies, we tried to evaluate whether OCT can be helpful in determining tooth movement under light orthodontic forces. METHODS Orthodontic distraction forces (0, 5, and 10 g) were applied to the mandibular incisors of 6 white rats (10 weeks old) for 5 days by using individualized loop springs (round Elgiloy, 0.018-in diameter, Rocky Mountain Orthodontics, Denver, Colo). The changed periodontal ligaments were imaged with OCT and digital intraoral radiography 2 dimensionally. Both tensile and compressive ligaments were measured and compared. RESULTS With OCT images, we could measure changed ligaments from all directions; radiography could not show the portions overlapped by teeth. The averages of measured ligament width in OCT were larger than those from radiography in all groups. CONCLUSIONS This preliminary study shows the possible evaluation and prediction of precise tooth responses under orthodontic forces by using real-time OCT.
Collapse
Affiliation(s)
- Jae Ho Baek
- Department of Orthodontics, Division of Dentistry, Ulsan University Hospital, Ulsan, South Korea.
| | | | | | | | | |
Collapse
|
30
|
Wojtkowski M, Sikorski BL, Gorczynska I, Gora M, Szkulmowski M, Bukowska D, Kaluzny J, Fujimoto JG, Kowalczyk A. Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography. OPTICS EXPRESS 2009; 17:4189-207. [PMID: 19259255 PMCID: PMC2743201 DOI: 10.1364/oe.17.004189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We demonstrate and compare two image processing methods for visualization and analysis of three-dimensional optical coherence tomography (OCT) data acquired in eyes with different retinal pathologies. A method of retinal layer segmentation based on a multiple intensity thresholding algorithm was implemented in order to generate simultaneously outer retinal topography maps and reflectivity maps. We compare the applicability of the two methods to the diagnosis of retinal diseases and their progression. The data presented in this contribution were acquired with a high speed (25,000 A-scans/s), high resolution (4.5 microm) spectral OCT prototype instrument operating in the ophthalmology clinic.
Collapse
Affiliation(s)
- Maciej Wojtkowski
- Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, PL-87-100 Toruń, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Investigation of Implant Bone Interface with Non-Invasive Methods: Numerical Simulation, Strain Gauges and Optical Coherence Tomography. ACTA ACUST UNITED AC 2008. [DOI: 10.4028/www.scientific.net/kem.399.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quality of the evaluation of implant insertion could be investigated by implant bone interface analysis. In this study the numerical simulation, tensional stamps and optical coherence tomography as a noninvasive method were used in order to evaluate these interfaces. The system contains two interferometers and one scanner. For each incident analysis a stuck made of 61 slices was obtain. These slices were used in order to obtain a 3D model of the implant bone interface. The results obtained point out the existence of gaps between the implant and the bone. In conclusion the optical coherence tomography could be used for implant bone interface investigation.
Collapse
|
32
|
Sinescu C, Negrutiu ML, Todea C, Balabuc C, Filip L, Rominu R, Bradu A, Hughes M, Podoleanu AG. Quality assessment of dental treatments using en-face optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054065. [PMID: 19021443 DOI: 10.1117/1.2992593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The present study evaluates the potential of en-face optical coherence tomography (OCT) as a possible noninvasive high resolution method for supplying necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. Teeth are also imaged after several treatment methods to asses material defects and microleakage at the tooth-filling interface, and the presence or absence of apical microleakage, as well as to evaluate the quality of bracket bonding on dental hard tissue. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed.
Collapse
Affiliation(s)
- Cosmin Sinescu
- Victor Babes University of Medicine and Pharmacy of Timisoara, School of Dentistry, Bd. Revolutiei din 1989 Nr. 9, 300070, Timisoara, Romania
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gorczynska I, Srinivasan VJ, Vuong LN, Chen RWS, Liu JJ, Reichel E, Wojtkowski M, Schuman JS, Duker JS, Fujimoto JG. Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration. Br J Ophthalmol 2008; 93:603-9. [PMID: 18662918 DOI: 10.1136/bjo.2007.136101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS To demonstrate ultrahigh-resolution, three-dimensional optical coherence tomography (3D-OCT) and projection OCT fundus imaging for enhanced visualisation of outer retinal pathology in non-exudative age-related macular degeneration (AMD). METHODS A high-speed, 3.5 mum resolution OCT prototype instrument was developed for the ophthalmic clinic. Eighty-three patients with non-exudative AMD were imaged. Projection OCT fundus images were generated from 3D-OCT data by selectively summing different retinal depth levels. Results were compared with standard ophthalmic examination, including fundus photography and fluorescein angiography, when indicated. RESULTS Projection OCT fundus imaging enhanced the visualisation of outer retinal pathology in non-exudative AMD. Different types of drusen exhibited distinct features in projection OCT images. Photoreceptor disruption was indicated by loss of the photoreceptor inner/outer segment (IS/OS) boundary and external limiting membrane (ELM). RPE atrophy can be assessed using choroid-level projection OCT images. CONCLUSIONS Projection OCT fundus imaging facilities rapid interpretation of large 3D-OCT data sets. Projection OCT enhances contrast and visualises outer retinal pathology not visible with standard fundus imaging or OCT fundus imaging. Projection OCT fundus images enable registration with standard ophthalmic diagnostics and cross-sectional OCT images. Outer retinal alterations can be assessed and drusen morphology, photoreceptor impairment and pigmentary abnormalities identified.
Collapse
Affiliation(s)
- I Gorczynska
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies. Retina 2008; 28:298-308. [PMID: 18301035 DOI: 10.1097/iae.0b013e3181567798] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To delineate pathologic changes in retinal cross sections obtained with spectral (Fourier) domain optical coherence tomography (SDOCT), so that the findings are maintained when collapsed into a two-dimensional fundus image for comparison with conventional retinal studies. METHODS SDOCT of the posterior pole of 12 eyes (5 with neovascular age-related macular degeneration [AMD]; 7 with nonneovascular AMD) produced three-dimensional stacks of scans. Location of pathologic features was delineated with color markings in each scan before the stack was collapsed along the depth axis. This en face image contained retinal vessel shadowing and preserved color markings of delineated pathologic features relative to the vessel pattern and was superimposed onto conventional studies. RESULTS For patients with neovascular AMD, location and extent of choroidal neovascularization, macular edema, and subretinal fluid were visible on the two-dimensional summed images and, in some cases, involved sites not suspected with conventional imaging. For patients with nonneovascular AMD, the location of drusen and geographic atrophy were correlated with autofluorescence images. For one eye with drusen and three eyes with neovascular AMD, presence or extent of subretinal fluid identified by SDOCT was not visible using other imaging methods. CONCLUSIONS In this pilot AMD study, pathologic features within SDOCT scans were transferred into two-dimensional en face projections, enabling researchers to correlate lateral extent of pathologic features from SDOCT with conventional studies. This integration of SDOCT with other retinal studies is promising and will be useful to study the relationship between local OCT morphology and other parameters of retinal disease or function.
Collapse
|
35
|
Na J, Lee BH, Baek JH, Choi ES. Optical approach for monitoring the periodontal ligament changes induced by orthodontic forces around maxillary anterior teeth of white rats. Med Biol Eng Comput 2008; 46:597-603. [PMID: 18247074 DOI: 10.1007/s11517-007-0300-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 12/07/2007] [Indexed: 11/26/2022]
Abstract
Structural variations of the periodontal ligament (PDL) induced by orthodontic forces have been evaluated by optical coherence tomography (OCT) and compared to images obtained by conventional radiography. Here, two specially designed orthodontic appliances were installed on the maxillary anterior teeth of white rats for applying different magnitudes of orthodontic forces. Constant distraction force magnitudes of 0, 5, 10, and 30 gf were given to four respective rats over a period of 5 days. At the end of the treatment period, the rats were sacrificed and the maxillaries were extracted for X-ray and OCT imaging. The PDL variations, proportional to the force magnitude, were clearly indicated in the OCT measurements. The OCT images further showed that the ligament was torn for a constant orthodontic force of 30 gf. These results support the clinical dental application of OCT for monitoring the ligament changes during orthodontic procedures. The real-time imaging capability of OCT, together with its high resolution, has the potential to help dentists with in vivo orthodontic treatments in human subjects as well.
Collapse
Affiliation(s)
- Jihoon Na
- Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju, 500-712, South Korea.
| | | | | | | |
Collapse
|
36
|
|
37
|
|
38
|
|
39
|
Choe TE, Medioni G, Cohen I, Walsh AC, Sadda SR. 2-D registration and 3-D shape inference of the retinal fundus from fluorescein images. Med Image Anal 2007; 12:174-90. [PMID: 18060827 DOI: 10.1016/j.media.2007.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/13/2007] [Accepted: 10/01/2007] [Indexed: 11/15/2022]
Abstract
This study presents methods to 2-D registration of retinal image sequences and 3-D shape inference from fluorescein images. The Y-feature is a robust geometric entity that is largely invariant across modalities as well as across the temporal grey level variations induced by the propagation of the dye in the vessels. We first present a Y-feature extraction method that finds a set of Y-feature candidates using local image gradient information. A gradient-based approach is then used to align an articulated model of the Y-feature to the candidates more accurately while optimizing a cost function. Using mutual information, fitted Y-features are subsequently matched across images, including colors and fluorescein angiographic frames, for registration. To reconstruct the retinal fundus in 3-D, the extracted Y-features are used to estimate the epipolar geometry with a plane-and-parallax approach. The proposed solution provides a robust estimation of the fundamental matrix suitable for plane-like surfaces, such as the retinal fundus. The mutual information criterion is used to accurately estimate the dense disparity map. Our experimental results validate the proposed method on a set of difficult fluorescein image pairs.
Collapse
Affiliation(s)
- Tae Eun Choe
- Institute for Robotics and Intelligent Systems, University of Southern California, 3737 Watt way, Los Angeles, CA 90248, USA.
| | | | | | | | | |
Collapse
|
40
|
Choe TE, Cohen I, Medioni G, Walsh AC, Sadda SR. Evaluation of 3-D shape reconstruction of retinal fundus. ACTA ACUST UNITED AC 2007; 9:134-41. [PMID: 17354883 DOI: 10.1007/11866565_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a method for the 3-D shape reconstruction of the retinal fundus from stereo paired images. Detection of retinal elevation plays a critical role in the diagnosis and management of many retinal diseases. However, since the shape of ocular fundus is nearly planar, its 3-D depth range is very narrow. Therefore, we use the location of vascular bifurcations and a plane+parallax approach to provide a robust estimation of the epipolar geometry. Matching is then performed using a mutual information algorithm for accurate estimation of the disparity maps. To validate our results, in the absence of camera calibration, we compared the results with measurements from the current clinical gold standard, optical coherence tomography (OCT).
Collapse
Affiliation(s)
- Tae Eun Choe
- IRIS, University of Southern California 3737 Watt way, Los Angeles, CA, 90248, USA.
| | | | | | | | | |
Collapse
|
41
|
Rosa CC, Rogers J, Pedro J, Rosen R, Podoleanu A. Multiscan time-domain optical coherence tomography for retina imaging. APPLIED OPTICS 2007; 46:1795-808. [PMID: 17356624 DOI: 10.1364/ao.46.001795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A versatile time-domain optical coherence tomography system is presented that can generate cross-sectional images by using either transverse priority or depth priority scanning. This is made possible by using a transmissive scanning delay line compatible with balance detection operating at a speed similar to that of the transverse scanner used to scan the beam across the target. In vivo images from the retina are generated and shown using the same system switched to either transverse or depth priority scanning regime, by using the scanning delay line either in slow or fast scanning modes, respectively. A comparative analysis of different scanning regimes depending on image size to fit different areas to be imaged is presented. Safety thresholds due to the different continuous irradiation time per transverse pixel in different scanning regimes are also considered. We present the maximum exposure level for a variety of scanning procedures, employing either A scanning (depth priority) or T scanning (transverse priority) when generating cross-sectional images, en face images, or collecting 3D volumes.
Collapse
Affiliation(s)
- Carla Carmelo Rosa
- University of Porto and Instituto de Engenharla de Sistemas e Computadores-Porto, Portugal.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Optical coherence tomography (OCT) is an emerging technique for imaging of biological media with micrometer-scale resolution, whose most significant impact concerns ophthalmology. Since its introduction in the early 1990's, OCT has known a lot of improvements and sophistications. Full-field OCT is our original approach of OCT, based on white-light interference microscopy. Tomographic images are obtained by combination of interferometric images recorded in parallel by a detector array such as a CCD camera. Whereas conventional OCT produces B-mode (axially-oriented) images like ultrasound imaging, full-field OCT acquires tomographic images in the en face (transverse) orientation. Full-field OCT is an alternative method to conventional OCT to provide ultrahigh resolution images (approximately 1 microm), using a simple halogen lamp instead of a complex laser-based source. Various studies have been carried, demonstrating the performances of this technology for three-dimensional imaging of ex vivo specimens. Full-field OCT can be used for non-invasive histological studies without sample preparation. In vivo imaging is still difficult because of the object motions. A lot of efforts are currently devoted to overcome this limitation. Ultra-fast full-field OCT was recently demonstrated with unprecedented image acquisition speed, but the detection sensitivity has still to be improved. Other research directions include the increase of the imaging penetration depth in highly scattering biological tissues such as skin, and the exploitation of new contrasts such as optical birefringence to provide additional information on the tissue morphology and composition.
Collapse
Affiliation(s)
- Arnaud Dubois
- Laboratoire d'Optique Physique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CNRS UPR A0005, 10, rue Vauquelin, 75005 Paris, France
| | | |
Collapse
|
43
|
Lee ES, Lee JY, Yoo YS. Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024010. [PMID: 17477725 DOI: 10.1117/1.2718560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The nonlinear optical interference of two successively generated coherent anti-Stokes Raman scattering (CARS) signals from two different samples placed in series is demonstrated for the imaging performance, in which a collinear phase matching geometry is used. The relative phase of two CARS signals is controlled by a phase-shifting unit made of dispersive glass materials of which the thickness can be precisely varied. The clear interference fringes are observed as the thickness of the phase-shifting unit changes. The interference effect is then utilized to achieve a better quality CARS image of a biological tissue taken from a mouse skin. Placing the tissue in the second sample position and performing raster scans of the laser beams on it, we can acquire a CARS image of higher contrast compared to the normal image obtained without interferometric implementation.
Collapse
Affiliation(s)
- Eun Seong Lee
- Korea Research Institute of Standards and Science, Division of Advanced Technology, P.O. Box 102, Yusung-Taejeon 305-600, South Korea
| | | | | |
Collapse
|
44
|
Podoleanu AG, Dobre GM, Cernat R, Rogers JA, Pedro J, Rosen RB, Garcia P. Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:014019. [PMID: 17343494 DOI: 10.1117/1.2434970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We develop a dual-channel optical coherence tomography/indocyanine green (OCT/ICG) fluorescence system based on our previously reported ophthalmic OCT/confocal imaging system. The confocal channel is tuned to the fluorescence wavelength range of the ICG dye and light from the same optical source is used to generate the OCT image and to excite the ICG fluorescence. The system enables the clinician to visualize simultaneously en face OCT slices and corresponding ICG angiograms of the ocular fundus, displayed side by side. C-scan (constant depth) and B-scan (cross section) images are collected by fast en face scanning (T-scan). The pixel-to-pixel correspondence between the OCT and angiography images enables the user to precisely capture OCT B-scans at selected points on the ICG confocal images.
Collapse
Affiliation(s)
- Adrian G Podoleanu
- University of Kent at Canterbury, Applied Optics Group, School of Physical Sciences, Canterbury CT2 7NH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Mitarai K, Gomi F, Tano Y. Three-dimensional optical coherence tomographic findings in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2006; 244:1415-20. [PMID: 16596405 DOI: 10.1007/s00417-006-0277-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/22/2005] [Accepted: 01/16/2006] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate three-dimensional optical coherence tomographic findings at the leakage point on fluorescein angiography in central serous chorioretinopathy (CSC) with OCT-ophthalmoscope. METHODS Twenty-seven eyes of 26 patients (23 men, three women; mean age, 50 years; range, 30-72) diagnosed with CSC were examined with OCT-ophthalmoscope, and transverse and longitudinal images were compared with fundus and fluorescein angiography findings. RESULTS Transverse images (C-scan) clearly showed serous retinal detachment in all eyes and irregular lesions in retinal pigment epithelium (RPE) in 26 of 27 eyes (96%). These results agreed with the location of lesions in areas of fluorescein dye leakage on fluorescein angiography. Longitudinal images (B-scan) of irregular RPE lesions in transverse images showed RPE detachment (PED) in 17 eyes (63%), small protrusion of the RPE layer in five eyes (19%), and rough RPE layer in four eyes (15%). CONCLUSIONS OCT-ophthalmoscope detects morphologic changes easily and noninvasively at the point of dye leakage in eyes with CSC.
Collapse
Affiliation(s)
- Keiichi Mitarai
- Department of Ophthalmology, Osaka University, Graduate School of Medicine, Room E7, 2-2 Yamadaoka Suita, Osaka, Japan
| | | | | |
Collapse
|
46
|
van Velthoven MEJ, Verbraak FD, Yannuzzi LA, Rosen RB, Podoleanu AGH, de Smet MD. IMAGING THE RETINA BY EN FACE OPTICAL COHERENCE TOMOGRAPHY. Retina 2006; 26:129-36. [PMID: 16467666 DOI: 10.1097/00006982-200602000-00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To present the possibilities of a new system that combines optical coherence tomography (OCT) and confocal ophthalmoscopy, producing en face OCT images in patients with retinal diseases. METHODS A prototype OCT Ophthalmoscope (OTI, Toronto, Canada) was used to scan patients with retinal conditions. The system uses a super luminescent diode (lambda = 820 nm; Deltalambda = 20 nm) and currently scans at a rate of 2 frames per second. In each frame, the OCT Ophthalmoscope simultaneously produces a transversal OCT scan and a confocal image in the X/Y plane. Both images correspond pixel to pixel. RESULTS Between January 2002 and August 2003, >800 patients with various retinal diseases were scanned with the OCT Ophthalmoscope. Illustrative cases with regularly seen macular diseases are presented, such as macular hole and central serous retinopathy. CONCLUSION Current difficulties as well as future possibilities of this new en face OCT ophthalmoscope are discussed. By presenting normal and pathologic transversal OCT images made by a prototype OCT Ophthalmoscope, we show that it can provide information not available using conventional OCT imaging.
Collapse
Affiliation(s)
- Mirjam E J van Velthoven
- Department of Ophthalmology, Academic Medical Center, PO Box 22660 (Rm. D2-420), 1100 DD Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
van Velthoven MEJ, Verbraak FD, Garcia PM, Schlingemann RO, Rosen RB, de Smet MD. Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 2005; 89:1483-8. [PMID: 16234458 PMCID: PMC1772953 DOI: 10.1136/bjo.2005.073056] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The diagnosis of idiopathic central serous retinopathy (CSR) is usually based on biomicroscopy and fluorescein angiography (FA). The optical coherence tomography (OCT) ophthalmoscope produces en face OCT scans (OCT C-scans) and provides additional information not readily available by conventional imaging techniques. The authors describe the characteristic features observed in patients with a clinical diagnosis of CSR using the OCT ophthalmoscope. METHODS 38 eyes with a clinical diagnosis of CSR, seen at the Academic Medical Centre (Amsterdam, Netherlands) and the New York Eye and Ear Infirmary (New York, USA) between August 2002 and March 2004, were evaluated with standard digital FA and scanned with the OCT ophthalmoscope. RESULTS Nine of 38 eyes had no serous neurosensory detachment (inactive CSR) when scanned with the OCT ophthalmoscope. Characteristics for active CSR (n=29) were large neurosensory detachment (23/29), subretinal hyper-reflective depoits (20/29), and pigment epithelial detachment (15/29). One third of the patients, either active or inactive, had multiple small pigment epithelial detachments located both within and outside the neurosensory detachment. CONCLUSION The OCT ophthalmoscope provides complementary morphological information on patients with CSR. The presence of more diffuse retinal pigment epithelium (RPE) changes lends further support to the concept that CSR is a diffuse rather than localised RPE anomaly.
Collapse
Affiliation(s)
- M E J van Velthoven
- Department of Ophthalmology, Academic Medical Centre, PO Box 22660, 1100 DD Amsterdam, Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
A review is presented of different scanning, acquisition and processing techniques used to obtain depth-resolved information in optical-coherence tomography (OCT). The principles and performances of different OCT techniques are discussed and images from different types of tissue are presented. Special attention is devoted to the progress in using the time-domain flying spot OCT technique and combination of the en face OCT imaging with confocal microscopy. Although OCT is based on white light interferometry, which is a well established and an old technology, the quest for higher resolution and faster acquisition of in vivo images has ensured OCT a rapid evolution in the last decade. Highly adventurous avenues to expand the OCT capabilities and trends are presented at the end of the review.
Collapse
Affiliation(s)
- A Gh Podoleanu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NR, UK
| |
Collapse
|
49
|
Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005; 112:1734-46. [PMID: 16140383 PMCID: PMC1939719 DOI: 10.1016/j.ophtha.2005.05.023] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/16/2005] [Indexed: 02/09/2023] Open
Abstract
PURPOSE To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. METHODS Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. RESULTS Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. CONCLUSION Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
Collapse
Affiliation(s)
- Maciej Wojtkowski
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
- New England Eye Center, Tufts–New England Medical Center, Tufts University, Boston, Massachusetts
| | - Vivek Srinivasan
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tony Ko
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joel S. Schuman
- UPMC Eye Center, Department of Ophthalmology, Eye and Ear Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Jay S. Duker
- New England Eye Center, Tufts–New England Medical Center, Tufts University, Boston, Massachusetts
| |
Collapse
|
50
|
Hammer DX, Ferguson RD, Iftimia NV, Ustun T. Advanced scanning methods with tracking optical coherence tomography. OPTICS EXPRESS 2005; 13:7937-47. [PMID: 19498823 PMCID: PMC3763241 DOI: 10.1364/opex.13.007937] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 microm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute.
Collapse
|