1
|
Liu Y, Liu X, Gao S, Chai T, Zhao Z, Wang H, Jin Y, Jiang Y. Identification of cancerous tissues based on residual neural network. Sci Rep 2025; 15:13292. [PMID: 40246984 PMCID: PMC12006335 DOI: 10.1038/s41598-025-88441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/28/2025] [Indexed: 04/19/2025] Open
Abstract
The identification of cancerous tissues remains challenging due to the complexity of experimental methods and low identification accuracy rates. Therefore, this paper proposes a rapid identification method. We introduce a new theoretical transmission method for modeling laser beams transport in cancerous and normal biological tissues. Using this method, laser speckle patterns carrying tissue information are obtained at the light transmission receiving plane. Then, we propose a three-task residual neural network, T-ResNet-18, for identifying speckle images. We simulate the human normal and cancerous prostate tissues, rat normal and cancerous tissues, and normal and abnormal cell suspension as training samples. The results show the identification accuracy exceeding 99%. Additionally, we discuss the impact of varying dataset sizes, training epochs, and tissue thickness on identification accuracy and compare the performance of T-ResNet-18 with ResNet-18, VGG16 and AlexNet, showing that T-ResNet-18 significantly outperforms classic neural networks.
Collapse
Affiliation(s)
- Ying Liu
- School of Science, Shenyang Ligong University, Shenyang, 110159, China
| | - Xiaoyun Liu
- School of Science, Shenyang Ligong University, Shenyang, 110159, China.
| | - Siyu Gao
- School of Science, Shenyang Ligong University, Shenyang, 110159, China
| | - Tengfei Chai
- School of Science, Shenyang Ligong University, Shenyang, 110159, China
| | - Zihao Zhao
- School of Science, Shenyang Ligong University, Shenyang, 110159, China
| | - Hongwei Wang
- School of Science, Shenyang Ligong University, Shenyang, 110159, China
| | - Yumeihui Jin
- School of Science, Shenyang Ligong University, Shenyang, 110159, China
| | - Yueqiu Jiang
- Science and Technology Department, Shenyang Ligong University, Shenyang, 110159, China.
| |
Collapse
|
2
|
Annio G, Holm S, Mangin G, Penney J, Bacquët R, Mustapha R, Darwish O, Wittgenstein AS, Schregel K, Vilgrain V, Paradis V, Sølna K, Nordsletten DA, Sinkus R. Making sense of scattering: Seeing microstructure through shear waves. SCIENCE ADVANCES 2024; 10:eadp3363. [PMID: 39083612 PMCID: PMC11290519 DOI: 10.1126/sciadv.adp3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The physics of shear waves traveling through matter carries fundamental insights into its structure, for instance, quantifying stiffness for disease characterization. However, the origin of shear wave attenuation in tissue is currently not properly understood. Attenuation is caused by two phenomena: absorption due to energy dissipation and scattering on structures such as vessels fundamentally tied to the material's microstructure. Here, we present a scattering theory in conjunction with magnetic resonance imaging, which enables the unraveling of a material's innate constitutive and scattering characteristics. By overcoming a three-order-of-magnitude scale difference between wavelength and average intervessel distance, we provide noninvasively a macroscopic measure of vascular architecture. The validity of the theory is demonstrated through simulations, phantoms, in vivo mice, and human experiments and compared against histology as gold standard. Our approach expands the field of imaging by using the dispersion properties of shear waves as macroscopic observable proxies for deciphering the underlying ultrastructures.
Collapse
Affiliation(s)
- Giacomo Annio
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Sverre Holm
- Department of Physics, University of Oslo, Oslo, Norway
| | - Gabrielle Mangin
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
| | - Jake Penney
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
| | | | - Rami Mustapha
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Omar Darwish
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Valérie Vilgrain
- Department of Radiology, Beaujon Hospital, Clichy, France
- Inflammation Research Center, CRI, U1149, National Institute for Health and Medical Research (INSERM), Paris, France
| | - Valérie Paradis
- Inflammation Research Center, CRI, U1149, National Institute for Health and Medical Research (INSERM), Paris, France
- Department of Pathology, Beaujon Hospital, Clichy, France
| | - Knut Sølna
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA
| | - David Alexander Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Sinkus
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
3
|
Baykal Y, Gökçe MC, Gerçekcioğlu H, Ata Y. Correlations of multimode optical incidences in a turbulent biological tissue. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:2045-2051. [PMID: 38038070 DOI: 10.1364/josaa.500542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
In a turbulent biological tissue, field correlations at the observation plane are found when a multimode optical incidence is used. For different multimode structures, variations of the multimode field correlations are evaluated against the biological tissue turbulence parameters, i.e., the strength coefficient of the refractive-index fluctuations, fractal dimension, characteristic length of heterogeneity, and the small length-scale factor. Using a chosen multimode content, for specific biological tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human), and deep dermis (mouse), field correlations are evaluated versus the strength coefficient of the refractive-index fluctuations and small length-scale factor. Again, with a chosen multimode content, behavior of the field correlations is studied against the strength coefficient of the refractive-index fluctuations for various diagonal lengths and the transverse coordinate at the observation plane. Finally, the field correlation versus the strength coefficient of the refractive-index fluctuations is reported for different single modes, which are special cases of multimode excitation. This topic is being reported in the literature for the first time, to our knowledge, and the presented results can be employed in many important biological tissue applications.
Collapse
|
4
|
Imanishi H, Nishimura T, Shimojo Y, Awazu K. Deep learning based depth map estimation of protoporphyrin IX in turbid media using dual wavelength excitation fluorescence. BIOMEDICAL OPTICS EXPRESS 2023; 14:5254-5266. [PMID: 37854564 PMCID: PMC10581804 DOI: 10.1364/boe.500022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
This study presents a depth map estimation of fluorescent objects in turbid media, such as biological tissue based on fluorescence observation by two-wavelength excitation and deep learning-based processing. A U-Net-based convolutional neural network is adapted for fluorophore depth maps from the ratiometric information of the two-wavelength excitation fluorescence. The proposed method offers depth map estimation from wide-field fluorescence images with rapid processing. The feasibility of the proposed method was demonstrated experimentally by estimating the depth map of protoporphyrin IX, a recognized cancer biomarker, at different depths within an optical phantom.
Collapse
Affiliation(s)
- Hinano Imanishi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Takahiro Nishimura
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Yu Shimojo
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka 545-8585, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi 5-3-1, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Meiers DT, von Freymann G. Mixing rule for calculating the effective refractive index beyond the limit of small particles. OPTICS EXPRESS 2023; 31:32067-32081. [PMID: 37859017 DOI: 10.1364/oe.494653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/05/2023] [Indexed: 10/21/2023]
Abstract
Considering light transport in disordered media, the medium is often treated as an effective medium requiring accurate evaluation of an effective refractive index. Because of its simplicity, the Maxwell-Garnett (MG) mixing rule is widely used, although its restriction to particles much smaller than the wavelength is rarely satisfied. Using 3D finite-difference time-domain simulations, we show that the MG theory indeed fails for large particles. Systematic investigation of size effects reveals that the effective refractive index can be instead approximated by a quadratic polynomial whose coefficients are given by an empirical formula. Hence, a simple mixing rule is derived which clearly outperforms established mixing rules for composite media containing large particles, a common condition in natural disordered media.
Collapse
|
6
|
Zhu Y, Zhou Y, Guo Z. Fractal-based aberration-corrected full-field OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:3775-3797. [PMID: 37497484 PMCID: PMC10368032 DOI: 10.1364/boe.485090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The Kolmogorov turbulence model has been validated as a quantitative 3D light scattering model of the inhomogeneous refraction index of biological tissue using full-field OCT (FF-OCT). A fractal-based computational compensation approach was proposed for correcting of depth-resolved aberrations with volumetric FF-OCT. First, the power-spectral density spectrum of the index inhomogeneities was measured by radial Fourier transformation of volumetric data. The spectrum's shape indicates the spatial correlation function and can be quantified as the fractal dimension of tissue. The defocusing correction matrix was built by applying fractal-based analysis as an image quality metric. For comparison, tissue-induced in-depth aberration models were built by phase compensation. After digital aberration correction of FF-OCT images, it enables extracting the temporal contrast indicating the sample dynamics in onion in mitosis and ex vivo mouse heart during delayed neuronal death. The proposed fractal-based contrast augmented images show subcellular resolution recording of dynamic scatters of the growing-up onion cell wall and some micro activities. In addition, low-frequency chamber and high-frequency cardiac muscle fibers from ex vivo mouse heart tissue. Therefore, the depth-resolved changes in fractal parameters may be regarded as a quantitative indicator of defocus aberration compensation. Also the enhanced temporal contrast in FF-OCT has the potential to be a label-free, non-invasive, and three-dimensional imaging tool to investigate sub-cellular activities in metabolism studies.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Yuan Zhou
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Zhenyan Guo
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| |
Collapse
|
7
|
Ata Y, Baykal Y, Gökçe MC. Structure functions for optical waves in a complex medium of turbulent biological tissues. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:2271-2281. [PMID: 36520744 DOI: 10.1364/josaa.475381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Although optical wave propagation is investigated based on the absorption and scattering in biological tissues, the turbulence effect can also not be overlooked. Here, the closed-form expressions of the wave structure function (WSF) and phase structure function (PSF) of plane and spherical waves propagating in biological tissue are obtained to help with future research on imaging, intensity, and coherency in turbulent biological tissues. This paper presents the effect of turbulent biological tissue on optical wave propagation to give a perception of the performance of biomedical systems that use optical technologies. The behavior of optical waves in different types of turbulent biological tissues such as a liver parenchyma (mouse), an intestinal epithelium (mouse), a deep dermis (mouse), and an upper dermis (human) are investigated and compared. It is observed that turbulence becomes more effective with an increase in the characteristic length of heterogeneity, propagation distance, and the strength of the refractive index fluctuations. However, an increase in the fractal dimension, wavelength, and small length scale factor has a smaller turbulence effect on the propagating optical wave. We envision that our results may be used to interpret the performance of optical medical systems operating in turbulent biological tissues.
Collapse
|
8
|
Baykal Y. Field correlations of a partially coherent optical Gaussian wave in tissue turbulence. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:C6-C11. [PMID: 36520717 DOI: 10.1364/josaa.470029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/10/2022] [Indexed: 06/17/2023]
Abstract
For a partially coherent Gaussian optical wave, field correlations in turbulent tissues are examined. Changes in the field correlations are evaluated when the degree of source coherence, diagonal length from the receiver point, transverse receiver coordinate, tissue type, tissue length, source size, characteristic length of heterogeneity, strength coefficient of the refractive-index fluctuations, fractal dimension, and the small length-scale factor of the turbulent tissue vary. Investigated turbulent tissue types are liver parenchyma (mouse), upper dermis (human), intestinal epithelium (mouse), and deep dermis (mouse). For all the examined tissue types, field correlations are found to increase as the degree of source coherence, fractal dimension, and small length-scale factor increase and as the diagonal length from the receiver point, transverse receiver coordinate, tissue length, characteristic length of heterogeneity, and strength coefficient of the refractive-index fluctuations decrease. For the coherent source, an increase in the source size will increase the field correlations; however, for the partially coherent source, this trend is reversed.
Collapse
|
9
|
Ganoza-Quintana JL, Arce-Diego JL, Fanjul-Vélez F. Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:9295. [PMID: 36501995 PMCID: PMC9738430 DOI: 10.3390/s22239295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Histopathology is the gold standard for disease diagnosis. The use of digital histology on fresh samples can reduce processing time and potential image artifacts, as label-free samples do not need to be fixed nor stained. This fact allows for a faster diagnosis, increasing the speed of the process and the impact on patient prognosis. This work proposes, implements, and validates a novel digital diagnosis procedure of fresh label-free histological samples. The procedure is based on advanced phase-imaging microscopy parameters and artificial intelligence. Fresh human histological samples of healthy and tumoral liver, kidney, ganglion, testicle and brain were collected and imaged with phase-imaging microscopy. Advanced phase parameters were calculated from the images. The statistical significance of each parameter for each tissue type was evaluated at different magnifications of 10×, 20× and 40×. Several classification algorithms based on artificial intelligence were applied and evaluated. Artificial Neural Network and Decision Tree approaches provided the best general sensibility and specificity results, with values over 90% for the majority of biological tissues at some magnifications. These results show the potential to provide a label-free automatic significant diagnosis of fresh histological samples with advanced parameters of phase-imaging microscopy. This approach can complement the present clinical procedures.
Collapse
|
10
|
Ge GR, Song W, Nedergaard M, Rolland JP, Parker KJ. Theory of sleep/wake cycles affecting brain elastography. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9e40. [PMID: 36317278 PMCID: PMC9999375 DOI: 10.1088/1361-6560/ac9e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
As elastography of the brain finds increasing clinical applications, fundamental questions remain about baseline viscoelastic properties of the brainin vivo. Furthermore, the underlying mechanisms of how and why elastographic measures can change over time are still not well understood. To study these issues, reverberant shear wave elastography using an optical coherence tomography scanner is implemented on a mouse model, both under awake conditions and in a sleep state where there are known changes in the glymphatic fluid flow system in the brain. We find that shear wave speed, a measure of stiffness, changes by approximately 12% between the two states, sleep versus awake, in the entire cortical brain imaging volume. Our microchannel flow model of biphasic (fluid plus solid) tissue provides a plausible rheological model based on the fractal branching vascular and perivascular system, plus a second parallel system representing the finer scale glymphatic fluid microchannels. By adjusting the glymphatic system fluid volume proportional to the known sleep/wake changes, we are able to approximately predict the measured shear wave speeds and their change with the state of the glymphatic system. The advantages of this model are that its main parameters are derived from anatomical measures and are linked to other major derivations of branching fluid structures including Murray's Law. The implications for clinical studies are that elastography of the brain is strongly influenced by the regulation or dysregulation of the vascular, perivascular, and glymphatic systems.
Collapse
Affiliation(s)
- Gary R Ge
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Box 270186, Rochester, NY 14627, United States of America
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, United States of America
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, United States of America
| | - Jannick P Rolland
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Box 270186, Rochester, NY 14627, United States of America
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| |
Collapse
|
11
|
Shapey J, Xie Y, Nabavi E, Ebner M, Saeed SR, Kitchen N, Dorward N, Grieve J, McEvoy AW, Miserocchi A, Grover P, Bradford R, Lim YM, Ourselin S, Brandner S, Jaunmuktane Z, Vercauteren T. Optical properties of human brain and tumour tissue: An ex vivo study spanning the visible range to beyond the second near-infrared window. JOURNAL OF BIOPHOTONICS 2022; 15:e202100072. [PMID: 35048541 DOI: 10.1002/jbio.202100072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Neuro-oncology surgery would benefit from detailed intraoperative tissue characterization provided by noncontact, contrast-agent-free, noninvasive optical imaging methods. In-depth knowledge of target tissue optical properties across a wide-wavelength spectrum could inform the design of optical imaging and computational methods to enable robust tissue analysis during surgery. We adapted a dual-beam integrating sphere to analyse small tissue samples and investigated ex vivo optical properties of five types of human brain tumour (meningioma, pituitary adenoma, schwannoma, low- and high-grade glioma) and nine different types of healthy brain tissue across a wavelength spectrum of 400 to 1800 nm. Fresh and frozen tissue samples were analysed. All tissue types demonstrated similar absorption spectra, but the reduced scattering coefficients of tumours show visible differences in the obtained optical spectrum compared to those of surrounding normal tissue. These results underline the potential of optical imaging technologies for intraoperative tissue characterization.
Collapse
Affiliation(s)
- Jonathan Shapey
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Yijing Xie
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Elham Nabavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Michael Ebner
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Shakeel R Saeed
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- The Ear Institute, University College London, London, UK
- The Royal National Throat, Nose and Ear Hospital, London, UK
| | - Neil Kitchen
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Neil Dorward
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Joan Grieve
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrew W McEvoy
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Anna Miserocchi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Patrick Grover
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert Bradford
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Yau-Mun Lim
- Division of Neuropathology, UCL Queen Square Institute of Neurology, and The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, UCL Queen Square Institute of Neurology, and The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, UCL Queen Square Institute of Neurology, and The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Complex refractive index of freshly excised human breast tissue as a marker of disease. Lasers Med Sci 2022; 37:2597-2604. [PMID: 35301608 DOI: 10.1007/s10103-022-03524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/05/2022] [Indexed: 10/18/2022]
Abstract
We report differences in the refractive index of healthy and tumorous freshly excised human breast tissue as determined from reflectance profile measurements at five wavelengths (432 nm, 532 nm, 633 nm, 964 nm, 1551 nm) in the visible and near-infrared using a standard prism-coupling refractometer. These refractive index differences, particularly in the near-infrared, can be used to distinguish fibroadenomas and cancerous growths not only from normal breast tissue but also from each other.
Collapse
|
13
|
Skin color measurements before and after two weeks of sun exposure. Vision Res 2021; 192:107976. [PMID: 34890929 DOI: 10.1016/j.visres.2021.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022]
Abstract
We performed spectrophotometric measurements of skin reflectance at four body locations (forehead, cheek, neck, and back of hand), before and after two weeks of sun exposure, for 103 first-year college students. Skin reflectance was measured twice at each body location, before and after two weeks of sun exposure, obtaining an average repeatability (mean color difference from the mean) in the range of 0.2-0.5 CIELAB units (D65 illuminant, CIE 1931 standard observer). However, the average skin color differences before and after two weeks of sun exposure were in the range of 3.6-3.9 CIELAB units, considerably higher than measured repeatability, as a consequence of suntanning. Skin color appearance variation was analyzed in the CIELAB color space, and it was found that at all body locations two weeks of sun exposure made lightness L∗ and hue-angle hab significantly decrease, a∗ and chroma Cab∗ significantly increase, and b∗ shows no statistically significant changes (except for hab at the forehead and cheek, and for a∗ at the forehead where no statistically significant changes were found). An W shape for skin spectral reflectance between 520 nm and 600 nm was found at some of the four measured body locations. It was found that the individual typological angle (ITA) defined from L∗ and b∗ performed well in predicting our measured data and a modification of ITA using L∗ and Cab∗ performed even better, with the measured L∗ as reference. The color shifts produced by two weeks of sun exposure in different planes of CIELAB were analyzed for the skin categories established by the ITA index, and compared with the control group data accumulated by Amano et al. (PLoS ONE. 15(12), e0233816)(PLoS ONE 15(2020) e0233816). The measured skin spectra can be useful to the skin color database currently being developed by CIE TC 1-92.
Collapse
|
14
|
Ge GR, Rolland JP, Parker KJ. Speckle statistics of biological tissues in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4179-4191. [PMID: 34457407 PMCID: PMC8367221 DOI: 10.1364/boe.422765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The speckle statistics of optical coherence tomography images of biological tissue have been studied using several historical probability density functions. Here, we propose a new theoretical framework based on power-law functions, where we hypothesize that an underlying power-law distribution governs scattering from tissues. Thus, multi-scale scattering sites including the fractal branching vasculature will contribute to power-law probability distributions of speckle statistics. Specifically, these are the Burr type XII distribution for speckle amplitude, the Lomax distribution for intensity, and the generalized logistic distribution for log amplitude. Experimentally, these three distributions are fitted to histogram data from nine optical coherence tomography scans of various samples and biological tissues, in vivo and ex vivo. The distributions are also compared with classical models such as the Rayleigh, K, and gamma distributions. The results indicate that across OCT datasets of various tissue types, the proposed power-law distributions are more appropriate models yielding novel parameters for characterizing the physics of scattering from biological tissue. Thus, the overall framework brings to the field new biomarkers from OCT measures of speckle in tissues, grounded in basic biophysics and with wide applications to diagnostic imaging in clinical use.
Collapse
Affiliation(s)
- Gary R. Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, New York 14627, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, New York 14627, USA
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, New York 14627, USA
- Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, New York 14627, USA
| | - Kevin J. Parker
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, New York 14627, USA
- Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagnosis Photodyn Ther 2021; 33:102192. [PMID: 33508501 DOI: 10.1016/j.pdpdt.2021.102192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/24/2022]
Abstract
Refractive index (RI) is a characteristic optical variable that controls the propagation of light in the medium (e.g., biological tissues). Basic research with the aim to investigate the RI of biological tissues is of paramount importance for biomedical optics and associated applications. Herein, we reviewed and summarized the RI data of biological tissues and the associated insights. Different techniques for the measurement of RI of biological tissues are also discussed. Moreover, several examples of the RI applications from basic research, clinics and optics industry are outlined. This study may provide a comprehensive reference for RI data of biological tissues for the biomedical research and beyond.
Collapse
|
16
|
Abstract
Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye's imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions.
Collapse
|
17
|
Zhu Y, Gao W, Guo Z, Zhou Y, Zhou Y. Liver tissue classification of en face images by fractal dimension-based support vector machine. JOURNAL OF BIOPHOTONICS 2020; 13:e201960154. [PMID: 31909553 DOI: 10.1002/jbio.201960154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Full-field optical coherence tomography (FF-OCT) has been reported with its label-free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is proposed with en face tomographic images. Twenty samples (10 normal and 10 cancerous) were operated from humans and composed of 285 en face tomographic images. Six histogram features and one proposed fractal dimension parameter that reveal the refractive index inhomogeneities of tissue were extracted and made up the training set. The other different 16 samples (8 normal and 8 cancerous) were imaged (190 images) and employed as the test set with the same features. First, a subcellular-resolution tomographic image library for four histopathological areas in liver tissue was established. Second, the area under the receiver operating characteristics of 0.9378, 0.9858, 0.9391, 0.9517 for prediction of the cancerous hepatic cell, central vein, fibrosis, and portal vein were measured with the test set. The results indicate that the proposed classifier from FF-OCT images shows promise as a label-free assessment of quantified tumor detection, suggesting the fractal dimension-based classifier could aid clinicians in detecting tumor boundaries for resection in surgery in the future.
Collapse
Affiliation(s)
- Yue Zhu
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Wanrong Gao
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Zhenyan Guo
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Yawen Zhou
- Nanjing University of Science and Technology, Department of Optical Engineering, Nanjing, China
| | - Yuan Zhou
- Nanjing University, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Kumar Bhardwaj V, Maini S. Compact and self-aligned fluid refractometer based on the Doppler-induced self-mixing effect. APPLIED OPTICS 2020; 59:3064-3072. [PMID: 32400586 DOI: 10.1364/ao.388078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
The refractive index is one of the key parameters in non-invasive and label-free sensing applications. The past decade has witnessed various miniature optofluidic devices that offer several analytical functions with minuscule samples (picoliter or nanoliter) through the fusion of optics and microfluidic sciences. However, the realization of a compact, wide-range, and less-expensive refractometer is still a great challenge. In this paper, the authors have proposed a novel, to the best of our knowledge, self-mixing optical feedback interferometry (SM-OFI)-based refractometer that correlates the refractive index of a flowing liquid to the induced Doppler frequency shift. The proposed method was experimentally tested on the saline water and benzyl chloride and found close agreement with the literature results. The refractive indices of the saline water and benzyl chloride were measured to be 1.3346 and 1.54079, respectively, with a standard deviation of the order of 10-5. The induced Doppler shift was linearly increased with the concentration of the liquid during the concentration profiling. Hence, the proposed method was also capable to profile the liquid concentration. The well-known compatibility and cost-effectiveness of the SM-OFI setup also support the proposed method for miniature applications. The compactness and the portability of the experimental setup also make it compatible in areas of application where the size of the analytical section is a decisive parameter, such as biosensors, particle manipulators, chemically active devices, lab-on-chip instruments, etc.
Collapse
|
19
|
|
20
|
Abstract
Ultrasound imaging of the liver is an everyday, worldwide clinical tool. The echoes are produced by inhomogeneities within the interrogated tissue, but what are the mathematical properties of these scatterers? In theory, the spatial correlation function and the backscatter coefficient are linked by a Fourier transform relationship, however direct measures of these are relatively rare. Under the hypothesis that the fractal branching vasculature and fluid channels are the predominant source of scattering in normal tissues, we compare theory and experimental measures of the autocorrelation function, the frequency dependence of scattering, and fractal dimension estimates from high contrast 3D micro-CT data sets of rat livers. The results demonstrate a fractal dimension of approximately 2.2 with corresponding power law estimates of autocorrelation and ultrasound scattering. These results support a general framework for the analysis of ultrasound scattering from soft tissues.
Collapse
|
21
|
Eguchi A, Milster TD. Single-shot phase retrieval with complex diversity. OPTICS LETTERS 2019; 44:5108-5111. [PMID: 31674943 DOI: 10.1364/ol.44.005108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The concept of complex diversity is introduced that adequately accounts for special considerations in the design of the system and the reconstruction algorithm for single-shot phase retrieval techniques. Complex-number pupil filters containing both amplitude and phase values are extracted by numerical propagation from a computer-generated hologram design, which generates multiple images in a single acquisition. The reconstruction is performed by a Fourier iterative algorithm modified with an area restriction to avoid noise amplification. Numerical simulations show that the complex diversity technique estimates extrinsic Kolmogorov aberration better than conventional single-shot techniques for a distant point object. Experiments show that sensorless adaptive optics correction is achieved using the complex diversity technique.
Collapse
|
22
|
Abstract
What causes scattering of ultrasound from normal soft tissues such as the liver, thyroid, and prostate? Commonly, the answer is formulated around the properties of spherical scatterers, related to cellular shapes and sizes. However, an alternative view is that the closely packed cells forming the tissue parenchyma create the reference media, and the long cylindrical-shaped fluid vessels serve as the scattering sites. Under a weak scattering or Born approximation for the extracellular fluid in the vessels, and assuming an isotropic distribution of cylindrical channels across a wide range of diameters, consistent with a fractal branching pattern, some simple predictions can be made about the nature of backscatter as a function of frequency in soft tissues. Specifically, a number of plausible shapes would predict that backscatter increases as a power law of frequency, where the power law is determined by the function governing the number density of the vessels versus diameter. These results are compared with some historical models developed over the last 100 years in scattering theory and point to the need for higher spatial resolution and higher bandwidths to obtain more precise measures of the key parameters in normal tissues, and to better identify the dominant structures responsible for backscatter in everyday clinical imaging.
Collapse
Affiliation(s)
- K J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Computer Studies Building 724, Box 270231, Rochester, NY, 14627, United States of America
| |
Collapse
|
23
|
Eguchi A, Brewer J, Milster TD. Optimization of random phase diversity for adaptive optics using an LCoS spatial light modulator. APPLIED OPTICS 2019; 58:6834-6840. [PMID: 31503653 DOI: 10.1364/ao.58.006834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Phase retrieval is an attractive approach for sensor-less adaptive optics (AO) because of its relatively simple implementation. Recently, random phase diversity has shown fast convergence for phase retrieval algorithms. In this study, design optimization using random phase diversity is discussed with respect to a sensor-less AO system using a liquid-crystal-on-silicon (LCoS) spatial light modulator. The extrinsic phase disturbances studied are due to Kolmogorov turbulence. Simulation analysis shows that the size of super-pixel segments of the random phase patterns on the LCoS and the cropped image area of the phasorgrams are determined by Fried's parameter for high-Strehl-ratio and low-iteration-number reconstruction. AO experiments with an LCoS spatial light modulator confirm the simulation results.
Collapse
|
24
|
Ge X, Tang H, Wang X, Liu X, Chen S, Wang N, Ni G, Yu X, Chen S, Liang H, Bo E, Wang L, Braganza CS, Xu C, Rowe SM, Tearney GJ, Liu L. Geometry-Dependent Spectroscopic Contrast in Deep Tissues. iScience 2019; 19:965-975. [PMID: 31522119 PMCID: PMC6745491 DOI: 10.1016/j.isci.2019.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/10/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Nano-structures of biological systems can produce diverse spectroscopic effects through interactions with broadband light. Although structured coloration at the surface has been extensively studied, natural spectroscopic contrasts in deep tissues are poorly understood, which may carry valuable information for evaluating the anatomy and function of biological systems. Here we investigated the spectroscopic characteristics of an important geometry in deep tissues at the nanometer scale: packed nano-cylinders, in the near-infrared window, numerically predicted and experimentally proved that transversely oriented and regularly arranged nano-cylinders could selectively backscatter light of the long wavelengths. Notably, we found that the spectroscopic contrast of nanoscale fibrous structures was sensitive to the pressure load, possibly owing to the changes in the orientation, the degree of alignment, and the spacing. To explore the underlying physical basis, we further developed an analytical model based on the radial distribution function in terms of their radius, refractive index, and spatial distribution.
Collapse
Affiliation(s)
- Xin Ge
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Hongying Tang
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Xinyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Si Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Nanshuo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Guangming Ni
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shufen Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Haitao Liang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - En Bo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Lulu Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Cilwyn Shalitha Braganza
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore.
| |
Collapse
|
25
|
Zhang XU, Faber DJ, Post AL, van Leeuwen TG, Sterenborg HJCM. Refractive index measurement using single fiber reflectance spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900019. [PMID: 30908898 PMCID: PMC7065624 DOI: 10.1002/jbio.201900019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
A method using single fiber reflectance spectroscopy to measure the refractive indices of transparent and turbid media over a broad wavelength range is presented and tested. For transparent liquid samples, the accuracy is within 0.2%, and the accuracy increases with increasing wavelength. For liquid turbid media, the accuracy is within 0.3% and increases with decreasing wavelength. For solid turbid samples, such as human skin, the accuracy critically depends on the optical contact between the fiber and sample surface. It is demonstrated that this technique has the potential to measure refractive indices of biological tissue in vivo.
Collapse
Affiliation(s)
- Xu U. Zhang
- Biomedical Engineering and PhysicsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Dirk J. Faber
- Biomedical Engineering and PhysicsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Anouk L. Post
- Biomedical Engineering and PhysicsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of SurgeryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ton G. van Leeuwen
- Biomedical Engineering and PhysicsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Henricus J. C. M. Sterenborg
- Biomedical Engineering and PhysicsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of SurgeryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
26
|
Parker KJ, Carroll-Nellenback JJ, Wood RW. The 3D Spatial Autocorrelation of the Branching Fractal Vasculature. ACOUSTICS (BASEL, SWITZERLAND) 2019; 1:369-382. [PMID: 31179443 PMCID: PMC6550346 DOI: 10.3390/acoustics1020020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fractal branching vasculature within soft tissues and the mathematical properties of the branching system influence a wide range of important phenomena from blood velocity to ultrasound backscatter. Among the mathematical descriptors of branching networks, the spatial autocorrelation function plays an important role in statistical measures of the tissue and of wave propagation through the tissue. However, there are open questions about analytic models of the 3D autocorrelation function for the branching vasculature and few experimental validations for soft vascularized tissue. To address this, high resolution computed tomography scans of a highly vascularized placenta perfused with radiopaque contrast through the umbilical artery were examined. The spatial autocorrelation function was found to be consistent with a power law, which then, in theory, predicts the specific power law behavior of other related functions, including the backscatter of ultrasound.
Collapse
Affiliation(s)
- Kevin J. Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
| | | | - Ronald W. Wood
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
27
|
Li Y, Zhang Y, Zhu Y, Yu L. Modified biological spectrum and SNR of Laguerre-Gaussian pulsed beams with orbital angular momentum in turbulent tissue. OPTICS EXPRESS 2019; 27:9749-9762. [PMID: 31045124 DOI: 10.1364/oe.27.009749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
We propose a modified biological spectrum that contains both short length-scale and long length-scale to study light propagation through turbulent biological tissue. Based on the two-scale modified biological spectrum, we derive an analytic expression of the two-frequency mutual coherence function of Laguerre-Gaussian pulsed beam and establish a model of the signal-to-noise ratio (SNR) of Laguerre-Gaussian pulsed beam carrying orbital angular momentum in turbulent biological tissue. The results show that the modified biological spectrum agrees well with experimental results. In addition, the structural length-scale of biological tissue has a significant influence on the bandwidths and SNR of orbital angular momentum states. This work provides theoretical preparation for more accurately medical diagnosis and optical imaging.
Collapse
|
28
|
Tang H, Liu X, Chen S, Yu X, Luo Y, Wu J, Wang X, Liu L. Estimation of Refractive Index for Biological Tissue Using Micro-Optical Coherence Tomography. IEEE Trans Biomed Eng 2018; 66:1803-1809. [PMID: 30530305 DOI: 10.1109/tbme.2018.2885844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The refractive index of a biological tissue is required for investigating the tissue's optical properties. Efforts have been made to characterize the refractive indices of biological tissues at a single wavelength, but it is more convenient to know the Cauchy's coefficients, which provide refractive index over a wide range of wavelengths. We demonstrate a method to noninvasively provide the Cauchy's dispersion coefficients of biological tissues using a micro-optical coherence tomography. Using the short-frequency Fourier transforms, the relative optical thickness of the sample in the wavelength range of the broadband source was obtained from interferograms. The coefficients of the Cauchy's equation were estimated based on the wavelength-dependent sample thickness. We validated the proposed method using distilled water and fresh rat cornea ex vivo, and the experimental results were consistent with the reference data.
Collapse
|
29
|
Sahay P, Ganju A, Almabadi HM, Ghimire HM, Yallapu MM, Skalli O, Jaggi M, Chauhan SC, Pradhan P. Quantification of photonic localization properties of targeted nuclear mass density variations: Application in cancer-stage detection. JOURNAL OF BIOPHOTONICS 2018; 11:e201700257. [PMID: 29222925 DOI: 10.1002/jbio.201700257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/27/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Light localization is a phenomenon which arises due to the interference effects of light waves inside a disordered optical medium. Quantification of degree light localization in optical media is widely used for characterizing degree of structural disorder in that media. Recently, this light localization approach was extended to analyze structural changes in biological cell like heterogeneous optical media, with potential application in cancer diagnostics. Confocal fluorescence microscopy was used to construct "optical lattices," which represents 2-dimensional refractive index map corresponding to the spatial mass density distribution of a selected molecule inside the cell. The structural disorder properties of the selected molecules were evaluated numerically using light localization strength in these optical lattices, in a single parameter called "disorder strength." The method showed a promising potential in differentiating cancerous and non-cancerous cells. In this paper, we show that by quantifying submicron scale disorder strength in the nuclear DNA mass density distribution, a wide range of control and cancerous breast and prostate cells at different hierarchy levels of tumorigenicity were correctly distinguished. We also discuss how this photonic technique can be used in examining tumorigenicity level in unknown prostate cancer cells, and potential to generalize the method to other cancer cells.
Collapse
Affiliation(s)
- Peeyush Sahay
- BioNanoPhotonics Laboratory, Department of Physics, University of Memphis, Memphis, Tennessee
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Huda M Almabadi
- BioNanoPhotonics Laboratory, Department of Physics, University of Memphis, Memphis, Tennessee
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee
| | - Hemendra M Ghimire
- BioNanoPhotonics Laboratory, Department of Physics, University of Memphis, Memphis, Tennessee
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Omar Skalli
- Department of Life Sciences and Integrated Microscopy Center, University of Memphis, Memphis, Tennessee
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Prabhakar Pradhan
- BioNanoPhotonics Laboratory, Department of Physics, University of Memphis, Memphis, Tennessee
| |
Collapse
|
30
|
Sugita M, Brown RA, Popov I, Vitkin A. K-distribution three-dimensional mapping of biological tissues in optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28700119 DOI: 10.1002/jbio.201700055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/22/2017] [Accepted: 05/19/2017] [Indexed: 05/05/2023]
Abstract
Probability density function (PDF) analysis with K-distribution model of optical coherence tomography (OCT) intensity signals has previously yielded a good representation of the average number of scatterers in a coherence volume for microspheres-in-water systems, and has shown initial promise for biological tissue characterization. In this work, we extend these previous findings, based on single point M-mode or two-dimenstional slice analysis, to full three-dimensional (3D) imaging maps of the shape parameter α of the K-distribution PDF. After selecting a suitably sized 3D evaluation window, and verifying methodology in phantoms, the resultant parametric α images obtained in different animal tissues (rat liver and brain) show new contrasting ability not seen in conventional OCT intensity images.
Collapse
Affiliation(s)
- Mitsuro Sugita
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert A Brown
- Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ivan Popov
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Division of Biophysics and Bioimaging, Ontario Cancer Institute/University Health Network, Toronto, Canada
| |
Collapse
|
31
|
Chen M, Yu L, Zhang Y. Signal/noise ratio of orbital angular momentum modes for a partially coherent modified Bessel-correlated beam in a biological tissue. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:2046-2051. [PMID: 29091656 DOI: 10.1364/josaa.34.002046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
The random fluctuation of the refractive index is an important factor that affects the light transmission in a biological tissue. Here we have derived an expression of signal/noise ratio or equivalent intensity of the orbital angular momentum (OAM) mode for the partially coherent modified Bessel-correlated beam in a turbulent biological tissue. Effects of specific parameters of the biological tissue on it have been studied, such as the outer scale of the tissue index inhomogeneities, the fractal dimension of the particle size distribution, temperature fluctuation strength, and the cutoff correlation length. We argue that selecting a small quantum number of OAM modes is an effective means to improve signal transmission quality. We can adjust the propagation distance, the wavelength of the light source, and the diameter of the receiving aperture to obtain the optimum signal detection results. Also, nondiffracting vortex light can increase the communication channel capacity. Our findings will provide an important theoretical basis for the design and research of medical devices.
Collapse
|
32
|
Simmons ZJ, Rogers JD. Microscope objective based 4 π spectroscopic tissue scattering goniometry. BIOMEDICAL OPTICS EXPRESS 2017; 8:3828-3841. [PMID: 28856053 PMCID: PMC5560844 DOI: 10.1364/boe.8.003828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
The measurement of optical scattering as a function of angle, goniometry, can provide a wealth of information about tissue. The goniometry technique described here measures the intensity profile at the pupil planes of two microscope objectives with a scattering sample between them. The maximum observable scattering angle is extended by employing off-axis illumination. This configuration permits several advantages including: i) rapid measurement of scattering into 4π sr to characterize the entire scattering phase function in isotropic tissue, ii) sensitivity to axially asymmetric scattering from anisotropic fibrous tissue, iii) selective interrogation of small regions within spatially inhomogenous tissue, iv) concurrent measurement of scattering coefficient μs , and v) measurement of wavelength dependent scattering properties via spectrally tunable source. The instrument is validated by comparing measurements of microsphere suspensions to the Mie scattering solution. Instrument capabilities are demonstrated with samples of rat brain and mouse eye tissues.
Collapse
Affiliation(s)
- Z. J. Simmons
- Department of Biomedical Engineering, University of Wisconsin–Madison, 1550 Engineering Drive, Madison, WI 53706,
USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1111 Highland Avenue, WIMR 9433, Madison, WI 53705,
USA
| | - J. D. Rogers
- Department of Biomedical Engineering, University of Wisconsin–Madison, 1550 Engineering Drive, Madison, WI 53706,
USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1111 Highland Avenue, WIMR 9433, Madison, WI 53705,
USA
| |
Collapse
|
33
|
Sahay P, Almabadi HM, Ghimire HM, Skalli O, Pradhan P. Light localization properties of weakly disordered optical media using confocal microscopy: application to cancer detection. OPTICS EXPRESS 2017; 25:15428-15440. [PMID: 28788968 PMCID: PMC5557329 DOI: 10.1364/oe.25.015428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
We have developed a novel technique to quantify submicron scale mass density fluctuations in weakly disordered heterogeneous optical media using confocal fluorescence microscopy. Our method is based on the numerical evaluation of the light localization properties of an 'optical lattice' constructed from the pixel intensity distributions of images obtained with confocal fluorescence microscopy. Here we demonstrate that the technique reveals differences in the mass density fluctuations of the fluorescently labeled molecules between normal and cancer cells, and that it has the potential to quantify the degree of malignancy of cancer cells. Potential applications of the technique to other disease situations or characterizing disordered samples are also discussed.
Collapse
Affiliation(s)
- Peeyush Sahay
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee, 38152, USA
- These authors contributed equally to the work
| | - Huda M. Almabadi
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee, 38152, USA
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, 38152, USA
- These authors contributed equally to the work
| | - Hemendra M. Ghimire
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Omar Skalli
- Department of Biological Sciences and Integrated Microscopy Center, University of Memphis, Tennessee, 38152, USA
| | - Prabhakar Pradhan
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee, 38152, USA
| |
Collapse
|
34
|
Gao W, Wu X. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues. J Microsc 2017; 268:119-128. [PMID: 28600827 DOI: 10.1111/jmi.12592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022]
Abstract
It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications.
Collapse
Affiliation(s)
- W Gao
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, P. R. China
| | - X Wu
- Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
35
|
Xu M. Plum pudding random medium model of biological tissue toward remote microscopy from spectroscopic light scattering. BIOMEDICAL OPTICS EXPRESS 2017; 8:2879-2895. [PMID: 28663913 PMCID: PMC5480436 DOI: 10.1364/boe.8.002879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 05/02/2023]
Abstract
Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the "anomalous" trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement.
Collapse
Affiliation(s)
- Min Xu
- Department of Physics, Fairfield University, 1073 North Benson Road, Fairfield, CT 06824,
USA
| |
Collapse
|
36
|
Abstract
Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform. Random fibre lasers constitute a class of lasers where the optical feedback is provided by multiple scattering in a disordered system. Here, González et al. theoretically and experimentally study the statistical turbulence behaviour in relation to the lasing transition in such lasers.
Collapse
|
37
|
Yi J, Puyang Z, Feng L, Duan L, Liang P, Backman V, Liu X, Zhang HF. Optical Detection of Early Damage in Retinal Ganglion Cells in a Mouse Model of Partial Optic Nerve Crush Injury. Invest Ophthalmol Vis Sci 2017; 57:5665-5671. [PMID: 27784071 PMCID: PMC5089219 DOI: 10.1167/iovs.16-19955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Elastic light backscattering spectroscopy (ELBS) has exquisite sensitivity to the ultrastructural properties of tissue and thus has been applied to detect various diseases associated with ultrastructural alterations in their early stages. This study aims to test whether ELBS can detect early damage in retinal ganglion cells (RGCs). Methods We used a mouse model of partial optic nerve crush (pONC) to induce rapid RGC death. We confirmed RGC loss by axon counting and characterized the changes in retinal morphology by optical coherence tomography (OCT) and in retinal function by full-field electroretinogram (ERG), respectively. To quantify the ultrastructural properties, elastic backscattering spectroscopic analysis was implemented in the wavelength-dependent images recorded by reflectance confocal microscopy. Results At 3 days post-pONC injury, no significant change was found in the thickness of the RGC layer or in the mean amplitude of the oscillatory potentials measured by OCT and ERG, respectively; however, we did observe a significantly decreased number of axons compared with the controls. At 3 days post-pONC, we used ELBS to calculate the ultrastructural marker (D), the shape factor quantifying the shape of the local mass density correlation functions. It was significantly reduced in the crushed eyes compared with the controls, indicating the ultrastructural fragmentation in the crushed eyes. Conclusions Elastic light backscattering spectroscopy detected ultrastructural neuronal damage in RGCs following the pONC injury when OCT and ERG tests appeared normal. Our study suggests a potential clinical method for detecting early neuronal damage prior to anatomical alterations in the nerve fiber and ganglion cell layers.
Collapse
Affiliation(s)
- Ji Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Zhen Puyang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China 3Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States
| | - Liang Feng
- Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States
| | - Lian Duan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Peiji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Xiaorong Liu
- Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States 4Department of Neurobiology, Northwestern University, Evanston, Illinois, United States
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States 3Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
38
|
Meiling D, Chao Z, Jinhong L. Coherence and polarization properties of laser propagating through biological tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 172:88-94. [PMID: 28531795 DOI: 10.1016/j.jphotobiol.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022]
Abstract
Based on the extended Huygens-Fresnel principle, the analytical expressions of the cross-spectral density matrix elements for random electromagnetic Gaussian Schell-model (GSM) beam propagating in biological tissues are derived, and used to study the changes in spectral degree of coherence μ and spectral degree of polarization P of random electromagnetic GSM beams with the propagation distance z propagating through the different biological tissues. It is shown that the changes closely depend on the species of the biological tissues, beam wave length, the interval between two field points and propagation distance. The spectral degree of coherence μ and the spectral degree of polarization P of the ultraviolet ray (λ=0.325μm) will quickly decrease during the propagation process, which implies that the damage of the ultraviolet ray to biological tissues is strong. The bigger structure constant of the refractive-index Cn2 corresponds to the smaller change of μ and P. There exists the obvious effect of the interval between two field points on the spectral degree of coherence and the spectral degree of polarization of random electromagnetic GSM beams passing biological tissues. The obtained results can provide the theoretical and experimental basis for the analysis to the coherence and polarization properties of random electromagnetic beams propagating through the complex biological tissues.
Collapse
Affiliation(s)
- Duan Meiling
- Department of Physics, North University of China, Taiyuan 030051, China.
| | - Zhang Chao
- Department of Physics, North University of China, Taiyuan 030051, China
| | - Li Jinhong
- Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
39
|
Dubois A. Focus defect and dispersion mismatch in full-field optical coherence microscopy. APPLIED OPTICS 2017; 56:D142-D150. [PMID: 28375370 DOI: 10.1364/ao.56.00d142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Full-field optical coherence microscopy (FFOCM) is an optical technique, based on low-coherence interference microscopy, for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. The differences in refractive index between the sample and the immersion medium of the microscope objectives may degrade the FFOCM image quality because of focus defect and optical dispersion mismatch. These phenomena and their consequences are discussed in this theoretical paper. Experimental methods that have been implemented in FFOCM to minimize the adverse effects of these phenomena are summarized and compared.
Collapse
|
40
|
Sahay P, Shukla PK, Ghimire HM, Almabadi HM, Tripathi V, Mohanty SK, Rao R, Pradhan P. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging. Phys Biol 2017; 14:026001. [PMID: 28248645 DOI: 10.1088/1478-3975/aa5d71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.
Collapse
Affiliation(s)
- Peeyush Sahay
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, TN 38152, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Giannios P, Koutsoumpos S, Toutouzas KG, Matiatou M, Zografos GC, Moutzouris K. Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. JOURNAL OF BIOPHOTONICS 2017; 10:303-310. [PMID: 27091794 DOI: 10.1002/jbio.201600001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/07/2016] [Accepted: 03/30/2016] [Indexed: 05/07/2023]
Abstract
A multi-wavelength prism coupling refractometer is utilized to measure the angular reflectance of freshly excised human intestinal tissue specimens. Based on reflectance data, the real and imaginary part of the refractive index is calculated via Fresnel analysis for three visible (blue, green, red) and two near-infrared (963 nm and 1551 nm) wavelengths. Averaged values of the complex refractive index and corresponding Cauchy dispersion fits are given for the mucosa, submucosa and serosa layers of the colorectal wall at the normal state. The refractive constants of tumorous and normal mucosa are then cross-compared for the indicative cases of one patient diagnosed with a benign polyp and three patients diagnosed with adenocarcinomas of different phenotype. Significant index contrast exists between the normal and diseased states, indicating the potential use of refractive index as a marker of colorectal dysplasia.
Collapse
Affiliation(s)
- Panagiotis Giannios
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institute of Athens, Athens, 12210, Greece
| | - Spyridon Koutsoumpos
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institute of Athens, Athens, 12210, Greece
| | - Konstantinos G Toutouzas
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, 11525, Greece
| | - Maria Matiatou
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, 11525, Greece
| | - George C Zografos
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, 11525, Greece
| | - Konstantinos Moutzouris
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institute of Athens, Athens, 12210, Greece
| |
Collapse
|
42
|
Li J, Yang S, Guo L, Cheng M. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence. APPLIED OPTICS 2016; 55:9137-9144. [PMID: 27857301 DOI: 10.1364/ao.55.009137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.
Collapse
|
43
|
Vasefi F, MacKinnon N, Saager R, Kelly KM, Maly T, Booth N, Durkin AJ, Farkas DL. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:114001. [PMID: 27830262 PMCID: PMC5103103 DOI: 10.1117/1.jbo.21.11.114001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Changes in the pattern and distribution of both melanocytes (pigment producing) and vasculature (hemoglobin containing) are important in distinguishing melanocytic proliferations. The ability to accurately measure melanin distribution at different depths and to distinguish it from hemoglobin is clearly important when assessing pigmented lesions (benign versus malignant). We have developed a multimode hyperspectral dermoscope (SkinSpect™) able to more accurately image both melanin and hemoglobin distribution in skin. SkinSpect uses both hyperspectral and polarization-sensitive measurements. SkinSpect’s higher accuracy has been obtained by correcting for the effect of melanin absorption on hemoglobin absorption in measurements of melanocytic nevi. In vivo human skin pigmented nevi (N=20) were evaluated with the SkinSpect, and measured melanin and hemoglobin concentrations were compared with spatial frequency domain spectroscopy (SFDS) measurements. We confirm that both systems show low correlation of hemoglobin concentrations with regions containing different melanin concentrations (R=0.13 for SFDS, R=0.07 for SkinSpect).
Collapse
Affiliation(s)
- Fartash Vasefi
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
- Address all correspondence to: Fartash Vasefi, E-mail: ; Daniel L. Farkas, E-mail:
| | - Nicholas MacKinnon
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
| | - Rolf Saager
- University of California, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Kristen M. Kelly
- University of California, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Tyler Maly
- University of California, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Nicholas Booth
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
| | - Anthony J. Durkin
- University of California, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Daniel L. Farkas
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
- University of Southern California, Department of Biomedical Engineering, 1042 Downey Way, Los Angeles, California 90089, United States
- Address all correspondence to: Fartash Vasefi, E-mail: ; Daniel L. Farkas, E-mail:
| |
Collapse
|
44
|
Wu W, Radosevich AJ, Eshein A, Nguyen TQ, Yi J, Cherkezyan L, Roy HK, Szleifer I, Backman V. Using electron microscopy to calculate optical properties of biological samples. BIOMEDICAL OPTICS EXPRESS 2016; 7:4749-4762. [PMID: 27896013 PMCID: PMC5119613 DOI: 10.1364/boe.7.004749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 05/26/2023]
Abstract
The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.
Collapse
Affiliation(s)
- Wenli Wu
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Andrew J. Radosevich
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - The-Quyen Nguyen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ji Yi
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hemant K. Roy
- Section of Gastroenterology, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
45
|
Yi J, Stypula-Cyrus Y, Blaha CS, Roy HK, Backman V. Fractal Characterization of Chromatin Decompaction in Live Cells. Biophys J 2016; 109:2218-26. [PMID: 26636933 DOI: 10.1016/j.bpj.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022] Open
Abstract
Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Ji Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Boston Medical Center, Department of Medicine, Boston University, Boston, Massachusetts
| | | | - Catherine S Blaha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Hemant K Roy
- Boston Medical Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.
| |
Collapse
|
46
|
Das NK, Mukhopadhyay S, Ghosh N, Chhablani J, Richhariya A, Divakar Rao K, Sahoo NK. Investigation of alterations in multifractality in optical coherence tomographic images of in vivo human retina. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:96004. [PMID: 27618288 DOI: 10.1117/1.jbo.21.9.096004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) enables us to monitor alterations in the thickness of the retinal layer as disease progresses in the human retina. However, subtle morphological changes in the retinal layers due to early disease progression often may not lead to detectable alterations in the thickness. OCT images encode depth-dependent backscattered intensity distribution arising due to the depth distributions of the refractive index from tissue microstructures. Here, such depth-resolved refractive index variations of different retinal layers were analyzed using multifractal detrended fluctuation analysis, a special class of multiresolution analysis tools. The analysis extracted and quantified microstructural multifractal information encoded in normal as well as diseased human retinal OCT images acquired <italic<in vivo</italic<. Interestingly, different layers of the retina exhibited different degrees of multifractality in a particular retina, and the individual layers displayed consistent multifractal trends in healthy retinas of different human subjects. In the retinal layers of diabetic macular edema (DME) subjects, the change in multifractality manifested prominently near the boundary of the DME as compared to the normal retinal layers. The demonstrated ability to quantify depth-resolved information on multifractality encoded in OCT images appears promising for the early diagnosis of diseases of the human eye, which may also prove useful for detecting other types of tissue abnormalities from OCT images.
Collapse
Affiliation(s)
- Nandan Kumar Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Sabyasachi Mukhopadhyay
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, IndiabNanoscope Technologies Pvt. Ltd., New Town Rajarhat 700156, India
| | - Nirmalya Ghosh
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Jay Chhablani
- L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500 034, India
| | - Ashutosh Richhariya
- L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500 034, India
| | - Kompalli Divakar Rao
- Bhabha Atomic Research Centre Facility, Photonics and Nanotechnology Section, Autonagar, Visakhapatnam 530012, India
| | - Naba Kishore Sahoo
- Bhabha Atomic Research Centre, Atomic and Molecular Physics Division, Trombay, Mumbai 400085, India
| |
Collapse
|
47
|
MCCLATCHY DAVIDM, RIZZO ELIZABETHJ, WELLS WENDYA, CHENEY PHILIPP, HWANG JEESEONGC, PAULSEN KEITHD, POGUE BRIANW, KANICK STEPHENC. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging. OPTICA 2016; 3:613-621. [PMID: 27547790 PMCID: PMC4989924 DOI: 10.1364/optica.3.000613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient [Formula: see text] and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.
Collapse
Affiliation(s)
- DAVID M. MCCLATCHY
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
| | - ELIZABETH J. RIZZO
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - WENDY A. WELLS
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - PHILIP P. CHENEY
- Quantum Elecromagnetics Division, National Institute of Standards and Technology, 325 Broadway Street, Boulder, Colorado 80305, USA
| | - JEESEONG C. HWANG
- Quantum Elecromagnetics Division, National Institute of Standards and Technology, 325 Broadway Street, Boulder, Colorado 80305, USA
| | - KEITH D. PAULSEN
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - BRIAN W. POGUE
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
| | - STEPHEN C. KANICK
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, New Hampshire 03756, USA
- Corresponding author:
| |
Collapse
|
48
|
Giannios P, Toutouzas KG, Matiatou M, Stasinos K, Konstadoulakis MM, Zografos GC, Moutzouris K. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies. Sci Rep 2016; 6:27910. [PMID: 27297034 PMCID: PMC4906272 DOI: 10.1038/srep27910] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools.
Collapse
Affiliation(s)
- Panagiotis Giannios
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institution of Athens, Athens, Greece
| | - Konstantinos G Toutouzas
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Maria Matiatou
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Konstantinos Stasinos
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Manousos M Konstadoulakis
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - George C Zografos
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, Athens, Greece
| | - Konstantinos Moutzouris
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institution of Athens, Athens, Greece
| |
Collapse
|
49
|
Kardoulaki EM, Syms RRA, Young IR, Choonee K, Rea M, Gedroyc WMW. Optothermal profile of an ablation catheter with integrated microcoil for MR-thermometry during Nd:YAG laser interstitial thermal therapies of the liver—an in-vitro experimental and theoretical study. Med Phys 2016; 42:1389-97. [PMID: 25735293 DOI: 10.1118/1.4908225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Flexible microcoils integrated with ablation catheters can improve the temperature accuracy during local MR-thermometry in Nd:YAG laser interstitial thermal therapies. Here, the authors are concerned with obtaining a preliminary confirmation of the clinical utility of the modified catheter. They investigate whether the thin-film substrate and copper tracks of the printed coil inductor affect the symmetry of the thermal profile, and hence of the lesion produced. METHODS Transmission spectroscopy in the near infrared was performed to test for the attenuation at 1064 nm through the 25 μm thick Kapton substrate of the microcoil. The radial transmission profile of an infrared high-power, light emitting diode with >80% normalized power at 1064 nm was measured through a cross section of the modified applicator to assess the impact of the copper inductor on the optical profile. The measurements were performed in air, as well as with the applicator surrounded by two types of scattering media; crystals of NaCl and a layer of liver-mimicking gel phantom. A numerical model based on Huygens-Fresnel principle and finite element simulations, using a commercially available package (COMSOL Multiphysics), were employed to compare with the optical measurements. The impact of the modified optical profile on the thermal symmetry was assessed by examining the high resolution microcoil derived thermal maps from a Nd:YAG laser ablation performed on a liver-mimicking gel phantom. RESULTS Less than 30% attenuation through the Kapton film was verified. Shadowing behind the copper tracks was observed in air and the measured radial irradiation correlated well with the diffraction pattern calculated numerically using the Huygens-Fresnel principle. Both optical experiments and simulations, demonstrate that shadowing is mitigated by the scattering properties of a turbid medium. The microcoil derived thermal maps at the end of a Nd:YAG laser ablation performed on a gel phantom in a 3 T scanner confirm that the modified irradiation pattern does not disrupt the thermal symmetry, even though, unlike tissue, the gel is minimally scattering. CONCLUSIONS The results from this initial assessment indicate that microcoils can be safely integrated with ablation catheters and ensure that the complete necrosis of the liver tumor can still be achieved.
Collapse
Affiliation(s)
- Evdokia M Kardoulaki
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard R A Syms
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian R Young
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kaushal Choonee
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marc Rea
- Department of Radiology, Imperial College Healthcare NHS Trust, Paddington, London W2 1NY, United Kingdom
| | - Wladyslaw M W Gedroyc
- Department of Radiology, Imperial College Healthcare NHS Trust, Paddington, London W2 1NY, United Kingdom
| |
Collapse
|
50
|
Nguyen J, Hayakawa CK, Mourant JR, Venugopalan V, Spanier J. Development of perturbation Monte Carlo methods for polarized light transport in a discrete particle scattering model. BIOMEDICAL OPTICS EXPRESS 2016; 7:2051-2066. [PMID: 27231642 PMCID: PMC4871102 DOI: 10.1364/boe.7.002051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
We present a polarization-sensitive, transport-rigorous perturbation Monte Carlo (pMC) method to model the impact of optical property changes on reflectance measurements within a discrete particle scattering model. The model consists of three log-normally distributed populations of Mie scatterers that approximate biologically relevant cervical tissue properties. Our method provides reflectance estimates for perturbations across wavelength and/or scattering model parameters. We test our pMC model performance by perturbing across number densities and mean particle radii, and compare pMC reflectance estimates with those obtained from conventional Monte Carlo simulations. These tests allow us to explore different factors that control pMC performance and to evaluate the gains in computational efficiency that our pMC method provides.
Collapse
Affiliation(s)
- Jennifer Nguyen
- Department of Biomedical Engineering, 3120 Natural Sciences II, University of California, Irvine, CA 92697-2715,
USA
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine Irvine, California 92697,
USA
| | - Carole K. Hayakawa
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine Irvine, California 92697,
USA
- Department of Chemical Engineering and Materials Science, 916 Engineering Tower, University of California, Irvine, CA 92697-2575,
USA
| | - Judith R. Mourant
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA
| | - Vasan Venugopalan
- Department of Biomedical Engineering, 3120 Natural Sciences II, University of California, Irvine, CA 92697-2715,
USA
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine Irvine, California 92697,
USA
- Department of Chemical Engineering and Materials Science, 916 Engineering Tower, University of California, Irvine, CA 92697-2575,
USA
| | - Jerome Spanier
- Laser Microbeam and Medical Program, Beckman Laser Institute, University of California, Irvine Irvine, California 92697,
USA
| |
Collapse
|