1
|
Beier NF, Dollar F. Two-color high-harmonic generation from relativistic plasma mirrors. Phys Rev E 2023; 108:015201. [PMID: 37583210 DOI: 10.1103/physreve.108.015201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 08/17/2023]
Abstract
High-intensity laser solid interactions are capable of generating attosecond light bursts via high-harmonic generation-most work focuses on single beam interactions. In this paper, we perform a numerical investigation on the role of wavelength and polarization in relativistic, high-harmonic generation from normal-incidence, two-beam interactions off plasma mirrors. We find that the two-beam harmonic-generation mechanism is a robust process described by a set of well-defined selection rules. We demonstrate that the emitted harmonics from normal-incidence interactions exhibit an intensity optimization when the incident fields are of equal intensity for two-color circularly polarized fields.
Collapse
Affiliation(s)
- N F Beier
- STROBE, NSF Science & Technology Center, University of California, Irvine, California 92617, USA
| | - F Dollar
- STROBE, NSF Science & Technology Center, University of California, Irvine, California 92617, USA
| |
Collapse
|
2
|
Mondal S, Shirozhan M, Choudhary S, Nelissen K, Tzallas P, Charalambidis D, Varjú K, Kahaly S. Intense isolated attosecond pulses from two-color few-cycle laser driven relativistic surface plasma. Sci Rep 2022; 12:13668. [PMID: 35953509 PMCID: PMC9372060 DOI: 10.1038/s41598-022-17762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022] Open
Abstract
Ultrafast plasma dynamics play a pivotal role in the relativistic high harmonic generation, a phenomenon that can give rise to intense light fields of attosecond duration. Controlling such plasma dynamics holds key to optimize the relevant sub-cycle processes in the high-intensity regime. Here, we demonstrate that the optimal coherent combination of two intense ultrashort pulses centered at two-colors (fundamental frequency, [Formula: see text] and second harmonic, [Formula: see text]) can lead to an optimal shape in relativistic intensity driver field that yields such an extraordinarily sensitive control. Conducting a series of two-dimensional (2D) relativistic particle-in-cell (PIC) simulations carried out for currently achievable laser parameters and realistic experimental conditions, we demonstrate that an appropriate combination of [Formula: see text] along with a precise delay control can lead to more than three times enhancement in the resulting high harmonic flux. Finally, the two-color multi-cycle field synthesized with appropriate delay and polarization can all-optically suppress several attosecond bursts while favourably allowing one burst to occur, leading to the generation of intense isolated attosecond pulses without the need of any sophisticated gating techniques.
Collapse
Affiliation(s)
- Sudipta Mondal
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary.
| | - Mojtaba Shirozhan
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Shivani Choudhary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
| | - Kwinten Nelissen
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
| | - Paraskevas Tzallas
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, 70013, Heraklion (Crete), Greece
| | - Dimitris Charalambidis
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, 70013, Heraklion (Crete), Greece
- Department of Physics, University of Crete, PO Box 2208, 71003, Heraklion (Crete), Greece
| | - Katalin Varjú
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - Subhendu Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary.
- Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
3
|
Wei S, Wang Y, Yan X, Eliasson B. Ultrahigh-amplitude isolated attosecond pulses generated by a two-color laser pulse interacting with a microstructured target. Phys Rev E 2022; 106:025203. [PMID: 36109966 DOI: 10.1103/physreve.106.025203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A unique electron nanobunching mechanism using a two-color laser pulse interacting with a microstructured foil is proposed for directly generating ultraintense isolated attosecond pulses in the transmission direction without requiring extra filters and gating techniques. The unique nanobunching mechanism ensures that only one electron sheet contributes to the transmitted radiation. Accordingly, the generated attosecond pulses are unipolar and have durations at the full width at half-maximum about 5 attoseconds. The emitted ultrahigh-amplitude isolated attosecond pulses have intensities of up to ∼10^{21}W/cm^{2}, which are beyond the limitations of weak attosecond pulses generated by gas harmonics sources and may open a new regime of nonlinear attosecond studies. Unipolar pulses can be useful for probing ultrafast electron dynamics in matter via asymmetric manipulation.
Collapse
Affiliation(s)
- Shengzhan Wei
- Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunliang Wang
- Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
- Beijing Laser Acceleration Innovation Center, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
| | - Bengt Eliasson
- SUPA, Physics Department, John Anderson Building, University of Strathclyde, Glasgow G4 0NG, Scotland
| |
Collapse
|
4
|
Wang S, Tan F, Yang Z, Wu Y, Zhang X, Yu M, Yang Y, Yan Y, Zhu B, Wei L, Fan Q, Su J, Gu Y, Zhou W. Selective generation of narrow-band harmonics by a relativistic laser pulse interaction with a detuned plasma grating. Phys Rev E 2022; 105:065207. [PMID: 35854521 DOI: 10.1103/physreve.105.065207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The spectral characteristics of high-order harmonics generated by the interaction of a linearly polarized relativistic laser pulse with a plasma grating target are investigated. Through particle-in-cell simulations and an analytical model, it is shown that a plasma grating target with periodic structure can select special harmonics with integer multiples of the grating frequency, and that low-order harmonics with frequencies being integer times of the laser frequency are generated nearly parallel to the target surface from a Fresnel zone plate target with an aperiodic structure. Spectral control of the harmonics can be achieved by introducing a correction factor β to the radius formula of the Fresnel zone plate, which can create a slightly detuned plasma grating, and then only the narrow-band harmonics can be selected nearly parallel to the target surface. The center order of the narrow-band harmonics can be tuned by adjusting the correction factor β, while the bandwidth of the harmonics can be selected by adjusting the other parameter λ_{f} of the detuned plasma grating.
Collapse
Affiliation(s)
- Shaoyi Wang
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Fang Tan
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Zuhua Yang
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Yuchi Wu
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Xiaohui Zhang
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Minghai Yu
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Yue Yang
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Yonghong Yan
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Bin Zhu
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Lai Wei
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Quanping Fan
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Jingqin Su
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Yuqiu Gu
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| | - Weimin Zhou
- Research Center of Laser Fusion, CAEP, P. O. Box 919 986, Mianyang 621900, China
- The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China
| |
Collapse
|
5
|
Edwards MR, Fasano NM, Bennett T, Griffith A, Turley N, O'Brien BM, Mikhailova JM. A multi-terawatt two-color beam for high-power field-controlled nonlinear optics. OPTICS LETTERS 2020; 45:6542-6545. [PMID: 33258857 DOI: 10.1364/ol.403806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Two-color laser beams are instrumental in light-field control and enhancement of high-order harmonic, spectral supercontinuum, and terahertz radiation generated in gases, plasmas, and solids. We demonstrate a multi-terawatt two-color beam produced using a relativistic plasma mirror, with 110 mJ at 800 nm and 30 mJ at 400 nm. Both color components have high spatial quality and can be simultaneously focused, provided that the plasma mirror lies within a Rayleigh range of the driving fundamental beam. Favorable scaling of second-harmonic generation by plasma mirrors at relativistic intensities suggests them as an excellent tool for multi-color waveform synthesis beyond the petawatt level.
Collapse
|
6
|
Cousens S, Yeung M, Zepf M, Dromey B. Electron trajectories associated with laser-driven coherent synchrotron emission at the front surface of overdense plasmas. Phys Rev E 2020; 101:053210. [PMID: 32575346 DOI: 10.1103/physreve.101.053210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/21/2020] [Indexed: 11/07/2022]
Abstract
We present an in-depth analysis of an ultrafast electron trajectory type that produces attosecond electromagnetic pulses in both the reflected and forward directions during normal incidence, relativistic laser-plasma interactions. Our particle-in-cell simulation results show that for a target which is opaque to the frequency of the driving laser pulse the emission trajectory is synchrotronlike but differs significantly from the previously identified figure-eight type which produces bright attosecond bursts exclusively in the reflected direction. The origin and characteristics of this trajectory type are explained in terms of the driving electromagnetic fields, the opacity of the plasma, and the conservation of canonical momentum.
Collapse
Affiliation(s)
- S Cousens
- Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Yeung
- Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - M Zepf
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.,Helmholtz Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - B Dromey
- Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
7
|
Edwards MR, Fasano NM, Mikhailova JM. Electron-Nanobunch-Width-Dominated Spectral Power Law for Relativistic Harmonic Generation from Ultrathin Foils. PHYSICAL REVIEW LETTERS 2020; 124:185004. [PMID: 32441983 DOI: 10.1103/physrevlett.124.185004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/10/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Relativistic high-order harmonic generation from solid-density plasma offers a compact source of coherent ultraviolet and x-ray light. For solid targets much thinner than the laser wavelength, the plasma thickness can be tuned to increase conversion efficiency; a reduction in total charge allows for balancing the laser and plasma driving forces, producing the most effective interaction. Unlike for semi-infinite plasma surfaces, we find that for ultrathin foil targets the dominant factor in the emission spectral shape is the finite width of the electron nanobunches, leading to a power-law exponent of approximately 10/3. Ultrathin foils produce higher-efficiency frequency conversion than solid targets for moderately relativistic (1<a_{0}<40) interactions and also provide unique insight into how the trajectories of individual electrons combine and interfere to generate reflected attosecond pulses.
Collapse
Affiliation(s)
- Matthew R Edwards
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas M Fasano
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Julia M Mikhailova
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Edwards MR, Mikhailova JM. The X-Ray Emission Effectiveness of Plasma Mirrors: Reexamining Power-Law Scaling for Relativistic High-Order Harmonic Generation. Sci Rep 2020; 10:5154. [PMID: 32198482 PMCID: PMC7083899 DOI: 10.1038/s41598-020-61255-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
Ultrashort pulsed lasers provide uniquely detailed access to the ultrafast dynamics of physical, chemical, and biological systems, but only a handful of wavelengths are directly produced by solid-state lasers, necessitating efficient high-power frequency conversion. Relativistic plasma mirrors generate broadband power-law spectra, that may span the gap between petawatt-class infrared laser facilities and x-ray free-electron lasers; despite substantial theoretical work the ultimate efficiency of this relativistic high-order-harmonic generation remains unclear. We show that the coherent radiation emitted by plasma mirrors follows a power-law distribution of energy over frequency with an exponent that, even in the ultrarelativistic limit, strongly depends on the ratio of laser intensity to plasma density and exceeds the frequently quoted value of -8/3 over a wide range of parameters. The coherent synchrotron emission model, when adequately corrected for the finite width of emitting electron bunches, is not just valid for p-polarized light and thin foil targets, but generally describes relativistic harmonic generation, including at normal incidence and with finite-gradient plasmas. Our numerical results support the ω-4/3 scaling of the synchrotron emission model as a limiting efficiency of the process under most conditions. The highest frequencies that can be generated with this scaling are usually restricted by the width of the emitting electron bunch rather than the Lorentz factor of the fastest electrons. The theoretical scaling relations developed here suggest, for example, that with a 20-PW 800-nm driving laser, 1 TW/harmonic can be produced for 1-keV photons.
Collapse
Affiliation(s)
- Matthew R Edwards
- Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, New Jersey, 08544, USA.
| | - Julia M Mikhailova
- Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, New Jersey, 08544, USA.
| |
Collapse
|
9
|
Zhang YX, Rykovanov S, Shi M, Zhong CL, He XT, Qiao B, Zepf M. Giant Isolated Attosecond Pulses from Two-Color Laser-Plasma Interactions. PHYSICAL REVIEW LETTERS 2020; 124:114802. [PMID: 32242678 DOI: 10.1103/physrevlett.124.114802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 12/03/2019] [Accepted: 01/07/2020] [Indexed: 06/11/2023]
Abstract
A new regime in the interaction of a two-color (ω,2ω) laser with a nanometer-scale foil is identified, resulting in the emission of extremely intense, isolated attosecond pulses-even in the case of multicycle lasers. For foils irradiated by lasers exceeding the blow-out field strength (i.e., capable of fully separating electrons from the ion background), the addition of a second harmonic field results in the stabilization of the foil up to the blow-out intensity. This is then followed by a sharp transition to transparency that essentially occurs in a single optical cycle. During the transition cycle, a dense, nanometer-scale electron bunch is accelerated to relativistic velocities and emits a single, strong attosecond pulse with a peak intensity approaching that of the laser field.
Collapse
Affiliation(s)
- Y X Zhang
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
- Helmholtz Institute Jena, 07743 Jena, Germany
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - S Rykovanov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | | | - C L Zhong
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
| | - X T He
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - B Qiao
- Center for Applied Physics and Technology, HEDPS, SKLNPT, and School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Zepf
- Helmholtz Institute Jena, 07743 Jena, Germany
- Institute of Optics and Quantum Electronics, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
10
|
Li BY, Liu F, Chen M, Chen ZY, Yuan XH, Weng SM, Jin T, Rykovanov SG, Wang JW, Sheng ZM, Zhang J. High-quality high-order harmonic generation through preplasma truncation. Phys Rev E 2019; 100:053207. [PMID: 31869902 DOI: 10.1103/physreve.100.053207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/07/2022]
Abstract
By introducing preplasma truncation to cases with an initial preplasma scale length larger than 0.2λ, the efficiency of high-order harmonics generated from relativistic laser-solid interactions can be enhanced by more than one order of magnitude and the angular spread can be confined into near-diffraction-limited divergence. Numerical simulations show that density truncation results in more compact oscillation of the surface electron sheet and the curvature of the reflection surface for the driving laser is greatly reduced. This leads to an overall improvement in the harmonic beam quality. More importantly, density truncation makes the harmonic generation weakly dependent on the preplasma scale length, which provides a way to relax the extremely high requirement on the temporal contrast of the driving laser pulse. A feasible scheme to realize the required preplasma truncation is also proposed and demonstrated by numerical simulations.
Collapse
Affiliation(s)
- B Y Li
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - F Liu
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Chen
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z Y Chen
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
| | - X H Yuan
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - S M Weng
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - T Jin
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - S G Rykovanov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - J W Wang
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Z M Sheng
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China.,SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - J Zhang
- Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Leshchenko VE, Kessel A, Jahn O, Krüger M, Münzer A, Trushin SA, Veisz L, Major Z, Karsch S. On-target temporal characterization of optical pulses at relativistic intensity. LIGHT, SCIENCE & APPLICATIONS 2019; 8:96. [PMID: 31666950 PMCID: PMC6813334 DOI: 10.1038/s41377-019-0207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
High-field experiments are very sensitive to the exact value of the peak intensity of an optical pulse due to the nonlinearity of the underlying processes. Therefore, precise knowledge of the pulse intensity, which is mainly limited by the accuracy of the temporal characterization, is a key prerequisite for the correct interpretation of experimental data. While the detection of energy and spatial profile is well established, the unambiguous temporal characterization of intense optical pulses, another important parameter required for intensity evaluation, remains a challenge, especially at relativistic intensities and a few-cycle pulse duration. Here, we report on the progress in the temporal characterization of intense laser pulses and present the relativistic surface second harmonic generation dispersion scan (RSSHG-D-scan)-a new approach allowing direct on-target temporal characterization of high-energy, few-cycle optical pulses at relativistic intensity.
Collapse
Affiliation(s)
- Vyacheslav E. Leshchenko
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
- Present Address: Department of Physics, The Ohio State University, Columbus, OH 43210 USA
| | - Alexander Kessel
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Olga Jahn
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Mathias Krüger
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Andreas Münzer
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Sergei A. Trushin
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Laszlo Veisz
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department of Physics, Umeå University, Umeå, SE-901 87 Sweden
| | - Zsuzsanna Major
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Stefan Karsch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Department für Physik, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| |
Collapse
|
12
|
Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces. Nat Commun 2018; 9:4992. [PMID: 30478336 PMCID: PMC6255866 DOI: 10.1038/s41467-018-07421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022] Open
Abstract
The interaction of ultra-intense laser pulses with matter opened the way to generate the shortest light pulses available nowadays in the attosecond regime. Ionized solid surfaces, also called plasma mirrors, are promising tools to enhance the potential of attosecond sources in terms of photon energy, photon number and duration especially at relativistic laser intensities. Although the production of isolated attosecond pulses and the understanding of the underlying interactions represent a fundamental step towards the realization of such sources, these are challenging and have not yet been demonstrated. Here, we present laser-waveform-dependent high-order harmonic radiation in the extreme ultraviolet spectral range supporting well-isolated attosecond pulses, and utilize spectral interferometry to understand its relativistic generation mechanism. This unique interpretation of the measured spectra provides access to unrevealed temporal and spatial properties such as spectral phase difference between attosecond pulses and field-driven plasma surface motion during the process. High-order harmonic generation is explored in gases, solids and plasmas with moderate to high intensity lasers. Here the authors show spectral interferometry of HHG from relativistic plasma and its potential as a source of intense isolated attosecond pulses.
Collapse
|
13
|
Chen ZY. Spectral control of high harmonics from relativistic plasmas using bicircular fields. Phys Rev E 2018; 97:043202. [PMID: 29758676 DOI: 10.1103/physreve.97.043202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 06/08/2023]
Abstract
We introduce two-color counterrotating circularly polarized laser fields as a way to spectrally control high harmonic generation (HHG) from relativistic plasma mirrors. Through particle-in-cell simulations, we show that only a selected group of harmonic orders can appear owing to the symmetry of the laser fields and the related conservation laws. By adjusting the intensity ratio of the two driving field components, we demonstrate the overall HHG efficiency, the relative intensity of allowed neighboring harmonic orders, and that the polarization state of the harmonic source can be tuned. The HHG efficiency of this scheme can be as high as that driven by a linearly polarized laser field.
Collapse
Affiliation(s)
- Zi-Yu Chen
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
| |
Collapse
|
14
|
Blanco M, Flores-Arias MT. Frequency gating to isolate single attosecond pulses with overdense plasmas using particle-in-cell simulations. OPTICS EXPRESS 2017; 25:13372-13381. [PMID: 28788874 DOI: 10.1364/oe.25.013372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
We present the isolation of single attosecond pulses for multi-cycle and few-cycle laser pulses from high harmonic generation in overdense plasmas, calculated with particle-in-cell simulations. By the combination of two laser pulses of equal amplitude and a small frequency shift between them, we demonstrate that it is possible to shorten the region in which the laser pulse is most intense, therefore restricting the generation of high harmonic orders in the form of attosecond pulses to a narrower time window. The creation of this window is achieved due to the combination of the laser pulse envelope and the slow oscillating wave obtained from the coherent sum of the two pulses. A parametric scan, performed with particle-in-cell simulations, reveals how the pulse isolation behaves for different input laser pulse lengths and which are the optimal frequency shifts between the two laser pulses in each case, giving the conditions for having a good isolation of an attosecond pulse when working with laser-plasma interaction in overdense targets.
Collapse
|
15
|
Edwards MR, Mikhailova JM. Waveform-Controlled Relativistic High-Order-Harmonic Generation. PHYSICAL REVIEW LETTERS 2016; 117:125001. [PMID: 27689281 DOI: 10.1103/physrevlett.117.125001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Indexed: 06/06/2023]
Abstract
We consider the efficiency limit of relativistic high-order-harmonic emission from solid targets achievable with tailored light fields. Using one-dimensional particle-in-cell simulations, the maximum energy conversion efficiency is shown to reach as high as 10% for the harmonics in the range of 80-200 eV and is largely independent of laser intensity and plasma density. The waveforms most effective at driving harmonics have a broad spectrum with a lower-frequency limit set by the width of the incident pulse envelope and an upper limit set by the relativistic plasma frequency.
Collapse
Affiliation(s)
- Matthew R Edwards
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Julia M Mikhailova
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|