1
|
Chang BJ, Manton JD, Sapoznik E, Pohlkamp T, Terrones TS, Welf ES, Murali VS, Roudot P, Hake K, Whitehead L, York AG, Dean KM, Fiolka R. Real-time multi-angle projection imaging of biological dynamics. Nat Methods 2021; 18:829-834. [PMID: 34183831 PMCID: PMC9206531 DOI: 10.1038/s41592-021-01175-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 02/03/2023]
Abstract
We introduce a cost-effective and easily implementable scan unit that converts any camera-based microscope with optical sectioning capability into a multi-angle projection imaging system. Projection imaging reduces data overhead and accelerates imaging by a factor of >100, while also allowing users to readily view biological phenomena of interest from multiple perspectives on the fly. By rapidly interrogating the sample from just two perspectives, our method also enables real-time stereoscopic imaging and three-dimensional particle localization. We demonstrate projection imaging with spinning disk confocal, lattice light-sheet, multidirectional illumination light-sheet and oblique plane microscopes on specimens that range from organelles in single cells to the vasculature of a zebrafish embryo. Furthermore, we leverage our projection method to rapidly image cancer cell morphodynamics and calcium signaling in cultured neurons at rates up to 119 Hz as well as to simultaneously image orthogonal views of a beating embryonic zebrafish heart.
Collapse
Affiliation(s)
- Bo-Jui Chang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Etai Sapoznik
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tamara S Terrones
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vasanth S Murali
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kayley Hake
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew G York
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Optical Projection Tomography Using a Commercial Microfluidic System. MICROMACHINES 2020; 11:mi11030293. [PMID: 32168806 PMCID: PMC7142877 DOI: 10.3390/mi11030293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/17/2023]
Abstract
Optical projection tomography (OPT) is the direct optical equivalent of X-ray computed tomography (CT). To obtain a larger depth of field, traditional OPT usually decreases the numerical aperture (NA) of the objective lens to decrease the resolution of the image. So, there is a trade-off between sample size and resolution. Commercial microfluidic systems can observe a sample in flow mode. In this paper, an OPT instrument is constructed to observe samples. The OPT instrument is combined with commercial microfluidic systems to obtain a three-dimensional and time (3D + T)/four-dimensional (4D) video of the sample. “Focal plane scanning” is also used to increase the images’ depth of field. A series of two-dimensional (2D) images in different focal planes was observed and compared with images simulated using our program. Our work dynamically monitors 3D OPT images. Commercial microfluidic systems simulate blood flow, which has potential application in blood monitoring and intelligent drug delivery platforms. We design an OPT adaptor to perform OPT on a commercial wide-field inverted microscope (Olympusix81). Images in different focal planes are observed and analyzed. Using a commercial microfluidic system, a video is also acquired to record motion pictures of samples at different flow rates. To our knowledge, this is the first time an OPT setup has been combined with a microfluidic system.
Collapse
|
3
|
Davis SPX, Kumar S, Alexandrov Y, Bhargava A, da Silva Xavier G, Rutter GA, Frankel P, Sahai E, Flaxman S, French PMW, McGinty J. Convolutional neural networks for reconstruction of undersampled optical projection tomography data applied to in vivo imaging of zebrafish. JOURNAL OF BIOPHOTONICS 2019; 12:e201900128. [PMID: 31386281 PMCID: PMC7065643 DOI: 10.1002/jbio.201900128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Optical projection tomography (OPT) is a 3D mesoscopic imaging modality that can utilize absorption or fluorescence contrast. 3D images can be rapidly reconstructed from tomographic data sets sampled with sufficient numbers of projection angles using the Radon transform, as is typically implemented with optically cleared samples of the mm-to-cm scale. For in vivo imaging, considerations of phototoxicity and the need to maintain animals under anesthesia typically preclude the acquisition of OPT data at a sufficient number of angles to avoid artifacts in the reconstructed images. For sparse samples, this can be addressed with iterative algorithms to reconstruct 3D images from undersampled OPT data, but the data processing times present a significant challenge for studies imaging multiple animals. We show here that convolutional neural networks (CNN) can be used in place of iterative algorithms to remove artifacts-reducing processing time for an undersampled in vivo zebrafish dataset from 77 to 15 minutes. We also show that using CNN produces reconstructions of equivalent quality to compressed sensing with 40% fewer projections. We further show that diverse training data classes, for example, ex vivo mouse tissue data, can be used for CNN-based reconstructions of OPT data of other species including live zebrafish.
Collapse
Affiliation(s)
| | - Sunil Kumar
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Yuriy Alexandrov
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | | | - Gabriela da Silva Xavier
- Department of MedicineImperial College LondonLondonUK
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Guy A. Rutter
- Department of MedicineImperial College LondonLondonUK
| | - Paul Frankel
- Division of MedicineUniversity College LondonLondonUK
| | | | - Seth Flaxman
- Department of Mathematics and Data Science InstituteImperial College LondonLondonUK
| | - Paul M. W. French
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - James McGinty
- Department of PhysicsImperial College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
4
|
LIU A, XIAO W, LI R, LIU L, CHEN L. Comparison of optical projection tomography and light‐sheet fluorescence microscopy. J Microsc 2019; 275:3-10. [DOI: 10.1111/jmi.12796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023]
Affiliation(s)
- A. LIU
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - W. XIAO
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - R. LI
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - L. LIU
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| | - L. CHEN
- College of Health Science and Environmental EngineeringShenzhen Technology University Shenzhen China
- College of Optoelectronics EngineeringShenzhen University Shenzhen China
| |
Collapse
|
5
|
Trull AK, van der Horst J, Palenstijn WJ, van Vliet LJ, van Leeuwen T, Kalkman J. Point spread function based image reconstruction in optical projection tomography. Phys Med Biol 2017; 62:7784-7797. [PMID: 28854154 DOI: 10.1088/1361-6560/aa8945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As a result of the shallow depth of focus of the optical imaging system, the use of standard filtered back projection in optical projection tomography causes space-variant tangential blurring that increases with the distance to the rotation axis. We present a novel optical tomographic image reconstruction technique that incorporates the point spread function of the imaging lens in an iterative reconstruction. The technique is demonstrated using numerical simulations, tested on experimental optical projection tomography data of single fluorescent beads, and applied to high-resolution emission optical projection tomography imaging of an entire zebrafish larva. Compared to filtered back projection our results show greatly reduced radial and tangential blurring over the entire [Formula: see text] mm2 field of view, and a significantly improved signal to noise ratio.
Collapse
Affiliation(s)
- Anna K Trull
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Lee KJI, Calder GM, Hindle CR, Newman JL, Robinson SN, Avondo JJHY, Coen ES. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:527-538. [PMID: 28025317 PMCID: PMC5441912 DOI: 10.1093/jxb/erw452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale.
Collapse
Affiliation(s)
- Karen J I Lee
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Grant M Calder
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Jacob L Newman
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Simon N Robinson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Enrico S Coen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| |
Collapse
|
7
|
van der Horst J, Kalkman J. Image resolution and deconvolution in optical tomography. OPTICS EXPRESS 2016; 24:24460-24472. [PMID: 27828174 DOI: 10.1364/oe.24.024460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a frequency domain analysis of the image resolution of optical tomography systems. The result of our analysis is a description of the spatially-variant resolution in optical tomographic image after reconstruction as a function of the properties of the imaging system geometry. We validate our model using optical projection tomography (OPT) measurements of fluorescent beads embedded in agarose gel. Our model correctly describes both the radial and tangential resolution of the measured images. In addition, we present a correction of the tomographic images for the spatially-varying resolution using a deconvolution algorithm. The resulting corrected tomographic reconstruction shows a homogeneous and isotropic pixel-limited resolution across the entire image. Our method is applied to OPT measurements of a zebrafish, showing improved resolution. Aside from allowing image correction and providing a resolution measure for OPT systems, our model provides a powerful tool for the design of optical tomographic systems.
Collapse
|
8
|
Kumar S, Lockwood N, Ramel MC, Correia T, Ellis M, Alexandrov Y, Andrews N, Patel R, Bugeon L, Dallman MJ, Brandner S, Arridge S, Katan M, McGinty J, Frankel P, French PM. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish. Oncotarget 2016; 7:43939-43948. [PMID: 27259259 PMCID: PMC5190069 DOI: 10.18632/oncotarget.9756] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This "mesoscopic" imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Nicola Lockwood
- Department of Physics, Imperial College London, London SW7 2AZ, UK
- Division of Medicine, University College London, London WC1E 6JF, UK
- CoMPLEX, University College London, London WC1E 6BT, UK
| | - Marie-Christine Ramel
- Division of Medicine, University College London, London WC1E 6JF, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Teresa Correia
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Matthew Ellis
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Yuriy Alexandrov
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Natalie Andrews
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Department of Chemistry, Imperial College, London SW7 2AZ, UK
| | - Rachel Patel
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
| | - Simon Arridge
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Matilda Katan
- Division of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - James McGinty
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Paul Frankel
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Paul M.W. French
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Andrews N, Ramel MC, Kumar S, Alexandrov Y, Kelly DJ, Warren SC, Kerry L, Lockwood N, Frolov A, Frankel P, Bugeon L, McGinty J, Dallman MJ, French PMW. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time. JOURNAL OF BIOPHOTONICS 2016; 9:414-24. [PMID: 26753623 PMCID: PMC4858816 DOI: 10.1002/jbio.201500258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 05/14/2023]
Abstract
Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region.
Collapse
Affiliation(s)
- Natalie Andrews
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, SW7 2AZ, UK
- Department of Life Sciences, , Imperial College London, SW7 2AZ, UK
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK
| | - Marie-Christine Ramel
- Department of Life Sciences, , Imperial College London, SW7 2AZ, UK
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK
| | - Yuriy Alexandrov
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK
| | - Douglas J Kelly
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK
| | - Sean C Warren
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK
| | - Louise Kerry
- Department of Life Sciences, , Imperial College London, SW7 2AZ, UK
| | - Nicola Lockwood
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
- COMPLEX, University College London, Gower Street, London, WC1E 6BT, UK
| | - Antonina Frolov
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Frankel
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| | - Laurence Bugeon
- Department of Life Sciences, , Imperial College London, SW7 2AZ, UK
| | - James McGinty
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK
| | | | - Paul M W French
- Photonics Group, Department of Physics, Prince Consort Road, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Chen L, Alexandrov Y, Kumar S, Andrews N, Dallman MJ, French PMW, McGinty J. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:1253-1261. [PMID: 25909009 PMCID: PMC4399664 DOI: 10.1364/boe.6.001253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 05/29/2023]
Abstract
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.
Collapse
Affiliation(s)
- Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
- These authors contributed equally to this work
| | - Yuriy Alexandrov
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
- These authors contributed equally to this work
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - Natalie Andrews
- Institute for Chemical Biology, Department of Chemistry, imperial College London, SW7 2AZ,
UK
| | - Margaret J. Dallman
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ,
UK
- Centre for Integrative Systems Biology, Department of Life Sciences, Imperial College London, SW7 2AZ,
UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
- These joint senior authors contributed equally to this paper
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
- These joint senior authors contributed equally to this paper
| |
Collapse
|
11
|
Chen L, Kumar S, Kelly D, Andrews N, Dallman MJ, French PMW, McGinty J. Remote focal scanning optical projection tomography with an electrically tunable lens. BIOMEDICAL OPTICS EXPRESS 2014; 5:3367-75. [PMID: 25360356 PMCID: PMC4206308 DOI: 10.1364/boe.5.003367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 05/04/2023]
Abstract
We describe a remote focal scanning technique for optical projection tomography (OPT) implemented with an electrically tunable lens (ETL) that removes the need to scan the specimen or objective lens. Using a 4× objective lens the average spatial resolution is improved by ∼46% and the light collection efficiency by a factor of ∼6.76, thereby enabling increased acquisition speed and reduced light dose. This convenient implementation is particularly appropriate for lower magnifications and larger sample diameters where axial objective scanning would encounter problems with speed and stability.
Collapse
Affiliation(s)
- Lingling Chen
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - Douglas Kelly
- Institute for Chemical Biology, Department of Chemistry, Imperial College London, SW7 2AZ,
UK
| | - Natalie Andrews
- Institute for Chemical Biology, Department of Chemistry, Imperial College London, SW7 2AZ,
UK
| | - Margaret J. Dallman
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, SW7 2AZ,
UK
- Centre for Integrative Systems Biology, Department of Life Sciences, Imperial College London, SW7 2AZ,
UK
| | - Paul M. W. French
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, SW7 2AZ,
UK
| |
Collapse
|