1
|
Zhang J, Shi Y, Zhang Y, Liu H, Li S, Liu L. Resolution Enhancement Strategies in Photoacoustic Microscopy: A Comprehensive Review. MICROMACHINES 2024; 15:1463. [PMID: 39770216 PMCID: PMC11677640 DOI: 10.3390/mi15121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Photoacoustic imaging has emerged as a promising modality for medical imaging since its introduction. Photoacoustic microscopy (PAM), which is based on the photoacoustic effect, combines the advantages of both optical and acoustic imaging modalities. PAM facilitates high-sensitivity, high-resolution, non-contact, and non-invasive imaging by employing optical absorption as its primary contrast mechanism. The ability of PAM to specifically image parameters such as blood oxygenation and melanin content makes it a valuable addition to the suite of modern biomedical imaging techniques. This review aims to provide a comprehensive overview of the diverse technical approaches and methods employed by researchers to enhance the resolution of photoacoustic microscopy. Firstly, the fundamental principles of the photoacoustic effect and photoacoustic imaging will be presented. Subsequently, resolution enhancement methods for both acoustic-resolution photoacoustic microscopy (AR-PAM) and optical-resolution photoacoustic microscopy (OR-PAM) will be discussed independently. Finally, the aforementioned resolution enhancement methods for photoacoustic microscopy will be critically evaluated, and the current challenges and future prospects of this technology will be summarized.
Collapse
Affiliation(s)
- Jinying Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China
| | - Yifan Shi
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Yexiaotong Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Haoran Liu
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Shihao Li
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| | - Linglu Liu
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.S.); (Y.Z.); (H.L.); (S.L.); (L.L.)
| |
Collapse
|
2
|
Kesharwani A, Gujrati V. Multimodal techniques and strategies for chemical and metabolic imaging at the single-cell level. Curr Opin Biotechnol 2024; 88:103149. [PMID: 38810301 DOI: 10.1016/j.copbio.2024.103149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Single-cell chemical and metabolic imaging technologies provide unprecedented insights into individual cell dynamics, advancing our understanding of cellular processes, molecular interactions, and metabolic activities. Advances in fluorescence, Raman, optoacoustic (photoacoustic), or mass spectrometry methods have paved the way to characterize metabolites, signaling molecules, and other moieties within individual cells. These modalities can also lead to single-cell imaging capabilities by targeting endogenous cell contrast or by employing exogenous contrast generation techniques, including contrast agents that target specific cell structure or function. In this review, we present key developments, summarize recent applications in single-cell interrogation and imaging, and illustrate their advantages, limitations, and outlook.
Collapse
Affiliation(s)
- Ajay Kesharwani
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Li T, Gong X, Guo H, Xi L. Photoacoustic expansion microscopy of melanosomes. OPTICS LETTERS 2024; 49:798-801. [PMID: 38359185 DOI: 10.1364/ol.509831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024]
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) is a hybrid imaging method for visualizing organelles due to the high spatial resolution and abundant optical contrast. Usually, OR-PAM employs high numerical aperture (NA) objectives and high-frequency ultrasonic detectors to resolve three-dimensional (3D) microstructures of cells. Expansion microscopy (ExM) provides a nanoscale resolution by isotropically enlarging cells instead of utilizing ultrahigh NA objectives. In this Letter, we report the development of photoacoustic expansion microscopy (PA-ExM) that combines the advantages of OR-PAM and ExM for 3D organelle imaging using near-infrared light. We evaluate the performance of PA-ExM using label-free melanoma cells, where the image quality of melanosome distributions in expanded cells using a 40× objective is comparable to that of unexpanded cells using an oil-immersed 100× objective. The results suggest that PA-ExM possesses the great potential to study organelles.
Collapse
|
4
|
Fakhoury JW, Lara JB, Manwar R, Zafar M, Xu Q, Engel R, Tsoukas MM, Daveluy S, Mehregan D, Avanaki K. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11518. [PMID: 38223680 PMCID: PMC10785699 DOI: 10.1117/1.jbo.29.s1.s11518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.
Collapse
Affiliation(s)
- Joseph W. Fakhoury
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Juliana Benavides Lara
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Mohsin Zafar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Qiuyun Xu
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Ricardo Engel
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria M. Tsoukas
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| | - Steven Daveluy
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Darius Mehregan
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
5
|
Gao R, Liu Y, Qi S, Song L, Meng J, Liu C. Influence mechanism of the temporal duration of laser irradiation on photoacoustic technique: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11530. [PMID: 38632983 PMCID: PMC11021737 DOI: 10.1117/1.jbo.29.s1.s11530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Significance In the photoacoustic (PA) technique, the laser irradiation in the time domain (i.e., laser pulse duration) governs the characteristics of PA imaging-it plays a crucial role in the optical-acoustic interaction, the generation of PA signals, and the PA imaging performance. Aim We aim to provide a comprehensive analysis of the impact of laser pulse duration on various aspects of PA imaging, encompassing the signal-to-noise ratio, the spatial resolution of PA imaging, the acoustic frequency spectrum of the acoustic wave, the initiation of specific physical phenomena, and the photothermal-PA (PT-PA) interaction/conversion. Approach By surveying and reviewing the state-of-the-art investigations, we discuss the effects of laser pulse duration on the generation of PA signals in the context of biomedical PA imaging with respect to the aforementioned aspects. Results First, we discuss the impact of laser pulse duration on the PA signal amplitude and its correlation with the lateral resolution of PA imaging. Subsequently, the relationship between the axial resolution of PA imaging and the laser pulse duration is analyzed with consideration of the acoustic frequency spectrum. Furthermore, we examine the manipulation of the pulse duration to trigger physical phenomena and its relevant applications. In addition, we elaborate on the tuning of the pulse duration to manipulate the conversion process and ratio from the PT to PA effect. Conclusions We contribute to the understanding of the physical mechanisms governing pulse-width-dependent PA techniques. By gaining insight into the mechanism behind the influence of the laser pulse, we can trigger the pulse-with-dependent physical phenomena for specific PA applications, enhance PA imaging performance in biomedical imaging scenarios, and modulate PT-PA conversion by tuning the pulse duration precisely.
Collapse
Affiliation(s)
- Rongkang Gao
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Yan Liu
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
- Qufu Normal University, School of Cyberspace Security, Qufu, China
| | - Sumin Qi
- Qufu Normal University, School of Cyberspace Security, Qufu, China
| | - Liang Song
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Jing Meng
- Qufu Normal University, School of Cyberspace Security, Qufu, China
| | - Chengbo Liu
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| |
Collapse
|
6
|
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano- and micro- to macro-scale. NANO CONVERGENCE 2023; 10:29. [PMID: 37335405 PMCID: PMC10279631 DOI: 10.1186/s40580-023-00377-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyeon Oh
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
7
|
Thomas A, Paul S, Singh MS. Energy compensated synthetic aperture focusing technique for photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200157. [PMID: 36097262 DOI: 10.1002/jbio.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We report an adaptive energy-compensated synthetic aperture focusing technique (eC-SAFT) for improving the imaging performance of photoacoustic microscopy (PAM) in terms of depth of field (DOF), spatial resolution (both axial and lateral), and SNR. In addition to coherency and time-delay (in conventional SAFT), our beamforming-based reconstruction algorithm takes into account acoustic energy loss-a primary physical parameter in acoustic wave propagation-following Beer-Lambert's law. Experimental validation studies were performed in tissue-mimicking (Agar) phantoms, complex leaf veins, and chicken breast tissues. Results demonstrate that our proposed eC-SAFT+CF outperforms conventional SAFT+CF to improve axial resolution (up to ∼ 5 % ), lateral resolution (up to ∼ 5 % ), SNR (up to ∼ 6 % ) and CR (up to ∼ 8 % ).
Collapse
Affiliation(s)
- Anjali Thomas
- Biomedical Instrumentation and Imaging Laboratory (BIIL), School of Physics (SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| | - Souradip Paul
- Biomedical Instrumentation and Imaging Laboratory (BIIL), School of Physics (SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| | - Mayanglambam Suheshkumar Singh
- Biomedical Instrumentation and Imaging Laboratory (BIIL), School of Physics (SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| |
Collapse
|
8
|
Cho SW, Phan TTV, Nguyen VT, Park SM, Lee H, Oh J, Kim CS. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. PHOTOACOUSTICS 2023; 29:100456. [PMID: 36785577 PMCID: PMC9918423 DOI: 10.1016/j.pacs.2023.100456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.
Collapse
Affiliation(s)
- Soon-Woo Cho
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
- Department of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Viet Nam
| | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sang Min Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| | - Hwidon Lee
- Harvard Medical School, Boston, Massachusetts MA 02115, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, the Republic of Korea
- Ohlabs Corporation, Busan 48513, the Republic of Korea
| | - Chang-Seok Kim
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, the Republic of Korea
| |
Collapse
|
9
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
10
|
Wu M, Huang Y, Huang X, Wang F, Wei X. Copolymerized carbon nitride nanoparticles for near-infrared II photoacoustic-guided synergistic photothermal/radiotherapy. Front Chem 2023; 11:1124559. [PMID: 36711234 PMCID: PMC9880048 DOI: 10.3389/fchem.2023.1124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Nanotheranostic agents that integrate diagnosis and treatment are promising for precision medicine, but they encounter some obstacles such as penetration depth and efficiency. In this study, novel carbon nitride-rose bengal nanoparticles (CN-RB NPs) with a graphite carbon nitride skeleton were synthesized by one-step thermal copolymerization. The enhanced absorption in the near-infrared-II region (NIR-II) endows CN-RB NPs with an excellent photothermal effect under 1064 nm laser irradiation, as well as an obvious photoacoustic signal for imaging in vivo. Interestingly, due to the introduced iodine element, CN-RB NPs exhibit enhanced radiation therapy, indicating that CN-RB NPs can achieve ideal therapeutic outcome through collaborative photothermal/radiation therapy under the guidance of NIR-II photoacoustic imaging. Moreover, CN-RB NPs demonstrate minimal side effects and long-term biological stability after 14 days. Therefore, the proposed new multifunctional nano-platform CN-RB NPs hold great potential in the application of deep therapeutics.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Min Wu, ; Fu Wang, ; Xunbin Wei,
| | - Yuxin Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Min Wu, ; Fu Wang, ; Xunbin Wei,
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing, China,*Correspondence: Min Wu, ; Fu Wang, ; Xunbin Wei,
| |
Collapse
|
11
|
Temporal Evolution of Refractive Index Induced by Short Laser Pulses Accounting for Both Photoacoustic and Photothermal Effects. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Materials such as silicon, copper, gold, and aluminum exhibit strong absorption and scattering characterization under short-pulsed laser irradiation. Due to the photoelastic effect and thermoelastic relaxation, the focal area may induce a local modulation in the refractive index, which can be detected with the intensity reflection coefficient perturbation. Normally, the thermal effect causes a weak refractive index change and is negligible, compared with the pressure-induced effect in most photoacoustic analytical systems. In this study, we present a theoretical model with the whole process of absorbed energy conversion analysis for the refractive index perturbation induced by both thermal effect and photoacoustic pressure. In this model, data analysis was carried out on the transformation of the energy absorbed by the sample into heat and stress. To prove the feasibility of this model, numerical simulation was performed for the photothermal and photoacoustic effects under different incident intensities using the finite element method. Experiment results on silicon and carbon fiber verified that the refractive index change induced by the photothermal effect can be detected and be incorporated with pressure-induced refractive index change. The simulation results showed very good agreement with the results of the experiments. The main aim of this study was to further understand the absorption and conversion process of short-pulsed light energy and the resulting photothermal and photoacoustic effects.
Collapse
|
12
|
Shintate R, Ishii T, Ahn J, Kim JY, Kim C, Saijo Y. High-speed optical resolution photoacoustic microscopy with MEMS scanner using a novel and simple distortion correction method. Sci Rep 2022; 12:9221. [PMID: 35654947 PMCID: PMC9163157 DOI: 10.1038/s41598-022-12865-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging technique that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making it difficult to biologically interpret in vivo tissue. In this study, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consists of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposes a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion by running an image sequence only once using a ruler target. The combination of MEMS-OR-PAM and distortion correction method was verified using three experiments: (1) leaf skeleton phantom imaging to test the distortion correction efficacy; (2) spatial resolution and depth of field (DOF) measurement for system performance; (3) in-vivo finger capillary imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 s in 2 × 4 mm) and high lateral resolution (~ 6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.
Collapse
Affiliation(s)
- Ryo Shintate
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan.
| | - Takuro Ishii
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 930-8555, Japan
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
13
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
14
|
Gao R, Xue Q, Ren Y, Zhang H, Song L, Liu C. Achieving depth-independent lateral resolution in AR-PAM using the synthetic-aperture focusing technique. PHOTOACOUSTICS 2022; 26:100328. [PMID: 35242539 PMCID: PMC8861412 DOI: 10.1016/j.pacs.2021.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Acoustic-resolution photoacoustic microscopy (AR-PAM) is a promising imaging modality that renders images with ultrasound resolution and extends the imaging depth beyond the optical ballistic regime. To achieve a high lateral resolution, a large numerical aperture (NA) of a focused transducer is usually applied for AR-PAM. However, AR-PAM fails to hold its performance in the out-of-focus region. The lateral resolution and signal-to-noise ratio (SNR) degrade substantially, thereby leading to a significantly deteriorated image quality outside the focal area. Based on the concept of the synthetic-aperture focusing technique (SAFT), various strategies have been developed to address this challenge. These include 1D-SAFT, 2D-SAFT, adaptive-SAFT, spatial impulse response (SIR)-based schemes, and delay-multiply-and-sum (DMAS) strategies. These techniques have shown progress in achieving depth-independent lateral resolution, while several challenges remain. This review aims to introduce these developments in SAFT-based approaches, highlight their fundamental mechanisms, underline the advantages and limitations of each approach, and discuss the outlook of the remaining challenges for future advances.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiang Xue
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, The Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hai Zhang
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, The Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen 518020, China
- Department of Ultrasound, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author.
| |
Collapse
|
15
|
Guo Y, Li B, Yin X. Dual-compressed photoacoustic single-pixel imaging. Natl Sci Rev 2022; 10:nwac058. [PMID: 36789105 PMCID: PMC9923385 DOI: 10.1093/nsr/nwac058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
Photoacoustic imaging, an acoustic imaging modality with potentially optical resolution in an optical turbid medium, has attracted great attention. However, the convergence of wavefront optimization and raster scanning in computational photoacoustic imaging leads to the challenge of fast mapping, especially for a spatial resolution approaching the acoustic deep-subwavelength regime. As a sparse sampling paradigm, compressive sensing has been applied in numerous fields to accelerate data acquisition without significant quality losses. In this work, we propose a dual-compressed approach for photoacoustic surface tomography that enables high-efficiency imaging with 3D spatial resolution unlimited by the acoustics in a turbid environment. The dual-compressed photoacoustic imaging with single-pixel detection, enabled by spatially optical modulation with synchronized temporally photoacoustic coding, allows decoding of the fine optical information from the modulated acoustic signal even when the variance of original photoacoustic signals is weak. We perform a proof-of-principle numerical demonstration of dual-compressed photoacoustic imaging, that resolves acoustic sub-acoustic-wavelength details with a significantly reduced number of measurements, revealing the potential for dynamic imaging. The dual-compressed concept, which transforms unobtrusive spatial difference into spatio-temporal detectable information, can be generalized to other imaging modalities to realize efficient, high-spatial-resolution imaging.
Collapse
Affiliation(s)
- Yuning Guo
- Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
| | | | - Xiaobo Yin
- Corresponding authors. E-mails: . Present affiliation: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Duan T, Peng X, Chen M, Zhang D, Gao F, Yao J. Detection of weak optical absorption by optical-resolution photoacoustic microscopy. PHOTOACOUSTICS 2022; 25:100335. [PMID: 35198378 PMCID: PMC8844787 DOI: 10.1016/j.pacs.2022.100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) is one of the major implementations of photoacoustic (PA) imaging. With tightly focused optical illumination and high-frequency ultrasound detection, OR-PAM provides micrometer-level resolutions as well as high sensitivity to optical absorption contrast. Traditionally, it is assumed that the detected PA signal in OR-PAM has a linear dependence on the target's optical absorption coefficient, which is the basis for quantitative functional and molecular PA imaging. In this paper, we demonstrate that, due to the limited detection bandwidth and detection view, OR-PAM can have a strong nonlinear dependence on the optical absorption, especially for weak optical absorption (<10 cm-1). We have investigated the nonlinear dependence in OR-PAM using numerical simulations, analyzed the underlining mechanisms, proposed potential solutions, and experimentally confirmed the results on phantoms. This work may correct a traditional misunderstanding of the OR-PAM signals and improve quantitative accuracy for functional and molecular applications.
Collapse
Affiliation(s)
- Tingyang Duan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Hybrid Imaging System Laboratory, Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Departmentof Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaorui Peng
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Departmentof Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Dong Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Departmentof Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Gao
- Hybrid Imaging System Laboratory, Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Sun A, Ji Y, Li Y, Xie W, Liu Z, Li T, Jin T, Qi W, Li K, Wu C, Xi L. Multicolor Photoacoustic Volumetric Imaging of Subcellular Structures. ACS NANO 2022; 16:3231-3238. [PMID: 35080378 DOI: 10.1021/acsnano.1c11103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) has been widely used in multiscale and multicontrast imaging of biological structures and functions. Optical resolution photoacoustic microscopy (OR-PAM), an emerging submodality of PAI, features high lateral resolution and rich optical contrast, indicating great potential in visualizing cellular and subcellular structures. However, three-dimensional (3D) imaging of subcellular structures using OR-PAM has remained a challenge due to the limited axial resolution. In this study, we propose a multicolor 3D photoacoustic microscopy with high lateral/axial resolutions of 0.42/2 and 0.5/2.5 μm at 532 and 780 nm excitation, respectively. Owing to the significantly increased axial resolution, we could visualize the volumetric subcellular structures of melanoma cells using intrinsic contrast. In addition, we carried out multicolor imaging of labeled microtubules/clathrin-coated pits (CCP) and microtubules/mitochondria, respectively, with one scanning by using two different excitation wavelengths. The internal connections between different subcellular structures are revealed by quantitatively comparing the spatial distributions of microtubules/CCP and microtubules/mitochondria in a single cell. Current results suggest that the proposed OR-PAM may serve as an efficient tool for subcellular and cytophysiological studies.
Collapse
Affiliation(s)
- Aihui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaoyao Ji
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Xie
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Mostafavi SM, Amjadian M, Kavehvash Z, Shabany M. Fourier photoacoustic microscope improved resolution on single-pixel imaging. APPLIED OPTICS 2022; 61:1219-1228. [PMID: 35201175 DOI: 10.1364/ao.442628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A new single-pixel Fourier photoacoustic microscopy (PAM), to the best of our knowledge, is proposed to improve the resolution and region of interest (ROI) of an acquired image. In the previous structure of single-pixel Fourier PAM, called spatially invariant resolution PAM (SIR-PAM), the lateral resolution and ROI are limited by the digital micromirror device (DMD) pixel size and the number of pixels. This limitation is overcome here through illuminating fixed angle interfering plane waves, changing the fringe frequency via varying the frequency of the laser source. Given that the fringe sinusoidal patterns here can be produced by two mirrors, the DMD usage can be omitted. In this way, the fringe frequency can be changed in a wider spectrum, making it possible to capture a wider spectral bandwidth and thus a higher-resolution image. Also, the removal of the ROI limitation results in a high-resolution frequency-swept PAM structure. Monte Carlo simulations show 1.7 times improvement in lateral resolution compared to SIR-PAM based on the point-spread function and full-width-at-half-maximum.
Collapse
|
19
|
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022; 13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Microfluidics can precisely control and manipulate micro-scale fluids, and are also known as lab-on-a-chip or micro total analysis systems. Microfluidics have huge application potential in biology, chemistry, and medicine, among other fields. Coupled with a suitable detection system, the detection and analysis of small-volume and low-concentration samples can be completed. This paper reviews an optical imaging system combined with microfluidics, including bright-field microscopy, chemiluminescence imaging, spectrum-based microscopy imaging, and fluorescence-based microscopy imaging. At the end of the article, we summarize the advantages and disadvantages of each imaging technology.
Collapse
Affiliation(s)
- Pan Zhou
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Haipeng He
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528000, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
- Correspondence: (S.W.); (S.H.)
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
20
|
Das A, Raposo GCC, Lopes DS, da Silva EJ, Carneiro VSM, Mota CCBDO, Amaral MM, Zezell DM, Barbosa-Silva R, Gomes ASL. Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:506. [PMID: 35159853 PMCID: PMC8838952 DOI: 10.3390/nano12030506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
There is already a societal awareness of the growing impact of nanoscience and nanotechnology, with nanomaterials (with at least one dimension less than 100 nm) now incorporated in items as diverse as mobile phones, clothes or dentifrices. In the healthcare area, nanoparticles of biocompatible materials have already been used for cancer treatment or bioimaging enhancement. Nanotechnology in dentistry, or nanodentistry, has already found some developments in dental nanomaterials for caries management, restorative dentistry and orthodontic adhesives. In this review, we present state-of-the-art scientific development in nanodentistry with an emphasis on two imaging techniques exploiting nanomaterials: optical coherence tomography (OCT) and photoacoustic imaging (PAI). Examples will be given using OCT with nanomaterials to enhance the acquired imaging, acting as optical clearing agents for OCT. A novel application of gold nanoparticles and nanorods for imaging enhancement of incipient occlusal caries using OCT will be described. Additionally, we will highlight how the OCT technique can be properly managed to provide imaging with spatial resolution down to 10's-100's nm resolution. For PAI, we will describe how new nanoparticles, namely TiN, prepared by femtosecond laser ablation, can be used in nanodentistry and will show photoacoustic microscopy and tomography images for such exogenous agents.
Collapse
Affiliation(s)
- Avishek Das
- Physics Department, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.B.-S.); (A.S.L.G.)
| | - Gisele Cruz Camboim Raposo
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (G.C.C.R.); (E.J.d.S.)
| | - Daniela Siqueira Lopes
- Faculty of Dentistry, Campus Arcoverde, Universidade de Pernambuco, Arcoverde 56503-146, PE, Brazil;
| | - Evair Josino da Silva
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (G.C.C.R.); (E.J.d.S.)
| | | | | | - Marcello Magri Amaral
- Scientific and Technological Institute, Universidade Brasil, Fernandópolis 15600-000, SP, Brazil;
| | - Denise Maria Zezell
- Center for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares IPEN—CNEN, São Paulo 05411-000, SP, Brazil;
| | - Renato Barbosa-Silva
- Physics Department, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.B.-S.); (A.S.L.G.)
| | - Anderson Stevens Leonidas Gomes
- Physics Department, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (R.B.-S.); (A.S.L.G.)
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (G.C.C.R.); (E.J.d.S.)
| |
Collapse
|
21
|
Notsuka Y, Kurihara M, Hashimoto N, Harada Y, Takahashi E, Yamaoka Y. Improvement of spatial resolution in photoacoustic microscopy using transmissive adaptive optics with a low-frequency ultrasound transducer. OPTICS EXPRESS 2022; 30:2933-2948. [PMID: 35209424 DOI: 10.1364/oe.446309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Maintaining a high spatial resolution in photoacoustic microscopy (PAM) of deep tissues is difficult due to large aberration in an objective lens with high numerical aperture and photoacoustic wave attenuation. To address the issue, we integrate transmission-type adaptive optics (AO) in high-resolution PAM with a low-frequency ultrasound transducer (UT), which increases the photoacoustic wave detection efficiency. AO improves lateral resolution and depth discrimination in PAM, even for low-frequency ultrasound waves by focusing a beam spot in deep tissues. Using the proposed PAM, we increased the lateral resolution and depth discrimination for blood vessels in mouse ears.
Collapse
|
22
|
Sun A, Li T, Jin T, Li Y, Li K, Song C, Xi L. Acoustic Standing Wave Aided Multiparametric Photoacoustic Imaging Flow Cytometry. Anal Chem 2021; 93:14820-14827. [PMID: 34714062 DOI: 10.1021/acs.analchem.1c03713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic imaging reveals great potential for the study of individual cells due to the rich imaging contrast for both label-free and labeled cells. However, previously reported photoacoustic imaging flow cytometry configuration suffers from inadequate imaging quality and challenge to distinguish multiple cells. In order to solve such issues, we propose a novel acoustic standing wave aided multiparametric photoacoustic imaging flow cytometry (MPAFC) system. The acoustic standing wave is introduced to improve the imaging quality and speed. Multispectral illumination along with cell geometry, photoacoustic amplitude, and acoustic frequency spectrum enables the proposed system to precisely identify multiple types of cells with one scanning. On the basis of the identification, elimination of melanoma cells, and targeted labeled glioma cells have been performed with an elimination efficiency of >95%. Additionally, the MPAFC system is able to image and capture melanoma cells at a lowest concentration of 100 cells mL-1 in pure blood. Current results suggest that the proposed MPAFC may provide a precise and efficient tool for cell detection, manipulation, and elimination in both fundamental and clinical studies.
Collapse
Affiliation(s)
- Aihui Sun
- Harbin Institute of Technology, Harbin 150001, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaxi Li
- Harbin Institute of Technology, Harbin 150001, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
23
|
Li D, Humayun L, Vienneau E, Vu T, Yao J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID INNOVATIONS 2021; 1:100039. [PMID: 34909735 PMCID: PMC8659408 DOI: 10.1016/j.xjidi.2021.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Skin diseases are the most common human diseases and manifest in distinct structural and functional changes to skin tissue components such as basal cells, vasculature, and pigmentation. Although biopsy is the standard practice for skin disease diagnosis, it is not sufficient to provide in vivo status of the skin and highly depends on the timing of diagnosis. Noninvasive imaging technologies that can provide structural and functional tissue information in real time would be invaluable for skin disease diagnosis and treatment evaluation. Among the modern medical imaging technologies, photoacoustic (PA) tomography (PAT) shows great promise as an emerging optical imaging modality with high spatial resolution, high imaging speed, deep penetration depth, rich contrast, and inherent sensitivity to functional and molecular information. Over the last decade, PAT has undergone an explosion in technical development and biomedical applications. Particularly, PAT has attracted increasing attention in skin disease diagnosis, providing structural, functional, metabolic, molecular, and histological information. In this concise review, we introduce the principles and imaging capability of various PA skin imaging technologies. We highlight the representative applications in the past decade with a focus on imaging skin vasculature and melanoma. We also envision the critical technical developments necessary to further accelerate the translation of PAT technologies to fundamental skin research and clinical impacts.
Collapse
Key Words
- ACD, allergy contact dermatitis
- AR-PAM, acoustic-resolution photoacoustic microscopy
- CSC, cryogen spray cooling
- CSVV, cutaneous small-vessel vasculitis
- CTC, circulating tumor cell
- FDA, Food and Drug Administration
- NIR, near-infrared
- OR-PAM, optical-resolution photoacoustic microscopy
- PA, photoacoustic
- PACT, photoacoustic computed tomography
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- PWS, port-wine stain
- RSOM, raster-scan optoacoustic mesoscopy
- THb, total hemoglobin concentration
- sO2, oxygen saturation of hemoglobin
Collapse
Affiliation(s)
- Daiwei Li
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lucas Humayun
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Emelina Vienneau
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Vu
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
24
|
Zhang D, Li R, Chen M, Vu T, Sheng H, Yang W, Hoffmann U, Luo J, Yao J. Photoacoustic imaging of in vivo hemodynamic responses to sodium nitroprusside. JOURNAL OF BIOPHOTONICS 2021; 14:e202000478. [PMID: 33768709 PMCID: PMC8263508 DOI: 10.1002/jbio.202000478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The in vivo hemodynamic impact of sodium nitroprusside (SNP), a widely used antihypertensive agent, has not been well studied. Here, we applied functional optical-resolution photoacoustic microscopy (OR-PAM) to study the hemodynamic responses to SNP in mice in vivo. As expected, after the application of SNP, the systemic blood pressure (BP) was reduced by 53%. The OR-PAM results show that SNP induced an arterial vasodilation of 24% and 23% in the brain and skin, respectively. A weaker venous vasodilation of 9% and 5% was also observed in the brain and skin, respectively. The results show two different types of blood oxygenation response. In mice with decreased blood oxygenation, the arterial and venous oxygenation was respectively reduced by 6% and 13% in the brain, as well as by 7% and 18% in the skin. In mice with increased blood oxygenation, arterial and venous oxygenation was raised by 4% and 22% in the brain, as well as by 1% and 9% in the skin. We observed venous change clearly lagged the arterial change in the skin, but not in the brain. Our results collectively show a correlation among SNP induced changes in systemic BP, vessel size and blood oxygenation.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ran Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Ulrike Hoffmann
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Gröhl J, Schellenberg M, Dreher K, Maier-Hein L. Deep learning for biomedical photoacoustic imaging: A review. PHOTOACOUSTICS 2021; 22:100241. [PMID: 33717977 PMCID: PMC7932894 DOI: 10.1016/j.pacs.2021.100241] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep learning methods has recently exploded in popularity, leading to impressive successes in the context of medical imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in PAI and identify potential directions of research that will help to reach the goal of clinical applicability.
Collapse
Affiliation(s)
- Janek Gröhl
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Melanie Schellenberg
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
| | - Kris Dreher
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Lena Maier-Hein
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
| |
Collapse
|
26
|
Mai TT, Yoo SW, Park S, Kim JY, Choi KH, Kim C, Kwon SY, Min JJ, Lee C. In Vivo Quantitative Vasculature Segmentation and Assessment for Photodynamic Therapy Process Monitoring Using Photoacoustic Microscopy. SENSORS 2021; 21:s21051776. [PMID: 33806466 PMCID: PMC7961824 DOI: 10.3390/s21051776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Vascular damage is one of the therapeutic mechanisms of photodynamic therapy (PDT). In particular, short-term PDT treatments can effectively destroy malignant lesions while minimizing damage to nonmalignant tissue. In this study, we investigate the feasibility of label-free quantitative photoacoustic microscopy (PAM) for monitoring the vasculature changes under the effect of PDT in mouse ear melanoma tumors. In particular, quantitative vasculature evaluation was conducted based on Hessian filter segmentation. Three-dimensional morphological PAM and depth-resolved images before and after PDT treatment were acquired. In addition, five quantitative vasculature parameters, including the PA signal, vessel diameter, vessel density, perfused vessel density, and vessel complexity, were analyzed to evaluate the influence of PDT on four different areas: Two melanoma tumors, and control and normal vessel areas. The quantitative and qualitative results successfully demonstrated the potential of the proposed PAM-based quantitative approach to evaluate the effectiveness of the PDT method.
Collapse
Affiliation(s)
- Thi Thao Mai
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
| | - Suhyun Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Jin Young Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Hospital, 8 Hak-dong, Dong-gu, Gwangju 501-757, Korea;
| | - Chulhong Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2885
| |
Collapse
|
27
|
Cebrecos A, García-Garrigós JJ, Descals A, Jiménez N, Benlloch JM, Camarena F. Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy. ULTRASONICS 2021; 111:106317. [PMID: 33310407 DOI: 10.1016/j.ultras.2020.106317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 05/11/2023]
Abstract
Beamforming enhances the performance of array-based photoacoustic microscopy (PAM) systems for large-area scan. In this study, we quantify the imaging performance of a large field-of-view optical-resolution photoacoustic-microscopy system using an phased-array detector. The system combines a low-cost pulsed-laser diode with a 128-element linear ultrasound probe. Signal-to-noise ratio (SNR) and generalized contrast-to-noise ratio (gCNR) are quantified using the phased-array detector and applying three beamforming strategies: a no-beamforming method equivalent to a single-element flat transducer, a fixed focus beamforming method that mimics a single-element focused transducer, and a dynamic focus beamforming using a delay-and-sum (DAS) algorithm. The imaging capabilities of the system are demonstrated generating high-resolution images of tissue-mimicking phantoms containing sub-millimetre ink tubes and an ex vivo rabbit's ear. The results show that dynamic focus DAS beamforming increases and homogenizes SNR along 1-cm2 images, reaching values up to 15 dB compared to an unfocused detector and up to 30 dB compared to out-of-focus regions of the fixed focus configuration. Moreover, the obtained values of gCNR using the DAS beamformer indicate an excellent target visibility, both on phantoms and ex vivo. This strategy makes it possible to scan larger surfaces compared to standard configurations using single-element detectors, paving the way for advanced array-based PAM systems.
Collapse
Affiliation(s)
- A Cebrecos
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain.
| | - J J García-Garrigós
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - A Descals
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - N Jiménez
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - J M Benlloch
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - F Camarena
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
28
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
29
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
30
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Hosseinaee Z, Le M, Bell K, Reza PH. Towards non-contact photoacoustic imaging [review]. PHOTOACOUSTICS 2020; 20:100207. [PMID: 33024694 PMCID: PMC7530308 DOI: 10.1016/j.pacs.2020.100207] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/06/2023]
Abstract
Photoacoustic imaging (PAI) takes advantage of both optical and ultrasound imaging properties to visualize optical absorption with high resolution and contrast. Photoacoustic microscopy (PAM) is usually categorized with all-optical microscopy techniques such as optical coherence tomography or confocal microscopes. Despite offering high sensitivity, novel imaging contrast, and high resolution, PAM is not generally an all-optical imaging method unlike the other microscopy techniques. One of the significant limitations of photoacoustic microscopes arises from their need to be in physical contact with the sample through a coupling media. This physical contact, coupling, or immersion of the sample is undesirable or impractical for many clinical and pre-clinical applications. This also limits the flexibility of photoacoustic techniques to be integrated with other all-optical imaging microscopes for providing complementary imaging contrast. To overcome these limitations, several non-contact photoacoustic signal detection approaches have been proposed. This paper presents a brief overview of current non-contact photoacoustic detection techniques with an emphasis on all-optical detection methods and their associated physical mechanisms.
Collapse
Affiliation(s)
- Zohreh Hosseinaee
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Martin Le
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Kevan Bell
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
- IllumiSonics Inc., Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Parsin Haji Reza
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
32
|
Kothapalli SR, Sonn GA, Choe JW, Nikoozadeh A, Bhuyan A, Park KK, Cristman P, Fan R, Moini A, Lee BC, Wu J, Carver TE, Trivedi D, Shiiba L, Steinberg I, Huland DM, Rasmussen MF, Liao JC, Brooks JD, Khuri-Yakub PT, Gambhir SS. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci Transl Med 2020; 11:11/507/eaav2169. [PMID: 31462508 DOI: 10.1126/scitranslmed.aav2169] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 07/26/2019] [Indexed: 11/02/2022]
Abstract
Imaging technologies that simultaneously provide anatomical, functional, and molecular information are emerging as an attractive choice for disease screening and management. Since the 1980s, transrectal ultrasound (TRUS) has been routinely used to visualize prostatic anatomy and guide needle biopsy, despite limited specificity. Photoacoustic imaging (PAI) provides functional and molecular information at ultrasonic resolution based on optical absorption. Combining the strengths of TRUS and PAI approaches, we report the development and bench-to-bedside translation of an integrated TRUS and photoacoustic (TRUSPA) device. TRUSPA uses a miniaturized capacitive micromachined ultrasonic transducer array for simultaneous imaging of anatomical and molecular optical contrasts [intrinsic: hemoglobin; extrinsic: intravenous indocyanine green (ICG)] of the human prostate. Hemoglobin absorption mapped vascularity of the prostate and surroundings, whereas ICG absorption enhanced the intraprostatic photoacoustic contrast. Future work using the TRUSPA device for biomarker-specific molecular imaging may enable a fundamentally new approach to prostate cancer diagnosis, prognostication, and therapeutic monitoring.
Collapse
Affiliation(s)
- Sri-Rajasekhar Kothapalli
- Molecular Imaging Program at Stanford and Bio-X Program, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Geoffrey A Sonn
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jung Woo Choe
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Amin Nikoozadeh
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Anshuman Bhuyan
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Kwan Kyu Park
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Paul Cristman
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Richard Fan
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Azadeh Moini
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Byung Chul Lee
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Jonathan Wu
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Thomas E Carver
- Edward L. Ginzton Laboratory, Center for Nanoscale Science and Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Dharati Trivedi
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lillian Shiiba
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Idan Steinberg
- Molecular Imaging Program at Stanford and Bio-X Program, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - David M Huland
- Molecular Imaging Program at Stanford and Bio-X Program, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Morten F Rasmussen
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Pierre T Khuri-Yakub
- Department of Electrical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - Sanjiv S Gambhir
- Molecular Imaging Program at Stanford and Bio-X Program, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA. .,Department of Bioengineering and Department of Materials Science & Engineering, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
33
|
Sun A, Guo H, Gan Q, Yang L, Liu Q, Xi L. Evaluation of visible NIR-I and NIR-II light penetration for photoacoustic imaging in rat organs. OPTICS EXPRESS 2020; 28:9002-9013. [PMID: 32225514 DOI: 10.1364/oe.389714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we evaluate the penetration capability of light in visible, near-infrared-I (NIR-I) and near-infrared-II (NIR-II) optical windows for photoacoustic macroscale imaging inside 9 biological tissues with three typical penetration depths. An acoustic resolution photoacoustic microscopy is designed to guarantee the consistent experiment conditions except excitation wavelength. Experimental results show that short NIR-II (1000-1150 nm) shows the best performance inside kidney, spleen and liver tissues at all depths, while NIR-I (700-1000 nm) works better for muscle, stomach, heart and brain tissues, especially in deep imaging. This study proposes the optimal selection of illumination wavelengths for photoacoustic macroscale imaging in rat organs, which enables the best signal-to-noise ratio (SNR) of the observed target.
Collapse
|
34
|
Rapid High-Resolution Mosaic Acquisition for Photoacoustic Remote Sensing. SENSORS 2020; 20:s20041027. [PMID: 32075006 PMCID: PMC7071083 DOI: 10.3390/s20041027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Mechanical stages are routinely used to scan large expanses of biological specimens in photoacoustic imaging. This is primarily due to the limited field of view (FOV) provided by optical scanning. However, stage scanning becomes impractical at higher scanning speeds, or potentially unfeasible with heavier samples. Also, the slow scan-rate of the stages makes high resolution scanning a time-consuming process. Some clinical applications such as microsurgery require submicron resolution in a reflection-mode configuration necessitating a method that can acquire large field of views with a small raster scanning step size. In this study, we describe a method that combines mechanical stages with optical scanning for the rapid acquisition of high-resolution large FOVs. Optical scanning is used to acquire small frames in a two-dimensional grid formed by the mechanical stages. These frames are captured with specific overlap for effective image registration. Using a step size of 200 nm, we demonstrate mosaics of carbon fiber networks with FOVs of 0.8 × 0.8 mm2 captured in under 70 s with 1.2 µm image resolution. Larger mosaics yielding an imaging area of 3 × 3 mm2 are also shown. The method is validated by imaging a 1 × 1 mm2 section of unstained histopathological human tissue.
Collapse
|
35
|
Liu WW, Li PC. Photoacoustic imaging of cells in a three-dimensional microenvironment. J Biomed Sci 2020; 27:3. [PMID: 31948442 PMCID: PMC6966874 DOI: 10.1186/s12929-019-0594-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
Imaging live cells in a three-dimensional (3D) culture system yields more accurate information and spatial visualization of the interplay of cells and the surrounding matrix components compared to using a two-dimensional (2D) cell culture system. However, the thickness of 3D cultures results in a high degree of scattering that makes it difficult for the light to penetrate deeply to allow clear optical imaging. Photoacoustic (PA) imaging is a powerful imaging modality that relies on a PA effect generated when light is absorbed by exogenous contrast agents or endogenous molecules in a medium. It combines a high optical contrast with a high acoustic spatiotemporal resolution, allowing the noninvasive visualization of 3D cellular scaffolds at considerable depths with a high resolution and no image distortion. Moreover, advances in targeted contrast agents have also made PA imaging capable of molecular and cellular characterization for use in preclinical personalized diagnostics or PA imaging-guided therapeutics. Here we review the applications and challenges of PA imaging in a 3D cellular microenvironment. Potential future developments of PA imaging in preclinical applications are also discussed.
Collapse
Affiliation(s)
- Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Kanellis VG. A review of melanin sensor devices. Biophys Rev 2019; 11:843-849. [PMID: 31396804 PMCID: PMC6874939 DOI: 10.1007/s12551-019-00581-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/31/2019] [Indexed: 02/01/2023] Open
Abstract
Knowing how readily the skin produces melanin is invaluable in reducing photochemical and phototherapy overtreatment in dermatology and also in reducing the risk of actinic skin damage and skin cancer from excessive radiant light exposure. The commonly used Fitzpatrick skin type (FST) classification scale is often used to subjectively assess ultraviolet light sensitivity and susceptibility to sunburn following significant sunlight exposure. However, the FST scale falls short in the assessment of nonwhite skin types. Alternatively, commercially available melanin sensor devices, called melanometers, can be used to objectively quantify useful skin parameters such as the epidermal melanin concentration (EMC). This study reviews commercially available melanometers and their use in quantifying epidermal melanin concentration (EMC) and the individual maximum safe radiant exposure (IMSRE) for an individual in clinical, workplace and community settings.
Collapse
|
37
|
Park S, Kim M, Vial JC, Kyhm K. Stimulation Emission Depleted Photoacoustic. OPTICS EXPRESS 2019; 27:27841-27850. [PMID: 31684545 DOI: 10.1364/oe.27.027841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that the Stimulated Emission Depletion (STED) concept, which is usually invoked for fluorescence, can be extended to photoacoustic effects. When two-nanosecond pulses of exciting and stimulating light are synchronized, 80% of the acoustic signal generated through excited state absorption (ESA) can be quenched. Regarding the cross-sections for stimulated emission and ESA, a model gives a good order of magnitude in the depletion efficiency. The transient molecular orientation, usually measured via the fluorescence anisotropy, can be accessed in photoacoustic when STED is implemented.
Collapse
|
38
|
Jeon S, Kim J, Lee D, Baik JW, Kim C. Review on practical photoacoustic microscopy. PHOTOACOUSTICS 2019; 15:100141. [PMID: 31463194 PMCID: PMC6710377 DOI: 10.1016/j.pacs.2019.100141] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging (PAI) has many interesting advantages, such as deep imaging depth, high image resolution, and high contrast to intrinsic and extrinsic chromophores, enabling morphological, functional, and molecular imaging of living subjects. Photoacoustic microscopy (PAM) is one form of the PAI inheriting its characteristics and is useful in both preclinical and clinical research. Over the years, PAM systems have been evolved in several forms and each form has its relative advantages and disadvantages. Thus, to maximize the benefits of PAM for a specific application, it is important to configure the PAM system optimally by targeting a specific application. In this review, we provide practical methods for implementing a PAM system to improve the resolution, signal-to-noise ratio (SNR), and imaging speed. In addition, we review the preclinical and the clinical applications of PAM and discuss the current challenges and the scope for future developments.
Collapse
Affiliation(s)
| | | | | | | | - Chulhong Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
39
|
Ratto F, Cavigli L, Borri C, Centi S, Magni G, Mazzoni M, Pini R. Hybrid organosilicon/polyol phantom for photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:3719-3730. [PMID: 31452970 PMCID: PMC6701555 DOI: 10.1364/boe.10.003719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/15/2023]
Abstract
The rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue. For a full optical parameterization, we refer to Wróbel, et al. [ Biomed. Opt. Express7, 2088 (2016)], where this material was first presented for optical imaging. Instead, here, we complete the picture and find that its speed of sound and acoustic attenuation resemble those of pure polydimethylsiloxane, i.e. respectively 1150 ± 30 m/s and 3.5 ± 0.4 dB/(MHz·cm). We demonstrate its use under a commercial B-mode scanner and a home-made A-mode stage for photoacoustic analysis to retrieve the ground-truth encoded in a multilayer architecture containing indocyanine green, plasmonic particles and red blood cells. Finally, we verify the stability of its acoustic, optical and geometric features over a time span of three months.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Lucia Cavigli
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Claudia Borri
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Sonia Centi
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Giada Magni
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Marina Mazzoni
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Roberto Pini
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
40
|
Gao K, Tu W, Yu X, Ahmad F, Zhang X, Wu W, An X, Chen X, Li W. W-doped TiO 2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors. Theranostics 2019; 9:5214-5226. [PMID: 31410211 PMCID: PMC6691582 DOI: 10.7150/thno.33574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 02/03/2023] Open
Abstract
Multifunctional nanomaterials that have integrated diagnostic and therapeutic functions and low toxicity, and can enhance treatment efficacy through combination therapy have drawn tremendous amounts of attention. Herein, a newly developed multifunctional theranostic agent is reported, which is PEGylated W-doped TiO2 (WTO) nanoparticles (NPs) synthesized via a facile organic route, and the results demonstrated strong absorbance of these WTO NPs in the second near-infrared (NIR-II) window due to successful doping with W. These PEGylated WTO NPs can absorb both NIR-II laser and ionizing radiation, rendering them well suited for dual-modal computed tomography/NIR-II photoacoustic imaging and synergistic NIR-II photothermal/radiotherapy of tumors. In addition, the long-term in vivo studies indicated that these PEGylated WTO NPs had no obvious toxicity on mice in vivo, and they can be cleared after a 30-day period. In summary, this multifunctional theranostic agent can absorb both NIR-II laser and ionizing radiation with negligible toxicity and rapid clearance, therefore it has great promise for applications in imaging and therapeutics in biomedicine.
Collapse
Affiliation(s)
- Ke Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenzhi Tu
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Farooq Ahmad
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiannan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao An
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
41
|
Xu Z, Sun N, Cao R, Li Z, Liu Q, Hu S. Cortex-wide multiparametric photoacoustic microscopy based on real-time contour scanning. NEUROPHOTONICS 2019; 6:035012. [PMID: 31548975 PMCID: PMC6752259 DOI: 10.1117/1.nph.6.3.035012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
Large-scale, high-resolution imaging of cerebral hemodynamics is essential for brain research. Uniquely capable of comprehensive quantification of cerebral hemodynamics and oxygen metabolism in rodents based on the endogenous hemoglobin contrast, multiparametric photoacoustic microscopy (PAM) is ideally suited for this purpose. However, the out-of-focus issue due to the uneven surface of the rodent brain results in inaccurate PAM measurements and presents a significant challenge to cortex-wide multiparametric recording. We report a large-scale, high-resolution, multiparametric PAM system based on real-time surface contour extraction and scanning, which avoids the prescan and offline calculation of the contour map required by previously reported contour-scanning strategies. The performance of this system has been demonstrated in both phantoms and the live mouse brain through a thinned-skull window. Side-by-side comparison shows that the real-time contour scanning not only improves the quality of structural images by addressing the out-of-focus issue but also ensures accurate measurements of the concentration of hemoglobin ( C Hb ), oxygen saturation of hemoglobin ( sO 2 ), and cerebral blood flow (CBF) over the entire mouse cortex. Furthermore, quantitative analysis reveals how the out-of-focus issue impairs the measurements of C Hb , sO 2 , and CBF.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Wuhan University of Technology, School of Information Engineering, Wuhan, China
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
| | - Naidi Sun
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
| | - Rui Cao
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
| | - Zhengying Li
- Wuhan University of Technology, School of Information Engineering, Wuhan, China
| | - Quan Liu
- Wuhan University of Technology, School of Information Engineering, Wuhan, China
| | - Song Hu
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States
- Address all correspondence to Song Hu, E-mail:
| |
Collapse
|
42
|
Arandian A, Bagheri Z, Ehtesabi H, Najafi Nobar S, Aminoroaya N, Samimi A, Latifi H. Optical Imaging Approaches to Monitor Static and Dynamic Cell-on-Chip Platforms: A Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900737. [PMID: 31087503 DOI: 10.1002/smll.201900737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Miniaturized laboratories on chip platforms play an important role in handling life sciences studies. The platforms may contain static or dynamic biological cells. Examples are a fixed medium of an organ-on-a-chip and individual cells moving in a microfluidic channel, respectively. Due to feasibility of control or investigation and ethical implications of live targets, both static and dynamic cell-on-chip platforms promise various applications in biology. To extract necessary information from the experiments, the demand for direct monitoring is rapidly increasing. Among different microscopy methods, optical imaging is a straightforward choice. Considering light interaction with biological agents, imaging signals may be generated as a result of scattering or emission effects from a sample. Thus, optical imaging techniques could be categorized into scattering-based and emission-based techniques. In this review, various optical imaging approaches used in monitoring static and dynamic platforms are introduced along with their optical systems, advantages, challenges, and applications. This review may help biologists to find a suitable imaging technique for different cell-on-chip studies and might also be useful for the people who are going to develop optical imaging systems in life sciences studies.
Collapse
Affiliation(s)
- Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Shima Najafi Nobar
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 1969764499, Iran
| | - Neda Aminoroaya
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Ashkan Samimi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
- Department of Physics, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
43
|
Gnyawali V, Strohm EM, Wang JZ, Tsai SSH, Kolios MC. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis. Sci Rep 2019; 9:1585. [PMID: 30733497 PMCID: PMC6367457 DOI: 10.1038/s41598-018-37771-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/12/2018] [Indexed: 01/05/2023] Open
Abstract
We developed a label-free microfluidic acoustic flow cytometer (AFC) based on interleaved detection of ultrasound backscatter and photoacoustic waves from individual cells and particles flowing through a microfluidic channel. The AFC uses ultra-high frequency ultrasound, which has a center frequency of 375 MHz, corresponding to a wavelength of 4 μm, and a nanosecondpulsed laser, to detect individual cells. We validate the AFC by using it to count different color polystyrene microparticles and comparing the results to data from fluorescence-activated cell sorting (FACS). We also identify and count red and white blood cells in a blood sample using the AFC, and observe an excellent agreement with results obtained from FACS. This new label-free, non-destructive technique enables rapid and multi-parametric studies of individual cells of a large heterogeneous population using parameters such as ultrasound backscatter, optical absorption, and physical properties, for cell counting and sizing in biomedical and diagnostics applications.
Collapse
Affiliation(s)
- Vaskar Gnyawali
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada
- Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Eric M Strohm
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Jun-Zhi Wang
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada
- Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada
- Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Canada.
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada.
- Keenan Research Centre, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
44
|
Park B, Lee H, Jeon S, Ahn J, Kim HH, Kim C. Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo. JOURNAL OF BIOPHOTONICS 2019; 12:e201800215. [PMID: 30084200 DOI: 10.1002/jbio.201800215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/03/2018] [Indexed: 05/11/2023]
Abstract
We have developed a reflection-mode switchable subwavelength Bessel-beam (BB) and Gaussian-beam (GB) photoacoustic microscopy (PAM) system. To achieve both reflection-mode and high resolution, we tightly attached a very small ultrasound transducer to an optical objective lens with numerical aperture of 1.0 and working distance of 2.5 mm. We used axicon and an achromatic doublet in our system to obtain the extended depth of field (DOF) of the BB. To compare the DOF performance achieved with our BB-PAM system against GB-PAM system, we designed our system so that the GB can be easily generated by simply removing the lenses. Using a 532 nm pulse laser, we achieved the lateral resolutions of 300 and 270 nm for BB-PAM and GB-PAM, respectively. The measured DOF of BB-PAM was approximately 229 μm, which was about 7× better than that of GB-PAM. We imaged the vasculature of a mouse ear using BB-PAM and GB-PAM and confirmed that the DOF of BB-PAM is much better than the DOF of GB-PAM. Thus, we believe that the high resolution achieved at the extended DOF by our system is very practical for wide range of biomedical research including red blood cell (RBC) migration in blood vessels at various depths and observation of cell migration or cell culture.
Collapse
Affiliation(s)
- Byullee Park
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hoyong Lee
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seungwan Jeon
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joongho Ahn
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung H Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
45
|
Lee CH, Folz J, Tan JWY, Jo J, Wang X, Kopelman R. Chemical Imaging in Vivo: Photoacoustic-Based 4-Dimensional Chemical Analysis. Anal Chem 2019; 91:2561-2569. [DOI: 10.1021/acs.analchem.8b04797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chang H. Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff Folz
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel W. Y. Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Langer G, Berer T. Fluorescence quantum yield and excited state lifetime determination by phase sensitive photoacoustics: concept and theory. OPTICS LETTERS 2018; 43:5074-5077. [PMID: 30320822 DOI: 10.1364/ol.43.005074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
In this Letter, we theoretically describe photoacoustic signal generation of molecules, for which triplet relaxation can be neglected, by considering the excited state lifetime, the fluorescence quantum yield, and the fast vibrational relaxation. We show that the phase response of the photoacoustic signal can be exploited to determine the excited state lifetime of dark molecules. For fluorescent molecules, the phase response can be used to determine the fluorescence quantum yield directly without the need of reference samples.
Collapse
|
47
|
Schellenberg MW, Hunt HK. Hand-held optoacoustic imaging: A review. PHOTOACOUSTICS 2018; 11:14-27. [PMID: 30073147 PMCID: PMC6068331 DOI: 10.1016/j.pacs.2018.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 05/03/2023]
Abstract
Optoacoustic imaging is a medical imaging modality that uses optical excitation and acoustic detection to generate images of tissue structures based up optical absorption within a tissue sample. This imaging modality has been widely explored as a tool for a number of clinical applications, including cancer diagnosis and wound healing tracking. Recently, the optoacoustic imaging community has published a number of reports of hand-held optoacoustic imaging devices and platforms; these hand-held configurations improve the modality's potential for commercial clinical implementation. Here, we review recent advancements in hand-held optoacoustic imaging platforms and methods, including recent pre-clinical applications, and we present an overview of the remaining limitations in optoacoustic imaging that must be addressed to increase the translation of the modality into commercial and clinical use.
Collapse
Affiliation(s)
- Mason W. Schellenberg
- Department of Bioengineering, University of Missouri, 1406 E Rollin St., Columbia 65211, MO, USA
| | - Heather K. Hunt
- Department of Bioengineering, University of Missouri, 1406 E Rollin St., Columbia 65211, MO, USA
- Department of Dermatology, University of Missouri, 7 Hospital Dr., Columbia 65211, MO, USA
| |
Collapse
|
48
|
Photoacoustic microscopy: principles and biomedical applications. Biomed Eng Lett 2018; 8:203-213. [PMID: 30603203 DOI: 10.1007/s13534-018-0067-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Photoacoustic microscopy (PAM) has become an increasingly popular technology for biomedical applications, providing anatomical, functional, and molecular information. In this concise review, we first introduce the basic principles and typical system designs of PAM, including optical-resolution PAM and acoustic-resolution PAM. The major imaging characteristics of PAM, i.e. spatial resolutions, penetration depth, and scanning approach are discussed in detail. Then, we introduce the major biomedical applications of PAM, including anatomical imaging across scales from cellular level to organismal level, label-free functional imaging using endogenous biomolecules, and molecular imaging using exogenous contrast agents. Lastly, we discuss the technical and engineering challenges of PAM in the translation to potential clinical impacts.
Collapse
|
49
|
Luo X, Peng K, Wang B, Wang T, Xiao J. [Focal zone integral and multiple axial scanning based acoustic resolution photoacoustic microscopy with high lateral resolution in-depth]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:115-122. [PMID: 29745610 PMCID: PMC10307544 DOI: 10.7507/1001-5515.201609072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 06/08/2023]
Abstract
Acoustic resolution photoacoustic microscopy (ARPAM) combines the advantages of high optical contrast, and high ultrasonic spatial resolution and penetration. However, in photoacoustic microscopy (PAM), the information from deep regions can be greatly affected by the shallow targets, and most importantly, the irreconcilable conflict between the lateral resolution and depth of fields has always be a major factor that limits the imaging quality. In this work, an ARPAM system was developed, in which a non-coaxial arrangement of light illumination and acoustic detection was adopted to alleviate the influence of the tissue surface on the deep targets, and a novel focal zone integral algorithm was applied with multiple axial scanning to improve the lateral resolution. Phantom experiment results show that, the build system can maintain a consistent high lateral resolution of 0.6 mm over a large range in axial direction, which is close to the theoretical calculations. The following tumor imaging results on nude mice indicate that, the proposed method can provide more in-depth information compared with the conventional back detection ARPAM method. With the development of fast repetition lasers and image scanning technologies, the proposed method may play an important role in cerebral vascular imaging, cervical cancer photoacoustic endoscopic detection, and superficial tumor imaging.
Collapse
Affiliation(s)
- Xiaofei Luo
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, P.R.China
| | - Kuan Peng
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, P.R.China
| | - Bo Wang
- College of Biology, Hunan University, Changsha 410082, P.R.China
| | - Tianshuang Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, P.R.China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083,
| |
Collapse
|
50
|
Liu W, Zhou Y, Wang M, Li L, Vienneau E, Chen R, Luo J, Xu C, Zhou Q, Wang LV, Yao J. Correcting the limited view in optical-resolution photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28971578 DOI: 10.1002/jbio.201700196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/14/2017] [Accepted: 09/27/2017] [Indexed: 05/15/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) has proven useful for anatomical and functional imaging with high spatial resolutions. However, the coherent signal generation and the desired reflection-mode detection in OR-PAM can result in a limited detectability of features aligned with the acoustic axis (ie, vertical structures). Here, we investigated the limited-view phenomenon in OR-PAM by simulating the generation and propagation of the acoustic pressure waves and determined the key optical parameters affecting the visibility of vertical structures. Proof-of-concept numerical experiments were performed with different illumination angles, optical foci and numerical apertures (NA) of the objective lens. The results collectively show that an NA of 0.3 can readily improve the visibility of vertical structures in a typical reflection-mode OR-PAM system. This conclusion was confirmed by numerical simulations on the cortical blood vessels in a mouse brain and by experiments in a suture-cross phantom and in a mouse brain in vivo.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Yuan Zhou
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | - Emelina Vienneau
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ruimin Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|