1
|
Chen Z, Gezginer I, Zhou Q, Tang L, Deán-Ben XL, Razansky D. Multimodal optoacoustic imaging: methods and contrast materials. Chem Soc Rev 2024; 53:6068-6099. [PMID: 38738633 PMCID: PMC11181994 DOI: 10.1039/d3cs00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 05/14/2024]
Abstract
Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Lin Tang
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
2
|
Geng X, Liang X, Liu Y, Chen Y, Xue B, Wei X, Yuan Z. Natural Fat Nanoemulsions for Enhanced Optical Coherence Tomography Neuroimaging and Tumor Imaging in the Second Near-Infrared Window. ACS NANO 2024; 18:9187-9198. [PMID: 38466960 DOI: 10.1021/acsnano.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Optical coherence tomography (OCT) imaging mainly uses backscattered light to visualize the structural and functional information on biological tissues. In particular, OCT angiography can not only map the capillary networks but also capture the blood flow in the tissue microenvironment, making it a good candidate for neuroimaging and tumor imaging in vivo and in real time. To further improve the detection accuracy of cancer or brain disorders, it is essential to develop a natural and nontoxic contrast agent for enhanced OCT imaging in the second near-infrared (NIR-II) window. In this study, a superior biocompatible and highly scattering NIR-II fat nanoemulsion was constructed to improve OCT imaging contrast and depth for monitoring the vascular network changes of the cerebral cortex or tumor. In vivo experimental results demonstrated that a natural fat nanoemulsion can serve as an excellent probe for enhanced OCT neuroimaging and tumor imaging.
Collapse
Affiliation(s)
- Xiaorui Geng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiao Liang
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yubin Liu
- College of Photonics and Electric Engineering, Fuzhou Normal University, Fuzhou, 350117, China
| | - Yuhao Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Bin Xue
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xianyuan Wei
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
3
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|
4
|
Lee YH, Kuo PW, Chen CJ, Sue CJ, Hsu YF, Pan MC. Indocyanine Green-Camptothecin Co-Loaded Perfluorocarbon Double-Layer Nanocomposite: A Versatile Nanotheranostics for Photochemotherapy and FDOT Diagnosis of Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13091499. [PMID: 34575572 PMCID: PMC8466706 DOI: 10.3390/pharmaceutics13091499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer and is the leading cause of neoplastic disease burden for females worldwide, suggesting that effective therapeutic and/or diagnostic strategies are still urgently needed. In this study, a type of indocyanine green (ICG) and camptothecin (CPT) co-loaded perfluorocarbon double-layer nanocomposite named ICPNC was developed for detection and photochemotherapy of breast cancer. The ICPNCs were designed to be surface modifiable for on-demand cell targeting and can serve as contrast agents for fluorescence diffuse optical tomography (FDOT). Upon near infrared (NIR) irradiation, the ICPNCs can generate a significantly increased production of singlet oxygen compared to free ICG, and offer a comparable cytotoxicity with reduced chemo-drug dosage. Based on the results of animal study, we further demonstrated that the ICPNCs ([ICG]/[CPT] = 40-/7.5-μM) in association with 1-min NIR irradiation (808 nm, 6 W/cm2) can provide an exceptional anticancer effect to the MDA-MB-231 tumor-bearing mice whereby the tumor size was significantly reduced by 80% with neither organ damage nor systemic toxicity after a 21-day treatment. Given a number of aforementioned merits, we anticipate that the developed ICPNC is a versatile theranostic nanoagent which is highly promising to be used in the clinic.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| | - Po-Wei Kuo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chun-Ju Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Chu-Jih Sue
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan; (P.-W.K.); (C.-J.C.); (C.-J.S.)
| | - Ya-Fen Hsu
- Department of Surgery, Landseed International Hospital, Taoyuan City 324609, Taiwan;
| | - Min-Chun Pan
- Department of Mechanical Engineering, National Central University, Taoyuan City 320317, Taiwan
- Correspondence: (Y.-H.L.); (M.-C.P.); Tel.: +886-3-422-7151 (ext. 27755) (Y.-H.L.); +886-3-422-7151 (ext. 34312) (M.-C.P.)
| |
Collapse
|
5
|
Lu GJ, Chou LD, Malounda D, Patel AK, Welsbie DS, Chao DL, Ramalingam T, Shapiro MG. Genetically Encodable Contrast Agents for Optical Coherence Tomography. ACS NANO 2020; 14:7823-7831. [PMID: 32023037 PMCID: PMC7685218 DOI: 10.1021/acsnano.9b08432] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Optical coherence tomography (OCT) has gained wide adoption in biological research and medical imaging due to its exceptional tissue penetration, 3D imaging speed, and rich contrast. However, OCT plays a relatively small role in molecular and cellular imaging due to the lack of suitable biomolecular contrast agents. In particular, while the green fluorescent protein has provided revolutionary capabilities to fluorescence microscopy by connecting it to cellular functions such as gene expression, no equivalent reporter gene is currently available for OCT. Here, we introduce gas vesicles, a class of naturally evolved gas-filled protein nanostructures, as genetically encodable OCT contrast agents. The differential refractive index of their gas compartments relative to surrounding aqueous tissue and their nanoscale motion enables gas vesicles to be detected by static and dynamic OCT. Furthermore, the OCT contrast of gas vesicles can be selectively erased in situ with ultrasound, allowing unambiguous assignment of their location. In addition, gas vesicle clustering modulates their temporal signal, enabling the design of dynamic biosensors. We demonstrate the use of gas vesicles as reporter genes in bacterial colonies and as purified contrast agents in vivo in the mouse retina. Our results expand the utility of OCT to image a wider variety of cellular and molecular processes.
Collapse
Affiliation(s)
- George J. Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Li-dek Chou
- OCT Medical Imaging Inc., 9272 Jeronimo Road, Irvine, CA 92618, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amit K. Patel
- Shiley Eye Institute, Andrew Viterbi Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Derek S. Welsbie
- Shiley Eye Institute, Andrew Viterbi Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel L. Chao
- Shiley Eye Institute, Andrew Viterbi Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Li W, Song W, Chen B, Matcher SJ. Superparamagnetic graphene quantum dot as a dual-modality contrast agent for confocal fluorescence microscopy and magnetomotive optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800219. [PMID: 30191684 DOI: 10.1002/jbio.201800219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/04/2018] [Indexed: 05/03/2023]
Abstract
A magnetic graphene quantum dot (MGQD) nanoparticle, synthesized by hydrothermally reducing and cutting graphene oxide-iron oxide sheet, was demonstrated to possess the capabilities of simultaneous confocal fluorescence and magnetomotive optical coherence tomography (MMOCT) imaging. This MGQD shows low toxicity, significant tunable blue fluorescence and superparamagnetism, which can thus be used as a dual-modality contrast agent for confocal fluorescence microscopy (CFM) and MMOCT. The feasibility of applying MGQD as a tracer of cells is shown by imaging and visualizing MGQD labeled cells using CFM and our in-house MMOCT. Since MMOCT and CFM can offer anatomical structure and intracellular details, respectively, the MGQD for cell tracking could provide a more comprehensive diagnosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK
| | - Wenxing Song
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
| | - Stephen J Matcher
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Leitgeb RA, Baumann B. Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography. FRONTIERS IN PHYSICS 2018; 6. [PMID: 0 DOI: 10.3389/fphy.2018.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
8
|
Zhang J, Liu J, Wang LM, Li ZY, Yuan Z. Retroreflective-type Janus microspheres as a novel contrast agent for enhanced optical coherence tomography. JOURNAL OF BIOPHOTONICS 2017; 10:878-886. [PMID: 27218690 DOI: 10.1002/jbio.201600047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 05/25/2023]
Abstract
Optical coherence tomography (OCT) is a well-developed technology that utilizes near-infrared light to reconstruct three-dimensional images of biological tissues with micrometer resolution. Improvements of the imaging contrast of the OCT technique are able to further widen its extensive biomedical applications. In this study, Janus microspheres were developed and used as a positive contrast agent for enhanced OCT imaging. Phantom and ex vivo liver tissue experiments as well as in vivo animal tests were conducted, which validated that Janus microspheres, as a novel type of OCT tracer, were very effective in improving the OCT imaging contrast. Working principle and SEM image of Janus microsphere (top). Enhanced OCT imaging (bottom) of Janus microspheres in zebrafish stomach (blue dash line) and sinusoids (green arrows) of nude liver.
Collapse
Affiliation(s)
- Jian Zhang
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jing Liu
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Mei Wang
- Center for Drug Non-clinical Evaluation and Research, Guangdong Biological Resources Institute, Guangdong Academy of Sciences, Guangzhou, 510900, China
| | - Zhi-Yuan Li
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
9
|
Jiang X, Tang P, Gao P, Zhang YS, Yi C, Zhou J. Gold Nanoprobe-Enabled Three-Dimensional Ozone Imaging by Optical Coherence Tomography. Anal Chem 2017; 89:2561-2568. [PMID: 28192946 DOI: 10.1021/acs.analchem.6b04785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ozone (O3) would be harmful to human skin for its strong oxidizing property, especially when stratum corneum or corneal epithelium is wounded. Imaging the penetration and distribution of ozone at depth is beneficial for studying the influence of ozone on skin or eyes. Here, we introduced a facile method for three-dimensional (3D) imaging of the penetration of O3 into the anterior chamber of an isolated crucian carp eye by using optical coherence tomography (OCT) combined with gold triangular nanoprisms (GTNPs) as the contrast agent and molecular probe. We illustrated the specific response of GTNPs to ozone and demonstrated that GTNPs can function as an efficient nanoprobe for sensing O3. The stabilities of GTNPs in different biologic solutions, as well as the signal intensity of GTNPs on an OCT imaging system, were investigated. Visualization of 3D penetration and distribution of O3 in the biologic tissue was proved for the first time. The quantitative analysis of O3 diffusion in the anterior chamber of the fish eye revealed a penetration depth of 311 μm within 172 min. Due to the strong scattering, near-infrared extinction band, and easy functionalization of GTNPs, they could further serve as nanoprobes for 3D OCT or multimodal imaging of other molecules or ions in the future.
Collapse
Affiliation(s)
- Xueqin Jiang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Peijun Tang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Panpan Gao
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Yu Shrike Zhang
- Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| |
Collapse
|
10
|
Dong B, Chen S, Zhou F, Chan CHY, Yi J, Zhang HF, Sun C. Real-time Functional Analysis of Inertial Microfluidic Devices via Spectral Domain Optical Coherence Tomography. Sci Rep 2016; 6:33250. [PMID: 27619202 PMCID: PMC5020558 DOI: 10.1038/srep33250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
We report the application of spectral-domain optical coherence tomography (SD-OCT) technology that enables real-time functional analysis of sorting microparticles and cells in an inertial microfluidic device. We demonstrated high-speed, high-resolution acquisition of cross-sectional images at a frame rate of 350 Hz, with a lateral resolution of 3 μm and an axial resolution of 1 μm within the microfluidic channel filled with water. We analyzed the temporal sequence of cross-sectional SD-OCT images to determine the position and diameter of microspheres in a spiral microfluidic channel under various flow rates. We used microspheres with known diameters to validate the sub-micrometer precision of the particle size analysis based on a scattering model of spherical microparticles. An additional investigation of sorting live HT-29 cells in the spiral microfluidic channel indicated that the distribution of cells within in the microchannel has a close correspondence with the cells’ size distribution. The label-free real-time imaging and analysis of microscale particles in flow offers robustness for practical applications with live cells and allows us to better understand the mechanisms of particle separations in microfluidic sorting systems.
Collapse
Affiliation(s)
- Biqin Dong
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208 USA.,Department of Biomedical Engineering, Northwestern University, Evanston IL 60208 USA
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208 USA
| | - Fan Zhou
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208 USA
| | - Christina H Y Chan
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208 USA
| | - Ji Yi
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208 USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208 USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208 USA
| |
Collapse
|
11
|
Oldenburg AL, Blackmon RL, Sierchio JM. Magnetic and Plasmonic Contrast Agents in Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803913. [PMID: 27429543 PMCID: PMC4941814 DOI: 10.1109/jstqe.2016.2553084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) has gained widespread application for many biomedical applications, yet the traditional array of contrast agents used in incoherent imaging modalities do not provide contrast in OCT. Owing to the high biocompatibility of iron oxides and noble metals, magnetic and plasmonic nanoparticles, respectively, have been developed as OCT contrast agents to enable a range of biological and pre-clinical studies. Here we provide a review of these developments within the past decade, including an overview of the physical contrast mechanisms and classes of OCT system hardware addons needed for magnetic and plasmonic nanoparticle contrast. A comparison of the wide variety of nanoparticle systems is also presented, where the figures of merit depend strongly upon the choice of biological application.
Collapse
Affiliation(s)
- Amy L. Oldenburg
- Department of Physics and Astronomy, the Department of Biomedical Engineering, and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Richard L. Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Justin M. Sierchio
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| |
Collapse
|
12
|
Lin CW, Bachilo SM, Vu M, Beckingham KM, Bruce Weisman R. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo. NANOSCALE 2016; 8:10348-57. [PMID: 27140495 PMCID: PMC4902160 DOI: 10.1039/c6nr01376g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.
Collapse
Affiliation(s)
- Ching-Wei Lin
- Department of Chemistry and the Smalley-Curl Institute, 6100 Main Street, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
13
|
Kim J, Ahmad A, Li J, Marjanovic M, Chaney EJ, Suslick KS, Boppart SA. Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas. JOURNAL OF BIOPHOTONICS 2016; 9:109-16. [PMID: 25688525 PMCID: PMC4996077 DOI: 10.1002/jbio.201400128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/14/2014] [Accepted: 01/02/2015] [Indexed: 05/19/2023]
Abstract
We report the development of an intravascular magnetomotive optical coherence tomography (IV-MM-OCT) system used with targeted protein microspheres to detect early-stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV-MM-OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom-built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM-OCT signal from the aorta samples specimens injected with targeted MSs.
Collapse
Affiliation(s)
- Jongsik Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Adeel Ahmad
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Joanne Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Kenneth S. Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA 61801
- Corresponding author: , Phone: +01 217 333 8598, Fax: +01 217 333 5833
| |
Collapse
|
14
|
Huang CC, Chang PY, Liu CL, Xu JP, Wu SP, Kuo WC. New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. NANOSCALE 2015; 7:12689-97. [PMID: 26151814 DOI: 10.1039/c5nr03157e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extensive efforts have been devoted to the development of a new biophotonic system using near infrared (NIR) nano-agents for non-invasive cancer diagnosis and therapy. Here, we developed a simple synthesis reaction of ligands, hydrazine, and iron(ii) chloride to fabricate Fe3O4 cluster-structured nanoparticles (CNPs) with interesting NIR photonics and high magnetization (Ms: 98.3 emu g(-1) and proton relaxivity r2: 234.6 mM(-1) s(-1)). These Fe3O4 CNPs exhibited optical absorption and reflection over all wavelengths, showing a U-shape absorption band with a low absorbance at a range of 750-950 nm and a progressive evolution in the second near infrared region. Strengthening of the scattering effect by incubating Fe3O4 CNPs with HeLa cells was observed when optical contrast enhancement was performed in an optical coherence tomography (OCT) microscope system with a laser light source at 860 nm. Using a 1064 nm laser at a low power density (380 mW cm(-2)) to excite the Fe3O4 CNPs (375 ppm[Fe]) led to a rise in the water temperature from 25 °C to 58 °C within 10 min. Finally, we present the first example of magnetomotive OCT cellular imaging combined with enhanced photothermal therapy using Fe3O4 CNPs and applying a magnetic field, which is promising for preclinical and clinical trials in the future.
Collapse
Affiliation(s)
- Chih-Chia Huang
- Department of Photonics, Center for Micro/Nano Science and Technology, and Advanced Optoelectronic Technology Center, National Cheng Kung University, 701, Tainan, Taiwan.
| | | | | | | | | | | |
Collapse
|
15
|
Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol 2015; 60:R211-37. [PMID: 25951836 PMCID: PMC4448140 DOI: 10.1088/0031-9155/60/10/r211] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.
Collapse
Affiliation(s)
- Jina Kim
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
16
|
Jia Y, Liu G, Gordon AY, Gao SS, Pechauer AD, Stoddard J, McGill TJ, Jayagopal A, Huang D. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography. OPTICS EXPRESS 2015; 23:4212-25. [PMID: 25836459 PMCID: PMC4394760 DOI: 10.1364/oe.23.004212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 05/27/2023]
Abstract
We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro.
Collapse
Affiliation(s)
- Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
- Co-first authors
| | - Gangjun Liu
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
- Co-first authors
| | - Andrew Y. Gordon
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232,
USA
| | - Simon S. Gao
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Alex D. Pechauer
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Trevor J. McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Ashwath Jayagopal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Nashville, Tennessee 37232,
USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| |
Collapse
|
17
|
Jung J, Kim K, Yu H, Lee K, Lee S, Nahm S, Park H, Park Y. Biomedical applications of holographic microspectroscopy [invited]. APPLIED OPTICS 2014; 53:G111-22. [PMID: 25322118 DOI: 10.1364/ao.53.00g111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification and quantification of specific molecules are crucial for studying the pathophysiology of cells, tissues, and organs as well as diagnosis and treatment of diseases. Recent advances in holographic microspectroscopy, based on quantitative phase imaging or optical coherence tomography techniques, show promise for label-free noninvasive optical detection and quantification of specific molecules in living cells and tissues (e.g., hemoglobin protein). To provide important insight into the potential employment of holographic spectroscopy techniques in biological research and for related practical applications, we review the principles of holographic microspectroscopy techniques and highlight recent studies.
Collapse
|
18
|
Mattison SP, Kim W, Park J, Applegate BE. Molecular Imaging in Optical Coherence Tomography. CURRENT MOLECULAR IMAGING 2014; 3:88-105. [PMID: 25821718 PMCID: PMC4373611 DOI: 10.2174/2211555203666141117233442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT's impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT.
Collapse
Affiliation(s)
| | | | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| |
Collapse
|
19
|
Optical coherence tomography in biomedical research. Anal Bioanal Chem 2011; 400:2721-43. [DOI: 10.1007/s00216-011-5052-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/16/2022]
|
20
|
Marschall S, Sander B, Mogensen M, Jørgensen TM, Andersen PE. Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal Bioanal Chem 2011; 400:2699-720. [PMID: 21547430 DOI: 10.1007/s00216-011-5008-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022]
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.
Collapse
Affiliation(s)
- Sebastian Marschall
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Roskilde, Denmark
| | | | | | | | | |
Collapse
|
21
|
Jacob D, Shelton RL, Applegate BE. Fourier domain Pump-Probe Optical Coherence Tomography imaging of melanin. OPTICS EXPRESS 2010; 18:12399-410. [PMID: 20588366 PMCID: PMC3408913 DOI: 10.1364/oe.18.012399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the development of a two-color Fourier domain Pump-Probe Optical Coherence Tomography (PPOCT) system. Tissue phantom experiments to characterize the system performance demonstrated imaging depths in excess of 725 microm, nearly comparable to the base Optical Coherence Tomography system. PPOCT A-line rates were also demonstrated in excess of 1 kHz. The physical origin of the PPOCT signal was investigated with a series of experiments which revealed that the signal is a mixture of short and long lifetime component signals. The short lifetime component was attributed to transient absorption while the long lifetime component may be due to a mixture of transient absorption and thermal effects. Ex vivo images of porcine iris demonstrated the potential for imaging melanin in the eye, where cancer of the melanocytes is the most common form of eye cancer in adults.
Collapse
|
22
|
Yi J, Gong J, Li X. Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography. OPTICS EXPRESS 2009; 17:13157-67. [PMID: 19654721 DOI: 10.1364/oe.17.013157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate the feasibility of characterizing the absorption and scattering spectra of micron-scale structures in a turbid medium using a spectroscopic optical coherence tomography (SOCT) system with a bandwidth of 430-650 nm. SOCT measurements are taken from phantoms composed of fluorescent microspheres. The absorption and scattering spectra are recovered with proper selections of spatial window width in the post processing step. Furthermore, we present an analysis using numerical OCT simulation based on full-wave solutions of the Maxwell's Equation to elucidate the origination of the multiple peaks in the OCT image for a single microsphere. Finally, we demonstrate the possibility of identifying contrast agents concentrated in micron-sized scale in an SOCT image. Two different types of microspheres in gel phantom are discriminated based on their distinguished absorbent feature.
Collapse
Affiliation(s)
- Ji Yi
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Rd., Evanston IL, 60208 USA.
| | | | | |
Collapse
|
23
|
Kim CS, Wilder-Smith P, Ahn YC, Liaw LHL, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034008. [PMID: 19566301 PMCID: PMC2872553 DOI: 10.1117/1.3130323] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Contrast in optical coherence tomography (OCT) images can be enhanced by utilizing surface plasmon resonant gold nanoparticles. To improve the poor in vivo transport of gold nanoparticles through biological barriers, an efficient delivery strategy is needed. In this study, the improved penetration and distribution of gold nanoparticles were achieved by microneedle and ultrasound, respectively, and it was demonstrated that this multimodal delivery of antibody-conjugated PEGylated gold nanoparticles enhanced the contrast in in vivo OCT images of oral dysplasia in a hamster model.
Collapse
Affiliation(s)
- Chang Soo Kim
- University of California, Irvine, Department of Chemical Engineering, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
24
|
Oldenburg AL, Hansen MN, Ralston TS, Wei A, Boppart SA. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. JOURNAL OF MATERIALS CHEMISTRY 2009; 19:6407. [PMID: 20107616 PMCID: PMC2811328 DOI: 10.1039/b823389f] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmon-resonant gold nanorods (GNRs) can serve as imaging agents for spectroscopic optical coherence tomography (SOCT). The aspect ratio of the GNRs are adjusted for maximum absorption in the far red to create a partial spectral overlap with the low-wavelength edge of the near-infrared SOCT imaging band. The spectroscopic absorption profile of the GNRs is incorporated into a depth-resolved algorithm for mapping the relative GNR density within OCT images. This technique enables us to image GNR distributions in excised human breast carcinomas, demonstrating their potential as OCT contrast agents in heteregeneous, highly scattering tissues.
Collapse
Affiliation(s)
- Amy L. Oldenburg
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Tel: +1 (217) 244-7479
| | - Matthew N. Hansen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Tel: +1 (765) 494-5257
| | - Tyler S. Ralston
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Tel: +1 (217) 244-7479
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Tel: +1 (765) 494-5257
| | - Stephen A. Boppart
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Tel: +1 (217) 244-7479
| |
Collapse
|
25
|
Abstract
Perhaps no diagnostic technology has emerged as rapidly in ophthalmology as optical coherence tomography (OCT). A single clinical device for this noninvasive imaging technique was first released in 1996, and now at least ten clinical devices are available. Although the first clinical anterior segment OCT was marketed only 2 years ago, a substantial amount of work has been done using modified retinal imagers or prototype laboratory-based imagers. In this review, we discuss OCT imaging primarily of the cornea. We also highlight previous and current publications on nonclinical and clinical uses of the device to illustrate how anterior segment OCT can be used to understand corneal structure and function in health and disease.
Collapse
Affiliation(s)
- Trefford Simpson
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
26
|
Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051403. [PMID: 17994864 DOI: 10.1117/1.2793736] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Since its introduction, optical coherence tomography (OCT) technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time- and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.
Collapse
Affiliation(s)
- Adam M Zysk
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Biophotonics Imaging Laboratory, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
van Velthoven MEJ, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 2006; 26:57-77. [PMID: 17158086 DOI: 10.1016/j.preteyeres.2006.10.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optical coherence tomography (OCT) was introduced in ophthalmology a decade ago. Within a few years in vivo imaging of the healthy retina and optic nerve head and of retinal diseases was a fact. In particular the ease with which these images can be acquired considerably changed the diagnostic strategy used by ophthalmologists. The OCT technique currently available in clinical practice is referred to as time-domain OCT, because the depth information of the retina is acquired as a sequence of samples, over time. This can be done either in longitudinal cross-sections perpendicular to, or in the coronal plane parallel to the retinal surface. Only recently, major advances have been made as to image resolution with the introduction of ultrahigh resolution OCT and in imaging speed, signal-to-noise ratio and sensitivity with the introduction of spectral-domain OCT. Functional OCT is the next frontier in OCT imaging. For example, polarization-sensitive OCT uses the birefringent characteristics of the retinal nerve fibre layer to better assess its thickness. Blood flow information from retinal vessels as well as the oxygenation state of retinal tissue can be extracted from the OCT signal. Very promising are the developments in contrast-enhanced molecular optical imaging, for example with the use of scattering tuneable nanoparticles targeted at specific tissue or cell structures. This review will provide an overview of these most recent developments in the field of OCT imaging focussing on applications for the retina.
Collapse
Affiliation(s)
- Mirjam E J van Velthoven
- Department of Ophthalmology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Yaqoob Z, McDowell E, Wu J, Heng X, Fingler J, Yang C. Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:054017. [PMID: 17092166 DOI: 10.1117/1.2360525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The use of indocyanine green (ICG), a U.S. Food and Drug Administration approved dye, in a pump-probe scheme for molecular contrast optical coherence tomography (MCOCT) is proposed and demonstrated for the first time. In the proposed pump-probe scheme, an optical coherence tomography (OCT) scan of the sample containing ICG is first acquired. High fluence illumination (approximately 190 kJ/cm2) is then used to permanently photobleach the ICG molecules--resulting in a permanent alteration of the overall absorption of the ICG. A second OCT scan is next acquired. The difference of the two OCT scans is used to determine the depth resolved distribution of ICG within a sample. To characterize the extent of photobleaching in different ICG solutions, we determine the cumulative probability of photobleaching, phi(B,cum), defined as the ratio of the total photobleached ICG molecules to the total photons absorbed by the ground state molecules. An empirical study of ICG photobleaching dynamics shows that phi(B,cum) decreases with fluence as well as with increasing dye concentration. The quantity phi(B,cum) is useful for estimating the extent of photobleaching in an ICG sample (MCOCT contrast) for a given fluence of the pump illumination. The paper also demonstrates ICG-based MCOCT imaging in tissue phantoms as well as within stage 54 Xenopus laevis.
Collapse
Affiliation(s)
- Zahid Yaqoob
- California Institute of Technology, Department of Electrical Engineering, Biophotonics Laboratory, 4 Moore Building, M/C 136-93, 1200 E. California Blvd., Pasadena, California 91125, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Agrawal A, Huang S, Wei Haw Lin A, Lee MH, Barton JK, Drezek RA, Pfefer TJ. Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:041121. [PMID: 16965149 DOI: 10.1117/1.2339071] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoshell-enhanced optical coherence tomography (OCT) is a novel technique with the potential for molecular imaging and improved disease detection. However, optimization of this approach will require a quantitative understanding of the influence of nanoshell parameters on detected OCT signals. In this study, OCT was performed at 1310 nm in water and turbid tissue-simulating phantoms to which nanoshells were added. The effect of nanoshell concentration, core diameter, and shell thickness on signal enhancement was characterized. Experimental results indicated trends that were consistent with predicted optical properties-a monotonic increase in signal intensity and attenuation with increasing shell and core size. Threshold concentrations for a 2-dB OCT signal intensity gain were determined for several nanoshell geometries. For the most highly backscattering nanoshells tested-291-nm core diameter, 25-nm shell thickness-a concentration of 10(9) nanoshells/mL was needed to produce this signal increase. Based on these results, we discuss various practical considerations for optimizing nanoshell-enhanced OCT. Quantitative experimental data presented here will facilitate optimization of OCT-based diagnostics and may also be relevant to other reflectance-based approaches as well.
Collapse
Affiliation(s)
- Anant Agrawal
- US Food and Drug Administration, Center for Devices and Radiological Health, Optical Diagnostics Laboratory, 12725 Twinbrook Parkway, HFZ-130, Rockville, Maryland 20852, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lim H, de Boer JF, Park BH, Lee EC, Yelin R, Yun SH. Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. OPTICS EXPRESS 2006; 14:5937-44. [PMID: 19516763 DOI: 10.1364/oe.14.005937] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Optical frequency domain imaging (OFDI) in the 800-nm biological imaging window is demonstrated by using a novel wavelength-swept laser source. The laser output is tuned continuously from 815 to 870 nm at a 43.2-kHz repetition rate with 7-mW average power. Axial resolution of 10-mum in biological tissue and peak sensitivity of 96 dB are achieved. In vivo imaging of Xenopus laevis is demonstrated with an acquisition speed of 84 frames per second (512 axial lines per frame). This new imaging technique may prove useful in comprehensive retinal screening for medical diagnosis and contrast-agent-based imaging for biological investigations.
Collapse
|
32
|
Storen T, Royset A, Svaasand LO, Lindmo T. Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:014017. [PMID: 16526894 DOI: 10.1117/1.2159000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We demonstrate low-coherence interferometry (LCI) for dye diffusion measurements in scattering tissue phantoms. The diffusion coefficient of a phthalocyanine dye in 1.5% agar gel containing scattering Intralipid was measured using a dual-wavelength interfero-meter. One wavelength was matched to the absorption peak of the dye at 675 nm. The other, 805 nm, was not affected by the dye, and was used to correct for varying sample scattering as a function of depth, assuming a constant ratio between scattering at the two wavelengths. The same wavelength dependence of scattering is assumed for the entire sample, but no a priori knowledge about the amount of scattering is needed. The dye diffusion coefficient was estimated by fitting a mathematical model of the interferometer signal to the measured LCI envelope. We compare results obtained using both a constant-scattering and a depth-resolved-scattering approach to determine the sample scattering. The presented method provides robust estimation of the diffusion coefficient when spatial resolution in determining the depth-resolved scattering is varied. Results indicate that the method is valid for samples having continuous spatial variations in the scattering coefficient over lengths as short as the coherence length of the probing light. The method allows in situ characterization of diffusion in scattering media.
Collapse
MESH Headings
- Animals
- Artifacts
- Computer Simulation
- Connective Tissue/chemistry
- Diffusion
- Fat Emulsions, Intravenous/chemistry
- Fluorescent Dyes/analysis
- Fluorescent Dyes/chemistry
- Humans
- Image Interpretation, Computer-Assisted/methods
- Interferometry/instrumentation
- Interferometry/methods
- Microscopy, Fluorescence, Multiphoton/instrumentation
- Microscopy, Fluorescence, Multiphoton/methods
- Models, Biological
- Models, Chemical
- Scattering, Radiation
- Tissue Distribution
- Tomography, Optical Coherence/instrumentation
- Tomography, Optical Coherence/methods
Collapse
Affiliation(s)
- Trude Storen
- Norwegian University of Science and Technology, Department of Physics, N-7491 Trondheim, Norway
| | | | | | | |
Collapse
|
33
|
Boppart SA. Advances in contrast enhancement for optical coherence tomography. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:121-124. [PMID: 17946382 DOI: 10.1109/iembs.2006.259366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Contrast in optical coherence tomography (OCT) images is often limited, particularly when pathological tissue is morphologically or optically similar to normal tissue. In recent years, there has been increasing interest in developing methods for enhancing OCT contrast. In general, contrast can be enhanced by the administration of passive or targeted exogenous contrast agents, or by exploiting linear and nonlinear techniques for sampling the endogenous molecular composition of tissue. Many exogenous agents, in addition to being targeted to specific cells and tissues, can also serve as multifunctional agents, delivering or facilitating therapy as well as providing enhanced contrast for imaging and localization. This paper and presentation will discuss novel OCT contrast enhancing methods designed to selectively identify tissues of interest.
Collapse
Affiliation(s)
- Stephen A Boppart
- Dept. of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
34
|
Cang H, Sun T, Li ZY, Chen J, Wiley BJ, Xia Y, Li X. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. OPTICS LETTERS 2005; 30:3048-50. [PMID: 16315717 DOI: 10.1364/ol.30.003048] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We describe gold nanocages as a new class of potential contrast agent for spectroscopic optical coherence tomography (OCT). Monodispersed gold nanocages of an approximately 35 nm edge length exhibit strong optical resonance, with the peak wavelength tunable in the near-infrared range. We characterized the optical properties of the nanocage by using OCT experiments along with numerical calculations, revealing an absorption cross section approximately 5 orders of magnitude larger than conventional dyes. Experiments with tissue phantoms demonstrated that the nanocages provide enhanced contrast for spectroscopic as well as conventional intensity-based OCT imaging.
Collapse
Affiliation(s)
- Hu Cang
- Department of Bioengineering, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development.
Collapse
Affiliation(s)
- Changhuei Yang
- Electrical Engineering Department, Engineering and Applied Sciences Division, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
36
|
Boppart SA, Oldenburg AL, Xu C, Marks DL. Optical probes and techniques for molecular contrast enhancement in coherence imaging. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:41208. [PMID: 16178632 DOI: 10.1117/1.2008974] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optics has played a key role in the rapidly developing field of molecular imaging. The spectroscopic nature and high-resolution imaging capabilities of light provide a means for probing biological morphology and function at the cellular and molecular levels. While the use of bioluminescent and fluorescent probes has become a mainstay in optical molecular imaging, a large number of other optical imaging modalities exist that can be included in this emerging field. In vivo imaging technologies such as optical coherence tomography and reflectance confocal microscopy have had limited use of molecular probes. In the last few years, novel nonfluorescent and nonbioluminescent molecular imaging probes have been developed that will initiate new directions in coherent optical molecular imaging. Classes of probes reviewed in this work include those that alter the local optical scattering or absorption properties of the tissue, those that modulate these local optical properties in a predictable manner, and those that are detected utilizing spectroscopic optical coherence tomography (OCT) principles. In addition to spectroscopic OCT, novel nonlinear interferometric imaging techniques have recently been developed to detect endogenous molecules. Probes and techniques designed for coherent molecular imaging are likely to improve the detection and diagnostic capabilities of OCT.
Collapse
Affiliation(s)
- Stephen A Boppart
- University of Illinois at Urbana-Champaign, Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, College of Engineering, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
37
|
|