1
|
Ma J, Liu H, Chen Y, Zhang N, Shum PP. Generation of 35 fs, 20 μJ, GHz pulse burst by hybrid fiber amplification technique. OPTICS EXPRESS 2023; 31:34224-34231. [PMID: 37859183 DOI: 10.1364/oe.503079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023]
Abstract
We have proposed and demonstrated the generation of a high-energy, ultrashort pulse duration, GHz pulse burst polarization-maintaining fiber amplification system that utilizes both chirped-pulse amplification and self-similar amplification techniques. Such hybrid fiber amplification system produces 22 μJ-energy bursts of 200 pulses with a 1.02-GHz intra-burst pulse repetition rate and a 1-MHz inter-burst repetition rate. The center wavelength of the amplified compressed pulse is 1065 nm, with a 3 dB spectral bandwidth of 65 nm. The pulse duration of optimal compression is ∼35 fs, which represents the shortest pulse duration reported to date for any multi-microjoule class amplification system with a repetition rate at the GHz level. At the same time, only common double-cladding Yb3+-doped fiber is used as the gain fiber, without any large-mode-area Yb3+-doped photonic crystal fiber, makes the system compact and reliable by the simple fusion operation.
Collapse
|
2
|
Wang E, Specht KS, Chicco AJ, Wilson JW. High-Repetition-Rate Transient Absorption Spectroscopy of Respiratory Supercomplexes. J Phys Chem B 2022; 126:1404-1412. [PMID: 35166549 DOI: 10.1021/acs.jpcb.1c08714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemeproteins are frequent subjects for ultrafast transient absorption spectroscopy (TAS) because of biological importance, strong UV-vis absorption, high photostability, and interesting transient dynamics that depend on redox, conformation, and ligand binding. TAS on hemeproteins is usually performed on isolated, purified proteins, though their response is likely to be different in their native molecular environment, which involves the formation of protein complexes and supercomplexes. Recently, we reported a transient absorption microscopy (TAM) experiment which elicited a transient response from hemeproteins in intact biological tissue using a visible-wavelength pump (530 nm) and probe (490 nm). Here, we find that adaptive noise canceling plus resonant galvanometer scanning enables a high-repetition-rate fiber laser source to make redox-sensitive measurements of cytochrome c (Cyt-c). We investigate the origins of the visible-wavelength response of biological tissue through TAS of intact mitochondrial respiratory supercomplexes, separated via gel electrophoresis. We find that each of these high-molecular-weight gel bands yields a TAS response characteristic of cytochrome hemes, implying that the TAS response of intact cells and tissue originates from not just Cyt-c but a mixture of respiratory cytochromes. We also find differences in excited-state lifetime between wild-type (WT) and a tafazzin-deficient (TAZ) mouse model of mitochondrial disease.
Collapse
Affiliation(s)
- Erkang Wang
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kalyn S Specht
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg Virginia 24061, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jesse W Wilson
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Hu C, Field JJ, Kelkar V, Chiang B, Wernsing K, Toussaint KC, Bartels RA, Popescu G. Harmonic optical tomography of nonlinear structures. NATURE PHOTONICS 2020; 14:564-569. [PMID: 34367322 PMCID: PMC8341385 DOI: 10.1038/s41566-020-0638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Second-harmonic generation microscopy is a valuable label-free modality for imaging non-centrosymmetric structures and has important biomedical applications from live-cell imaging to cancer diagnosis. Conventional second-harmonic generation microscopy measures intensity signals that originate from tightly focused laser beams, preventing researchers from solving the scattering inverse problem for second-order nonlinear materials. Here, we present harmonic optical tomography (HOT) as a novel modality for imaging microscopic, nonlinear and inhomogeneous objects. The HOT principle of operation relies on inter-ferometrically measuring the complex harmonic field and using a scattering inverse model to reconstruct the three-dimensional distribution of harmonophores. HOT enables strong axial sectioning via the momentum conservation of spatially and temporally broadband fields. We illustrate the HOT operation with experiments and reconstructions on a beta-barium borate crystal and various biological specimens. Although our results involve second-order nonlinear materials, we show that this approach applies to any coherent nonlinear process.
Collapse
Affiliation(s)
- Chenfei Hu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally: Chenfei Hu, Jeffrey J. Field
| | - Jeffrey J Field
- Microscope Imaging Network Core Facility, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
- These authors contributed equally: Chenfei Hu, Jeffrey J. Field
| | - Varun Kelkar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benny Chiang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith Wernsing
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Randy A Bartels
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Allende Motz AM, Czerski J, Adams DE, Durfee C, Bartels R, Field J, Hoy CL, Squier J. Two-dimensional random access multiphoton spatial frequency modulated imaging. OPTICS EXPRESS 2020; 28:405-424. [PMID: 32118968 PMCID: PMC7053501 DOI: 10.1364/oe.378460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/17/2023]
Abstract
Spatial frequency modulated imaging (SPIFI) enables the use of an extended excitation source for linear and nonlinear imaging with single element detection. To date, SPIFI has only been used with fixed excitation source geometries. Here, we explore the potential for the SPIFI method when a spatial light modulator (SLM) is used to program the excitation source, opening the door to a more versatile, random access imaging environment. In addition, an in-line, quantitative pulse compensation and measurement scheme is demonstrated using a new technique, spectral phase and amplitude retrieval and compensation (SPARC). This enables full characterization of the light exposure conditions at the focal plane of the random access imaging system, an important metric for optimizing, and reporting imaging conditions within specimens.
Collapse
Affiliation(s)
- Alyssa M. Allende Motz
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - John Czerski
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - Daniel E. Adams
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - Charles Durfee
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| | - Randy Bartels
- Department of Electrical Engineering, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
- Department of Biomedical Engineering, and Molecular Biology, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
| | - Jeff Field
- Department of Electrical Engineering, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
- Department of Biomedical Engineering, and Molecular Biology, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
- Microscope Imaging Network Foundation Core Facility, Colorado State University, 400 Isotope Dr., Ft. Collins, CO 80523, USA
| | | | - Jeff Squier
- Department of Physics, Colorado School of Mines, 1532 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
5
|
Domingue SR, Bartels RA, Chicco AJ, Wilson JW. Transient absorption imaging of hemes with 2-color, independently tunable visible-wavelength ultrafast source. BIOMEDICAL OPTICS EXPRESS 2017; 8:2807-2821. [PMID: 28663908 PMCID: PMC5480431 DOI: 10.1364/boe.8.002807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
Pump probe microscopy is a time-resolved multiphoton imaging technique capable of generating contrast between non-fluorescent pigments based on differences in excited-state lifetimes. Here we describe a fiber-based ultrafast system designed for imaging heme proteins with an independently-tunable pulse pair in the visible-wavelength regime. Starting with a 1060 nm fiber amplifier (1.3 W at 63 MHz, 140 fs pulses), visible pulses were produced in the vicinity of 488 nm and 532 nm by doubling the output of a short photonic crystal fiber with a pair of periodically-poled lithium niobate crystals, providing 5-20 mW power in each beam. This was sufficient for acquiring transient absorption images from unstained cryosectioned tissue.
Collapse
Affiliation(s)
- Scott R. Domingue
- Department of Electrical & Computer Engineering, Colorado State University, USA
- Current affiliation: KMLabs, Boulder, CO,
USA
| | - Randy A. Bartels
- Department of Electrical & Computer Engineering, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| | - Jesse W. Wilson
- Department of Electrical & Computer Engineering, Colorado State University, USA
- School of Biomedical Engineering, Colorado State University, USA
| |
Collapse
|
6
|
Song H, Liu B, Li Y, Song Y, He H, Chai L, Hu M, Wang C. Practical 24-fs, 1-μJ, 1-MHz Yb-fiber laser amplification system. OPTICS EXPRESS 2017; 25:7559-7566. [PMID: 28380877 DOI: 10.1364/oe.25.007559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a practical femtosecond polarization-maintaining fiber laser amplification system with a standard double-cladding fiber technique, enabling 24-fs transform-limited pulses with 1-μJ pulse energy at a 1-MHz repetition rate. The laser system is based on a hybrid amplification scheme. Chirped-pulse amplification is employed in the pre-amplifier stage to supply high-quality pulses with enough energy for the main-amplifier, where nonlinear amplification is utilized to broaden the output spectrum. To obtain a dechirped pulse with high quality and short duration, a pre-shaper is inserted between the two amplification stages to adjust the pre-chirp, central wavelength, and pulse energy of the signal pulses in the main amplifier for optimizing pulse evolution. As a result, temporal pedestal free sub-ten-cycle high-energy laser pulses can be routinely obtained. In the end, the advantages of this novel laser source are demonstrated in the experiments on enhanced damage effect to cells co-cultured with gold nanorods.
Collapse
|
7
|
Superresolved multiphoton microscopy with spatial frequency-modulated imaging. Proc Natl Acad Sci U S A 2016; 113:6605-10. [PMID: 27231219 DOI: 10.1073/pnas.1602811113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.
Collapse
|
8
|
Domingue SR, Bartels RA. Nearly transform-limited sub-20-fs pulses at 1065 nm and >10 nJ enabled by a flat field ultrafast pulse shaper. OPTICS LETTERS 2015; 40:253-6. [PMID: 25679857 DOI: 10.1364/ol.40.000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using a low-nonlinearity fiber and pulses from a nonlinear fiber amplifier seeded by a modelocked Yb-doped fiber oscillator, we generate 19-fs pulses centered at 1065 nm with 11.5 nJ of pulse energy (700 mW average power). The short (<15 cm) 10-μm core, polarization maintaining fiber minimizes deleterious nonlinear effects and eliminates fiber damage, while still producing pulse bandwidths well beyond the Yb gain bandwidth limit. A flat-field pulse shaper, utilizing a Plössl lens, compresses the pulse to within 92% of the transform-limited peak power. The total power transmission efficiency is as high as 67%, including fiber coupling losses and pulse shaper transmission, due to the novel pulse shaper design allowing the incorporation of a high-efficiency transmission grating.
Collapse
|
9
|
Domingue SR, Bartels RA. Three-photon excitation source at 1250 nm generated in a dual zero dispersion wavelength nonlinear fiber. OPTICS EXPRESS 2014; 22:30777-30785. [PMID: 25607026 DOI: 10.1364/oe.22.030777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26 fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.
Collapse
|