1
|
Landenberger B, Yatish, Rohrbach A. Towards non-blind optical tweezing by finding 3D refractive index changes through off-focus interferometric tracking. Nat Commun 2021; 12:6922. [PMID: 34836958 PMCID: PMC8626468 DOI: 10.1038/s41467-021-27262-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/05/2021] [Indexed: 11/09/2022] Open
Abstract
In modern 3D microscopy, holding and orienting arbitrary biological objects with optical forces instead of using coverslips and gel cylinders is still a vision. Although optical trapping forces are strong enough and related photodamage is acceptable, the precise (re-) orientation of large specimen with multiple optical traps is difficult, since they grab blindly at the object and often slip off. Here, we present an approach to localize and track regions with increased refractive index using several holographic optical traps with a single camera in an off-focus position. We estimate the 3D grabbing positions around several trapping foci in parallel through analysis of the beam deformations, which are continuously measured by defocused camera images of cellular structures inside cell clusters. Although non-blind optical trapping is still a vision, this is an important step towards fully computer-controlled orientation and feature-optimized laser scanning of sub-mm sized biological specimen for future 3D light microscopy.
Collapse
Affiliation(s)
- Benjamin Landenberger
- grid.5963.9Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany ,grid.5963.9BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Yatish
- grid.5963.9Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany ,CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany ,grid.5963.9Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
2
|
Gao L, Shan X, Xu X, Liu Y, Liu B, Li S, Wen S, Ma C, Jin D, Wang F. Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. NANOSCALE 2020; 12:18595-18599. [PMID: 32555904 DOI: 10.1039/d0nr03076g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Volumetric displays that create bright image points within a transparent bulk are one of the most attractive technologies in everyday life. Lanthanide ion doped upconversion nanoparticles (UCNPs) are promising luminescent nanomaterials for background free, full-colour volumetric displays of transparent bulk materials. However, video-rate display using UCNPs has been limited by their low emission intensity. Herein, we developed a video-rate upconversion display system with much enhanced brightness. The integral emission intensity of the single UCNPs was fully employed for video-rate display. It was maximized by optimizing the emitter concentration and, more importantly, by temporally synchronizing the scanning time of the excitation light to the the raised emission time of the single UCNPs. The excitation power dependent emission response and emission time decay curves were systematically characterized for the single UCNPs with various emitter concentrations from 0.5% to 6%. 1%Tm3+ doped UCNPs presented the highest integral emission intensity. By embedding this UCNPs into a polyvinyl acetate (PVA) film, we achieved a two-dimensional (2D) upconversion display with a frame rate of 29 Hz for 35 by 50 pixels. This work demonstrates that the temporal response as well as the integral emission intensity enable video-rate upconversion display.
Collapse
Affiliation(s)
- Laixu Gao
- School of Physical Science and Technology, Lingnan Normal University, Zhanjiang, 524048, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yadav A, Dutta A, Kumar P, Dahan Y, Aranovich A, Feingold M. Optimal trapping stability of Escherichia coli in oscillating optical tweezers. Phys Rev E 2020; 101:062402. [PMID: 32688596 DOI: 10.1103/physreve.101.062402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/07/2020] [Indexed: 11/07/2022]
Abstract
Single-beam oscillating optical tweezers can be used to trap rod-shaped bacterial cells and align them with their long axis lying within the focal plane. While such configuration is useful for imaging applications, the corresponding imaging resolution is limited by the fluctuations of the trapped cell. We study the fluctuations of four of the coordinates of the trapped cell, two for its center of mass position and two for its angular orientation, showing the way they depend on the trap length and the trapping beam power. We find that optimal trapping stability is obtained when the trap length is about the same as the cell length and that cell fluctuations in the focal plane decrease like the inverse of the trapping power.
Collapse
Affiliation(s)
- Amarjeet Yadav
- Department of Physics and The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anindita Dutta
- Department of Physics and The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Pramod Kumar
- Department of Physics and The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.,Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yuval Dahan
- Department of Physics and The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alexander Aranovich
- Department of Physics and The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mario Feingold
- Department of Physics and The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
4
|
Abstract
Optical tweezers have great potential in microbiology for holding and manipulating single cells under a microscope. However, the methodology to use optical tweezers for live cell studies is still at its infancy. In this work, we determined suitable parameters for stable trapping of single Escherichia coli bacteria, and identified the upper limits of IR-exposure that can be applied without affecting viability. We found that the maximum tolerable IR-exposure is 2.5-fold higher when employing oscillating instead of stationary optical trapping (20 J and 8 J, respectively). We found that good stability of cells in an oscillating trap is achieved when the effective trap length is 20% larger than the cell length, the oscillation frequency higher than 100 Hz and the trap oriented perpendicular to the medium flow direction. Further, we show, using an IR power just sufficient for stable holding, that bacteria remain viable during at least 30 min of holding in an oscillating trap. In this work, we established a method for long-term stable handling of single E. coli cells using optical tweezers. This work will pave the way for future use of optical tweezers in microbiology.
Collapse
|
5
|
Kumar P, Yadav A, Fishov I, Feingold M. Z-ring Structure and Constriction Dynamics in E. coli. Front Microbiol 2017; 8:1670. [PMID: 28959238 PMCID: PMC5603902 DOI: 10.3389/fmicb.2017.01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Z-ring plays a central role in bacterial division. It consists of FtsZ filaments, but the way these reorganize in the ring-like structure during septation remains largely unknown. Here, we measure the effective constriction dynamics of the ring. Using an oscillating optical trap, we can switch individual rod-shaped E. coli cells between horizontal and vertical orientations. In the vertical orientation, the fluorescent Z-ring image appears as a symmetric circular structure that renders itself to quantitative analysis. In the horizontal orientation, we use phase-contrast imaging to determine the extent of the cell constriction and obtain the effective time of division. We find evidence that the Z-ring constricts at a faster rate than the cell envelope such that its radial width (inwards from the cytoplasmic membrane) grows during septation. In this respect, our results differ from those recently obtained using photoactivated localization microscopy (PALM) where the radial width of the Z-ring was found to be approximately constant as the ring constricts. A possible reason for the different behavior of the constricting Z-rings could be the significant difference in the corresponding cell growth rates.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Physics, Ben-Gurion University of the NegevBeer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Amarjeet Yadav
- Department of Physics, Ben-Gurion University of the NegevBeer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Mario Feingold
- Department of Physics, Ben-Gurion University of the NegevBeer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the NegevBeer Sheva, Israel
| |
Collapse
|
6
|
Coltharp C, Xiao J. Beyond force generation: Why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? Bioessays 2016; 39:1-11. [PMID: 28004447 DOI: 10.1002/bies.201600179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose that the essential function of the most highly conserved protein in bacterial cytokinesis, FtsZ, is not to generate a mechanical force to drive cell division. Rather, we suggest that FtsZ acts as a signal-processing hub to coordinate cell wall synthesis at the division septum with a diverse array of cellular processes, ensuring that the cell divides smoothly at the correct time and place, and with the correct septum morphology. Here, we explore how the polymerization properties of FtsZ, which have been widely attributed to force generation, can also be advantageous in this signal processing role. We suggest mechanisms by which FtsZ senses and integrates both mechanical and biochemical signals, and conclude by proposing experiments to investigate how FtsZ contributes to the remarkable spatial and temporal precision of bacterial cytokinesis.
Collapse
Affiliation(s)
- Carla Coltharp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Abstract
Bacterial cytokinesis is accomplished by the essential 'divisome' machinery. The most widely conserved divisome component, FtsZ, is a tubulin homolog that polymerizes into the 'FtsZ-ring' ('Z-ring'). Previous in vitro studies suggest that Z-ring contraction serves as a major constrictive force generator to limit the progression of cytokinesis. Here, we applied quantitative superresolution imaging to examine whether and how Z-ring contraction limits the rate of septum closure during cytokinesis in Escherichia coli cells. Surprisingly, septum closure rate was robust to substantial changes in all Z-ring properties proposed to be coupled to force generation: FtsZ's GTPase activity, Z-ring density, and the timing of Z-ring assembly and disassembly. Instead, the rate was limited by the activity of an essential cell wall synthesis enzyme and further modulated by a physical divisome-chromosome coupling. These results challenge a Z-ring-centric view of bacterial cytokinesis and identify cell wall synthesis and chromosome segregation as limiting processes of cytokinesis.
Collapse
|
8
|
Natale P, Pazos M, Vicente M. TheEscherichia colidivisome: born to divide. Environ Microbiol 2013; 15:3169-82. [DOI: 10.1111/1462-2920.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Manuel Pazos
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| |
Collapse
|
9
|
Piro O, Carmon G, Feingold M, Fishov I. Three-dimensional structure of the Z-ring as a random network of FtsZ filaments. Environ Microbiol 2013; 15:3252-8. [PMID: 23848262 DOI: 10.1111/1462-2920.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
The spatial organization of the Z-ring, the central element of the bacterial division machinery, is not yet fully understood. Using optical tweezers and subpixel image analysis, we have recently shown that the radial width of the Z-ring in unconstricted Escherichia coli is about 100 nm. The relatively large width is consistent with the observations of others. Moreover, simulation of the experimental FtsZ distribution using the theoretical three-dimensional (3D) point spread function was strongly in favour of a toroidal rather than a thin cylindrical model of the Z-ring. Here, we show that the low density of FtsZ filaments in the ring coincides within experimental uncertainty with the critical density of a 3D random network of cylindrical sticks. This suggests that the Z-ring may consist of a percolating network of FtsZ filaments. Several factors that are expected to affect the polymerization state and the extent of self-interaction of FtsZ within the Z-ring, as well as the functional implications of its sparse toroidal structure, are discussed in terms of percolation theory.
Collapse
Affiliation(s)
- Oreste Piro
- Departamento de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
10
|
Kemper B, Barroso Á, Woerdemann M, Dewenter L, Vollmer A, Schubert R, Mellmann A, von Bally G, Denz C. Towards 3D modelling and imaging of infection scenarios at the single cell level using holographic optical tweezers and digital holographic microscopy. JOURNAL OF BIOPHOTONICS 2013; 6:260-6. [PMID: 22700281 DOI: 10.1002/jbio.201200057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 05/10/2023]
Abstract
The analysis of dynamic interactions of microorganisms with a host cell is of utmost importance for understanding infection processes. We present a biophotonic holographic workstation that allows optical manipulation of bacteria by holographic optical tweezers and simultaneously monitoring of dynamic processes with quantitative multi-focus phase imaging based on self-interference digital holographic microscopy. Our results show that several bacterial cells, even with non-spherical shape, can be aligned precisely on the surface of living host cells and localized reproducibly in three dimensions. In this way a new label-free multipurpose device for modelling and quantitative analysis of infection scenarios at the single cell level is provided.
Collapse
Affiliation(s)
- Björn Kemper
- Center for Biomedical Optics and Photonics, University of Muenster, Robert-Koch-Str. 45, 48149 Muenster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|