1
|
Tong X, Chen Y, Xu Z, Li Y, Xing Z, Mu C, Zhao J, Zhen X, Mao C, Tai R. High-efficiency focusing and imaging by dielectric kinoform zone plate lenses with soft X-rays. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:319-326. [PMID: 36891845 PMCID: PMC10000800 DOI: 10.1107/s1600577522012115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
With fast advances in enhancing the focusing/imaging resolution of Fresnel zone plate lenses toward sub-10 nm, low diffraction efficiency in connection with their rectangular zone shape still remains a big issue in both soft and hard X-ray microscopy. In hard X-ray optics, encouraging progress has recently been reported in our earlier attempts of high focusing efficiency by 3D kinoform shaped metallic zone plates, formed by greyscale electron beam lithography. This paper addresses our efforts towards high focusing/imaging efficiency by developing a novel dielectric kinoform zone plate lens for soft X-rays. The effects of the zone materials and zone shapes on the focusing/imaging quality were first theoretically investigated by a modified thin-grating-approximation method, revealing superior efficiencies of dielectric kinoform zone plates over rectangular ones in metals. Optical characterizations of replicated dielectric kinoform zone plates by greyscale electron beam lithography demonstrate a focusing efficiency of 15.5% with a resolution of 110 nm in the water window of X-rays. Apart from high efficiency, the novel kinoform zone plate lenses developed in this work exhibit significant advantages over conventional zone plates, i.e. simplified process, low cost and no need for a beamstop.
Collapse
Affiliation(s)
- Xujie Tong
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yifang Chen
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Yijie Li
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhenjiang Xing
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Chengyang Mu
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jun Zhao
- Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Xiangjun Zhen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Chengwen Mao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| |
Collapse
|
2
|
Loconte V, Chen JH, Cortese M, Ekman A, Le Gros MA, Larabell C, Bartenschlager R, Weinhardt V. Using soft X-ray tomography for rapid whole-cell quantitative imaging of SARS-CoV-2-infected cells. CELL REPORTS METHODS 2021; 1:100117. [PMID: 34729550 PMCID: PMC8552653 DOI: 10.1016/j.crmeth.2021.100117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
High-resolution and rapid imaging of host cell ultrastructure can generate insights toward viral disease mechanism, for example for a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Here, we employ full-rotation soft X-ray tomography (SXT) to examine organelle remodeling induced by SARS-CoV-2 at the whole-cell level with high spatial resolution and throughput. Most of the current SXT systems suffer from a restricted field of view due to use of flat sample supports and artifacts due to missing data. In this approach using cylindrical sample holders, a full-rotation tomogram of human lung epithelial cells is performed in less than 10 min. We demonstrate the potential of SXT imaging by visualizing aggregates of SARS-CoV-2 virions and virus-induced intracellular alterations. This rapid whole-cell imaging approach allows us to visualize the spatiotemporal changes of cellular organelles upon viral infection in a quantitative manner.
Collapse
Affiliation(s)
- Valentina Loconte
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Weinhardt V, Chen JH, Ekman AA, Guo J, Remesh SG, Hammel M, McDermott G, Chao W, Oh S, Le Gros MA, Larabell CA. Switchable resolution in soft x-ray tomography of single cells. PLoS One 2020; 15:e0227601. [PMID: 31978064 PMCID: PMC6980406 DOI: 10.1371/journal.pone.0227601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022] Open
Abstract
The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics.
Collapse
Affiliation(s)
- Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Axel A. Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Jessica Guo
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Soumya G. Remesh
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gerry McDermott
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Weilun Chao
- Center for X-ray Optics, Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sharon Oh
- Center for X-ray Optics, Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
4
|
Ma L, Xu Z, Zhang X, Lin J, Tai R. Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization. Carbohydr Polym 2019; 221:195-201. [DOI: 10.1016/j.carbpol.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 11/15/2022]
|
5
|
Weinhardt V, Chen JH, Ekman A, McDermott G, Le Gros MA, Larabell C. Imaging cell morphology and physiology using X-rays. Biochem Soc Trans 2019; 47:489-508. [PMID: 30952801 PMCID: PMC6716605 DOI: 10.1042/bst20180036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Morphometric measurements, such as quantifying cell shape, characterizing sub-cellular organization, and probing cell-cell interactions, are fundamental in cell biology and clinical medicine. Until quite recently, the main source of morphometric data on cells has been light- and electron-based microscope images. However, many technological advances have propelled X-ray microscopy into becoming another source of high-quality morphometric information. Here, we review the status of X-ray microscopy as a quantitative biological imaging modality. We also describe the combination of X-ray microscopy data with information from other modalities to generate polychromatic views of biological systems. For example, the amalgamation of molecular localization data, from fluorescence microscopy or spectromicroscopy, with structural information from X-ray tomography. This combination of data from the same specimen generates a more complete picture of the system than that can be obtained by a single microscopy method. Such multimodal combinations greatly enhance our understanding of biology by combining physiological and morphological data to create models that more accurately reflect the complexities of life.
Collapse
Affiliation(s)
- Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Gerry McDermott
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Mark A Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.
- Department of Anatomy, University of California San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
6
|
Malyshev IV, Chkhalo NI. A method of z-tomography using high-aperture soft X-ray microscopy. Ultramicroscopy 2019; 202:76-86. [PMID: 31003162 DOI: 10.1016/j.ultramic.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022]
Abstract
Multilayer normal-incidence mirrors allow the numerical aperture (NA=0.3-0.5) of a projection lens to be significantly increased in the spectral ranges of the water (λ = 2.3-4.4 nm) and carbon (λ = 4.4-7 nm) windows, in comparison with the Fresnel zone plates. The low depth of focus of high-aperture optics (tens of nm) makes it possible to use z-tomography to reconstruct the structure of samples in soft X-ray microscopy. The presence of strong absorption prevents the direct use of a powerful deconvolution apparatus developed for fluorescence optical microscopy to improve the clarity of the image. In this article, the "intensity restoration algorithm" is proposed that takes into account the absorption effect before standard deconvolution. For an imagine lens with NA = 0.3 and a working wavelength of 3.37 nm, the results of simulating an image of a protein cell and its deconvolutionary processing are presented, before and after applying the proposed method. After its application, the deconvolution efficiency is significantly increased. A "full-period" resolution of 40 nm was obtained for the image of a simulated protein cell.
Collapse
Affiliation(s)
- Ilya V Malyshev
- Institute for Physics of Microstructures of RAS, GSP-105, 603950 Nizhny Novgorod, Russia.
| | - Nikolay I Chkhalo
- Institute for Physics of Microstructures of RAS, GSP-105, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Ma L, Zhang X, Xu Z, Späth A, Xing Z, Sun T, Tai R. Three-dimensional focal stack imaging in scanning transmission X-ray microscopy with an improved reconstruction algorithm. OPTICS EXPRESS 2019; 27:7787-7802. [PMID: 30876336 DOI: 10.1364/oe.27.007787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Focal stack (FS) is an effective technique for fast 3D imaging in high-resolution scanning transmission X-ray microscopy. Its crucial issue is to assign each object within the sample to the correct position along the optical axis according to a proper focus measure. There is probably information loss with previous algorithms for FS reconstruction because the old algorithms can only detect one focused object along each optical-axial pixel line (OAPL). In this study, we present an improved FS algorithm, which utilizes an elaborately calculated threshold for normalized local variances to extract multiple focused objects in each OAPL. Simulation and experimental results show its feasibility and high efficiency for 3D imaging of high contrast, sparse samples. It is expected that our advanced approach has potential applications in 3D X-ray microscopy for more complex samples.
Collapse
|
8
|
Ekman A, Weinhardt V, Chen JH, McDermott G, Le Gros MA, Larabell C. PSF correction in soft X-ray tomography. J Struct Biol 2018; 204:9-18. [PMID: 29908247 DOI: 10.1016/j.jsb.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022]
Abstract
In this article, we introduce a linear approximation of the forward model of soft X-ray tomography, such that the reconstruction is solvable by standard iterative schemes. This linear model takes into account the three-dimensional point spread function (PSF) of the optical system, which consequently enhances the reconstruction of data. The feasibility of the model is demonstrated on both simulated and experimental data, based on theoretically estimated and experimentally measured PSFs.
Collapse
Affiliation(s)
- Axel Ekman
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Venera Weinhardt
- Department of Anatomy, University of California, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Chen
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Gerry McDermott
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Mark A Le Gros
- Department of Anatomy, University of California, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn Larabell
- Department of Anatomy, University of California, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Abstract
Water-window x-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their cryofixed near-native state with unique contrast and high resolution. Present operational biological water-window microscopes are based at synchrotron facilities, which limits their accessibility and integration with complementary methods. Laboratory-source microscopes have had difficulty addressing relevant biological tasks with proper resolution and contrast due to long exposure times and limited up-time. Here we report on laboratory cryo x-ray microscopy with the exposure time, contrast, and reliability to allow for routine high-spatial resolution 3D imaging of intact cells and cell-cell interactions. Stabilization of the laser-plasma source combined with new optics and sample preparation provide high-resolution cell imaging, both in 2D with ten-second exposures and in 3D with twenty-minute tomography. Examples include monitoring of the distribution of carbon-dense vesicles in starving HEK293T cells and imaging the interaction between natural killer cells and target cells.
Collapse
|
10
|
Otón J, Pereiro E, Conesa JJ, Chichón FJ, Luque D, Rodríguez JM, Pérez-Berná AJ, Sorzano COS, Klukowska J, Herman GT, Vargas J, Marabini R, Carrascosa JL, Carazo JM. XTEND: Extending the depth of field in cryo soft X-ray tomography. Sci Rep 2017; 7:45808. [PMID: 28374769 PMCID: PMC5379191 DOI: 10.1038/srep45808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
We have developed a new data collection method and processing framework in full field cryo soft X-ray tomography to computationally extend the depth of field (DOF) of a Fresnel zone plate lens. Structural features of 3D-reconstructed eukaryotic cells that are affected by DOF artifacts in standard reconstruction are now recovered. This approach, based on focal series projections, is easily applicable with closed expressions to select specific data acquisition parameters.
Collapse
Affiliation(s)
- Joaquín Otón
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - José J Conesa
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Francisco J Chichón
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Daniel Luque
- Centro Nacional de Microbiología, ISCIII, Majadahonda, Madrid, 28220, Spain
| | - Javier M Rodríguez
- Centro Nacional de Microbiología, ISCIII, Majadahonda, Madrid, 28220, Spain
| | - Ana J Pérez-Berná
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | | | - Joanna Klukowska
- Department of Computer Science, The Graduate Center, City University of New York, NY 10016, USA
| | - Gabor T Herman
- Department of Computer Science, The Graduate Center, City University of New York, NY 10016, USA
| | - Javier Vargas
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Roberto Marabini
- Escuela Politécnica Superior, Univ. Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain.,Unidad Asociada CNB-Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia),Cantoblanco, Madrid, 28049, Spain
| | - José M Carazo
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
11
|
Li F, Guan Y, Xiong Y, Zhang X, Liu G, Tian Y. Method for extending the depth of focus in X-ray microscopy. OPTICS EXPRESS 2017; 25:7657-7667. [PMID: 28380885 DOI: 10.1364/oe.25.007657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transmission X-ray microscopy (TXM) is a powerful, nondestructive and three-dimensional imaging tool that has been applied in many fields. However, the ability to image large size samples using high-resolution TXM is restricted due to a limited depth of focus (DOF). In this study, a method based on multiple reconstructed slice stacks of an extended sample at different focal positions is developed to extend the DOF of TXM. The simulation and experimental results demonstrate that this novel method effectively and reliably extend the DOF of high-resolution TXM.
Collapse
|