1
|
Geng W, Fang Y, Bao C, Pan Z, Yue Y. Emission of five OAM dispersive waves in dispersion-engineered double-ring core fiber. Sci Rep 2024; 14:8474. [PMID: 38605163 PMCID: PMC11009397 DOI: 10.1038/s41598-024-57587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Beams carrying orbital angular momentum (OAM) have exhibited significant potential across various fields, such as metrology, image coding, and optical communications. High-performance broadband coherent OAM sources are critical to the operation of optical systems. The emission of dispersive waves facilitates the efficient transfer of energy to distant spectral domains while preserving the coherence among the generated frequency components. Light sources that maintain consistency over a wide range can increase the efficiency of optical communication systems and improve the measurement accuracy in imaging and metrology. In this work, we propose a germanium-doped double ring-core fiber for five OAM dispersive waves (DWs) generation. The OAM1,1 mode supported in the fiber exhibits three zero-dispersion wavelengths (ZDWs) located at 1275, 1720 and 2325 nm. When pumped under normal dispersion, the output spectrum undergoes broadening and exhibits five DWs, situated around 955, 1120, 1450, 2795 and 2965 nm, respectively. Concomitant with blue-shifted and red-shifted dispersive waves, the spectrum spans from 895 to 3050 nm with high coherence. The effect of the fiber and input pulse parameters on DWs generation, as well as the underlying dynamics of the dispersive wave generation process, are discussed. As expected, the number and location of DWs generated in the output spectrum have agreement with the prediction of the phase-matching condition. Overall, this multiple DWs generation method in the proposed fiber paves the way for developing efficient and coherent OAM light sources in fiber-based optical systems.
Collapse
Affiliation(s)
- Wenpu Geng
- Institute of Modern Optics, Nankai University, Tianjin, 300350, China
| | - Yuxi Fang
- Institute of Modern Optics, Nankai University, Tianjin, 300350, China
| | - Changjing Bao
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhongqi Pan
- Department of Electrical & Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Yang Yue
- School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Jiao Y, Jia Z, Zhang C, Guo X, Meng F, Guo Q, Yu Y, Ohishi Y, Qin W, Qin G. Over 50 W all-fiber mid-infrared supercontinuum laser. OPTICS EXPRESS 2023; 31:31082-31091. [PMID: 37710636 DOI: 10.1364/oe.498183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
Broadband supercontinuum laser sources in the mid-infrared region have attracted enormous interest and found significant applications in spectroscopy, imaging, sensing, defense, and security. Despite recent advances in mid-infrared supercontinuum laser sources using infrared fibers, the average power of those laser sources is limited to 10-watt-level, and further power scaling to over 50 W (or hundred-watt-level) remains a significant technological challenge. Here, we report an over 50 W all-fiber mid-infrared supercontinuum laser source with a spectral range from 1220 to 3740 nm, by using low loss (<0.1 dB/m) fluorotellurite fibers we developed as the nonlinear medium and a tilted fusion splicing method for reducing the reflection from the fluorotellurite-silica fiber joint. Furthermore, the scalability of all-fiber mid-infrared supercontinuum laser sources using fluorotellurite fibers is analyzed by considering thermal effects and optical damage, which verifies its potential of power scaling to hundred-watt-level. Our results pave the way for realizing all-fiber hundred-watt-level mid-infrared lasers for real applications.
Collapse
|
3
|
Lei H, Xie K, Wang X, Wang S, Luo H, Li J. NIR to MIR ultra-broadband supercontinuum laser source based on all-silica fibers. OPTICS EXPRESS 2023; 31:29403-29410. [PMID: 37710741 DOI: 10.1364/oe.496303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
We demonstrated an ultra-broadband supercontinuum (SC) laser source with a wavelength range spanning the near-infrared (NIR) to mid-infrared (MIR) region. The SC spectrum was generated in a very short piece of highly nonlinear silica fiber (HNLF) which has a zero-dispersion wavelength (ZDW) of 1.55 µm. The pump source used has a spectral coverage of 1.5∼2.4 µm which covers the ZDW of HNLF, resulting in a dramatic blue and red shift of the spectrum through strong non-linear effects. As the pump laser pulse launched into HNLF, a SC spectrum with broadband range of 0.92∼2.92 µm and maximum average power of 5.09 W was achieved, which sets record coverage of HNLF-based watts magnitude SC laser sources for now, to the best of the authors' knowledge. The setup consists of silica fiber that can be considered easy-to-implement and with a cost-effectiveness scheme for ultra-broadband SC generation that could be easily applied to optical fiber sensing and spectral imaging technology.
Collapse
|
4
|
Yang J, Wang Y, Fang Y, Geng W, Zhao W, Bao C, Ren Y, Wang Z, Liu Y, Pan Z, Yue Y. Over-Two-Octave Supercontinuum Generation of Light-Carrying Orbital Angular Momentum in Germania-Doped Ring-Core Fiber. SENSORS (BASEL, SWITZERLAND) 2022; 22:6699. [PMID: 36081158 PMCID: PMC9459936 DOI: 10.3390/s22176699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we design a silica-cladded Germania-doped ring-core fiber (RCF) that supports orbital angular momentum (OAM) modes. By optimizing the fiber structure parameters, the RCF possesses a near-zero flat dispersion with a total variation of <±30 ps/nm/km over 1770 nm bandwidth from 1040 to 2810 nm for the OAM1,1 mode. A beyond-two-octave supercontinuum spectrum of the OAM1,1 mode is generated numerically by launching a 40 fs 120 kW pulse train centered at 1400 nm into a 12 cm long designed 50 mol% Ge-doped fiber, which covers 2130 nm bandwidth from 630 nm to 2760 nm at −40 dB of power level. This design can serve as an efficient way to extend the spectral coverage of beams carrying OAM modes for various applications.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yingning Wang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yuxi Fang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Wenpu Geng
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Wenqian Zhao
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Changjing Bao
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongxiong Ren
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhi Wang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yange Liu
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Zhongqi Pan
- Department of Electrical & Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yang Yue
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
5
|
Recent Development of Mid-Infrared Supercontinuum Generation in Fluoroindate Glass Fibers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supercontinuum (SC) generation that leads to the emission of broadband radiation has been extensively studied. In particular, SC sources encompassing the wavelength range of 2–5 μm have attracted considerable interest in the last decade, and a continuous increase in the output power and spectrum width has been observed. To enable broadband and high-power SC generation, suitable nonlinear media combined with appropriate pump sources must be used, maintaining the output as spectrally flat. This paper briefly reviews the current state-of-the-art SC sources restricted to those based on fluoroindate fibers, including systems pumped with femtosecond, picosecond, and nanosecond pulses. First, the concept of SC generation in optical fibers is briefly presented. This is followed by an examination of indium fluoride optical fibers, with an emphasis on their material and waveguide properties. Furthermore, the advances in SC generation in fluoroindate fibers, including the latest results on high-power (Watt-level) continuum generation adopting different pump schemes, are also explored. A record time-averaged output power of 11.8 W with a spectrum spanning from ~1.9 to 4.9 µm has been demonstrated, which is certainly not the power limit of this technology. Finally, potential future directions of research are discussed at the end of this paper.
Collapse
|
6
|
Eslami Z, Salmela L, Filipkowski A, Pysz D, Klimczak M, Buczynski R, Dudley JM, Genty G. Two octave supercontinuum generation in a non-silica graded-index multimode fiber. Nat Commun 2022; 13:2126. [PMID: 35440639 PMCID: PMC9018909 DOI: 10.1038/s41467-022-29776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
The generation of a two-octave supercontinuum from the visible to mid-infrared (700-2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-gallate glass rods with different refractive indices. This yields an effective parabolic index profile and ten times increased nonlinearity when compared to silica fibers. Using femtosecond pulse pumping at wavelengths in both normal and anomalous dispersion regimes, a detailed study is carried out into the supercontinuum generating mechanisms and instabilities seeded by periodic self-imaging. Significantly, suitable injection conditions in the high power regime are found to result in the output beam profile showing clear signatures of beam self-cleaning from nonlinear mode mixing. Experimental observations are interpreted using spatio-temporal 3+1D numerical simulations of the generalized nonlinear Schrödinger equation, and simulated spectra are in excellent agreement with experiment over the full two-octave spectral bandwidth. Experimental comparison with the generation of supercontinuum in a silica graded-index multimode fiber shows that the enhanced nonlinear refractive index of the lead-bismuth-gallate fiber yields a spectrum with a significantly larger bandwidth. These results demonstrate a new pathway towards the generation of bright, ultrabroadband light sources in the mid-infrared.
Collapse
Affiliation(s)
- Zahra Eslami
- Photonics Laboratory, Physics Unit, Tampere University, 33014, Tampere, Finland
| | - Lauri Salmela
- Photonics Laboratory, Physics Unit, Tampere University, 33014, Tampere, Finland
| | - Adam Filipkowski
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, 02-668, Warsaw, Poland
- University of Warsaw, Faculty of Physics, 02-093, Warsaw, Poland
| | - Dariusz Pysz
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, 02-668, Warsaw, Poland
| | - Mariusz Klimczak
- University of Warsaw, Faculty of Physics, 02-093, Warsaw, Poland
| | - Ryszard Buczynski
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, 02-668, Warsaw, Poland
- University of Warsaw, Faculty of Physics, 02-093, Warsaw, Poland
| | - John M Dudley
- Institut FEMTO-ST, Université Bourgogne Franche-Comté CNRS UMR 6174, 25000, Besançon, France
| | - Goëry Genty
- Photonics Laboratory, Physics Unit, Tampere University, 33014, Tampere, Finland.
| |
Collapse
|
7
|
Li Z, Jia Z, Yao C, Zhao Z, Li N, Hu M, Ohishi Y, Qin W, Qin G. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers. OPTICS LETTERS 2020; 45:1882-1885. [PMID: 32236023 DOI: 10.1364/ol.383642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/09/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, we demonstrate 22.7 W mid-infrared (MIR) supercontinuum (SC) generation in all-solid fluorotellurite fibers. All-solid fluorotellurite fibers based on ${{\rm TeO}_2} {\text -} {{\rm BaF}_2}{\text -}{{\rm Y}_2}{{\rm O}_3}$TeO2-BaF2-Y2O3 and ${{\rm TeO}_2}$TeO2 modified fluoroaluminate glasses are fabricated by using a rod-in-tube method. By using a 0.6 m long fluorotellurite fiber with a core diameter of 11 µm as the nonlinear medium and a high-power 1.93-2.5 µm SC fiber laser as the pump source, we obtain 22.7 W SC generation from 0.93 to 3.95 µm in the fiber for a pump power of 39.7 W. The 10 dB bandwidth is about 1633 nm, and the corresponding spectral range is from 1890 to 3523 nm. The optical-to-optical conversion efficiency is about 57.2%. Our results show that all-solid fluorotellurite fibers are promising nonlinear media for constructing high-power MIR SC light sources.
Collapse
|
8
|
Chalcogenide Microstructured Optical Fibers for Mid-Infrared Supercontinuum Generation: Interest, Fabrication, and Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mid-infrared spectral region is of great technical and scientific importance in a variety of research fields and applications. Among these studies, mid-infrared supercontinuum generation has attracted strong interest in the last decade, because of unique properties such as broad wavelength coverage and high coherence, among others. In this paper, the intrinsic optical properties of different types of glasses and fibers are presented. It turns out that microstructured chalcogenide fibers are ideal choices for the generation of mid-infrared supercontinua. The fabrication procedures of chalcogenide microstructured fibers are introduced, including purification methods of the glass, rod synthesis processes, and preform realization techniques. In addition, supercontinua generated in chalcogenide microstructured fibers employing diverse pump sources and configurations are enumerated. Finally, the potential of supercontinua for applications in mid-infrared imaging and spectroscopy is shown.
Collapse
|
9
|
Gao W, Xu Q, Li X, Zhang W, Hu J, Li Y, Chen X, Yuan Z, Liao M, Cheng T, Xue X, Suzuki T, Ohishi Y. Experimental investigation on supercontinuum generation by single, dual, and triple wavelength pumping in a silica photonic crystal fiber. APPLIED OPTICS 2016; 55:9514-9520. [PMID: 27869854 DOI: 10.1364/ao.55.009514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the supercontinuum (SC) generation in an 1 cm long silica photonic crystal fiber (PCF) pumped by the pulse sources with single, dual, and triple wavelengths, respectively. The silica PCF has two zero-dispersion wavelengths at 900 and 2620 nm, respectively. When pumped by a single wavelength, the SC spectral range covers about 1000 nm. When pumped by dual and triple wavelengths, the SC spectral range covers wider than 2000 nm. Both the SC spectral range and the flatness are improved obviously when pumped by triple wavelengths. The maximum SC spectral range is obtained when the silica PCF is pumped by the triple wavelengths at 800, 1450, and 1785 nm. The SC spectral range covers 2810 nm from 350 to 3160 nm wider than three octaves. The 10 dB bandwidth covers 2280 nm from 450 to 2730 nm wider than two octaves. This is the first investigation on comparison of the SCs generated by different pump wavelengths up to three experimentally. The generated SC spectra have covered the full transmission window of silica fiber.
Collapse
|
10
|
Yin K, Zhang B, Yao J, Yang L, Liu G, Hou J. 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio. OPTICS LETTERS 2016; 41:5067-5070. [PMID: 27805687 DOI: 10.1364/ol.41.005067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this Letter, a high-power supercontinuum (SC) laser source which spanned from 1.9 to 3.6 μm with an all-fiber configuration was reported. This SC laser was obtained by concatenating a thulium-doped fiber amplifier (TDFA) and a 12 cm long highly nonlinear germania fiber. A 1.9-2.7 μm SC laser from the TDFA was spectrally broadened continuously into the mid-infrared region (>3 μm) in the following germania fiber. When the repetition rate was 2 MHz, the obtained SC laser had a maximum output power of 6.12 W with an optical conversion efficiency of 15.3% with respect to the TDFA pump power. The SC laser had a spectral bandwidth of 1506 nm ranging from 1944 to 3450 nm at the -20 dB level. The SC power with wavelengths >3 μm was 2.9 W, corresponding to a high power ratio of 47.4% in the mid-infrared region. The achieved power ratio in the mid-infrared region, as well as the long wavelength cutoff, to the best of our knowledge, were the best results ever reported in germania fibers.
Collapse
|
11
|
Yin K, Zhu R, Zhang B, Jiang T, Chen S, Hou J. Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications. OPTICS EXPRESS 2016; 24:20010-20020. [PMID: 27607609 DOI: 10.1364/oe.24.020010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.
Collapse
|
12
|
Yang L, Zhang B, Yin K, Yao J, Liu G, Hou J. 0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser. OPTICS EXPRESS 2016; 24:12600-12606. [PMID: 27410281 DOI: 10.1364/oe.24.012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An ultra-broadband supercontinuum was generated in a short piece of step-index germania-core fiber using a fiber laser with a peak power of 4.4 kW. The pure germania core made this fiber capable of propagating light towards the desirable mid-infrared region. The spectral broadening characteristics towards the mid-infrared region under different lengths of germania-core fiber were investigated using pump pulses of 4.4 kW and 1.1 ns at 1550 nm. The large nonlinear refractive index of germania and the small core size of germania-core fiber produced a nonlinear coefficient as high as 11.8 (W km)-1 at 1550 nm, which was beneficial for supercontinuum generation. The pump wavelength was located in the anomalous dispersion regime and close to the zero dispersion wavelength of this germania-core fiber, 1.426 μm. Eventually, an ultra-broadband supercontinuum source with a spectrum spanning from 0.6 to 3.2 μm was obtained and had a total output power of 350 mW at an optimized germania-core fiber length of 0.8 m. This work is the first demonstration, to the best of our knowledge, of a germania-core fiber-based ultra-broadband supercontinuum source that spans from the visible region to the mid-infrared region.
Collapse
|
13
|
Anashkina EA, Andrianov AV, Dorofeev VV, Kim AV. Toward a mid-infrared femtosecond laser system with suspended-core tungstate-tellurite glass fibers. APPLIED OPTICS 2016; 55:4522-4530. [PMID: 27409007 DOI: 10.1364/ao.55.004522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple design of a fiber laser system for generating high-quality pulses with a duration of order 100 fs with ultrabroad wavelength tunability in the 2-5 μm range is discussed. This design incorporates conventional fs near-IR lasers and specially developed tungstate-tellurite fibers with two zero-dispersion wavelengths (ZDW) and relies on nonlinear wavelength conversion via either soliton self-frequency shift (SSFS) or red-shifted dispersive wave (DW) generation. The fiber parameters needed for such optical conversion have been scanned numerically and showed a possibility of SSFS beyond 4 μm and of DW generation beyond 5 μm. We have also studied and prepared tungstate-tellurite glasses and preforms that are highly stable against crystallization, exhibit extremely low level of hydroxyl groups absorption, and from which the suspended-core two-ZDW fibers can be manufactured.
Collapse
|
14
|
Lei C, Jin A, Song R, Chen Z, Hou J. Theoretical and experimental research of supercontinuum generation in an ytterbium-doped fiber amplifier. OPTICS EXPRESS 2016; 24:9237-9250. [PMID: 27137540 DOI: 10.1364/oe.24.009237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The theoretical research of supercontinuum (SC) generation in a fiber amplifier system has been seldom reported. For the purpose of further understanding the mechanism of SC generation in fiber amplifiers, we propose a combined numerical model of the laser rate equations and the generalized non-linear Schrödinger equation to simulate the amplification of 1060 nm picosecond pulses and their spectral broadening in an ytterbium-doped fiber amplifier. The calculation results of this model are compared with the experimental results under the same conditions and a good agreement is achieved. We find that the pulse is gain amplified initially, and then dominated by stimulated Raman scattering in the normal dispersion region. In anomalous dispersion region, modulation instability, higher-order soliton fission and soliton self-frequency shift dominates the spectral broadening. It is found numerically and experimentally that the length of the gain fiber and the 976 nm pump power are the most imperative parameters to control the output power, spectral range and flatness of the SC. The pulse width of signal pulse also plays a part in influencing SC generation. The results verify that our model is promising for analyzing the physical processes of pulse evolution and SC generation in a fiber amplifier system.
Collapse
|
15
|
Liu X, Svane AS, Lægsgaard J, Tu H, Boppart SA, Turchinovich D. Progress in Cherenkov femtosecond fiber lasers. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2016; 49:023001. [PMID: 27110037 PMCID: PMC4839584 DOI: 10.1088/0022-3727/49/2/023001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ask S. Svane
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Lægsgaard
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Haohua Tu
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Dmitry Turchinovich
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|