1
|
Zhang Y, Li G, Ma S, Li Z, Fan F, Huang Y. Switchable Multi-Spectral Electromagnetic Defense in the Ultraviolet, Visible, Infrared, Gigahertz, and Terahertz Bands Using a Magnetically-Controllable Soft Actuator. ACS NANO 2025; 19:11295-11308. [PMID: 40070210 DOI: 10.1021/acsnano.5c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Traditional passive single-spectrum electromagnetic defense materials are inadequate to defend against complex multispectral electromagnetic threats. Herein, a bilayer heterofilm (BLH film)-based magnetically controllable soft actuator (MCSA), comprising a defense unit and a drive unit, is constructed. The defense unit offers multispectral electromagnetic protection, while the drive unit enables active defense via magnetic actuation. The synergy allows the MCSA to provide intelligent, switchable electromagnetic defense from ultraviolet to terahertz spectra. The BLH film exhibits the lowest infrared emissivity of 0.04 at 14 μm and an average of 0.16 at 8-14 μm, outperforming comparable composites while integrating radiation energy management for enhanced overall protection. It also demonstrates complete blocking of ultraviolet and visible light (320-780 nm), demonstrating zero transmission. Furthermore, the MCSA can be modulated between open and closed states by applying a magnetic field, facilitating a seamless transition between full-band transparency and full-band defense modes. To expand electromagnetic defense applications, a multilayer gradient impedance matching (M-BLH-300) absorber based on the BLH film is fabricated for stealth in microwave bands, achieving a strong reflection loss of -26.7 dB with an effective absorption bandwidth of 4.85 GHz. Notably, the M-BLH-300 absorber retains excellent performance when extended to the terahertz frequency range and further demonstrates its suitability for multispectrum (from ultraviolet to terahertz) defense. In short, this innovative design concept of combining multispectral defense with intelligent switches will guide the development of next-generation advanced electromagnetic defense systems.
Collapse
Affiliation(s)
- Yawen Zhang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Guanghao Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Suping Ma
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Zhuo Li
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Fei Fan
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, PR China
| | - Yi Huang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
2
|
Gomółka G, Stępniewski G, Pysz D, Buczyński R, Klimczak M, Nikodem M. Highly sensitive methane detection using a mid-infrared interband cascade laser and an anti-resonant hollow-core fiber. OPTICS EXPRESS 2023; 31:3685-3697. [PMID: 36785355 DOI: 10.1364/oe.479963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
For over a decade hollow-core fibers have been used in optical gas sensors in the role of gas cells. However, very few examples of actual real-life applications of those sensors have been demonstrated so far. In this paper, we present a highly-sensitive hollow-core fiber based methane sensor. Mid-infrared distributed feedback interband cascade laser operating near 3.27 µm is used to detect gas inside anti-resonant hollow-core fiber. R(3) line near 3057.71 cm-1 located in ν3 band of methane is targeted. Compact, lens-free optical setup with an all-silica negative curvature hollow-core fiber as the gas cell is demonstrated. Using wavelength modulation spectroscopy and 7.5-m-long fiber the detection limit as low as 1.54 ppbv (at 20 s) is obtained. The demonstrated system is applied for a week-long continuous monitoring of ambient methane and water vapor in atmospheric air at ground level. Diurnal cycles in methane concentrations are observed, what proves the sensor's usability in environmental monitoring.
Collapse
|
3
|
Murphy LR, Yerolatsitis S, Birks TA, Stone JM. Stack, seal, evacuate, draw: a method for drawing hollow-core fiber stacks under positive and negative pressure. OPTICS EXPRESS 2022; 30:37303-37313. [PMID: 36258321 DOI: 10.1364/oe.470599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The two-stage stack and draw technique is an established method for fabricating microstructured fibers, including hollow-core fibers. A stack of glass elements of around a meter in length and centimeters in outer diameter forms the first stage preform, which is drawn into millimeter scale canes. The second stage preform is one of the canes, which is drawn, under active pressure, into microscopic fiber. Separately controlled pressure lines are connected to different holes or sets of holes in the cane to control the microstructure of the fiber being drawn, often relying on glues or other sealants to isolate the differently-pressured regions. We show that the selective fusion and collapse of the elements of the stack, before it is drawn to cane or fiber, allows the stack to be drawn directly under differential pressure without introducing a sealant. Three applications illustrate the advantages of this approach. First, we draw antiresonant hollow-core fiber directly from the stack without making a cane, allowing a significantly longer length of fiber to be drawn. Second, we fabricate canes under pressure, such that they are structurally more similar to the final fiber. Finally, we use the method to fabricate new types of microstructured resonators with a non-circular cross-section.
Collapse
|
4
|
Review on All-Fiber Online Raman Sensor with Hollow Core Microstructured Optical Fiber. PHOTONICS 2022. [DOI: 10.3390/photonics9030134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Raman spectroscopy is widely used for qualitative and quantitative analysis of trace components in scientific fields such as food safety monitoring, drug testing, environmental monitoring, etc. In addition to its demonstrated advantages of fast response, non-destructive, and non-polluting characteristics, fast online Raman detection is drawing growing attention for development. To achieve this desirable capability, hollow core optical fibers are employed as a common transmission channel for light and fluid in the Raman sensor. By enhancing the interaction process between light and matter, the detection sensitivity is improved. At the same time, the Raman spectroscopy signal light collection efficiency is significantly improved. This article summarizes enhancement techniques reported for Raman sensors, followed by a detailed review on fiber-based Raman sensor techniques including theoretical analyses, fabrication, and application based on hollow core photonic crystal fibers and capillary-based hollow core fibers. The prospects of using these fibers for Raman spectroscopy are discussed.
Collapse
|
5
|
Jaworski P. A Review of Antiresonant Hollow-Core Fiber-Assisted Spectroscopy of Gases. SENSORS 2021; 21:s21165640. [PMID: 34451086 PMCID: PMC8402571 DOI: 10.3390/s21165640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Antiresonant Hollow-Core Fibers (ARHCFs), thanks to the excellent capability of guiding light in an air core with low loss over a very broad spectral range, have attracted significant attention of researchers worldwide who especially focus their work on laser-based spectroscopy of gaseous substances. It was shown that the ARHCFs can be used as low-volume, non-complex, and versatile gas absorption cells forming the sensing path length in the sensor, thus serving as a promising alternative to commonly used bulk optics-based configurations. The ARHCF-aided sensors proved to deliver high sensitivity and long-term stability, which justifies their suitability for this particular application. In this review, the recent progress in laser-based gas sensors aided with ARHCFs combined with various laser-based spectroscopy techniques is discussed and summarized.
Collapse
Affiliation(s)
- Piotr Jaworski
- Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Perevoschikov S, Kaydanov N, Ermatov T, Bibikova O, Usenov I, Sakharova T, Bocharnikov A, Skibina J, Artyushenko V, Gorin D. Light guidance up to 6.5 µm in borosilicate soft glass hollow-core microstructured optical waveguides. OPTICS EXPRESS 2020; 28:27940-27950. [PMID: 32988076 DOI: 10.1364/oe.399410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Limited operating bandwidth originated from strong absorption of glass materials in the infrared (IR) spectral region has hindered the potential applications of microstructured optical waveguide (MOW)-based sensors. Here, we demonstrate multimode waveguide regime up to 6.5 µm for the hollow-core (HC) MOWs drawn from borosilicate soft glass. Effective light guidance in central HC (diameter ∼240 µm) was observed from 0.4 to 6.5 µm despite high waveguide losses (0.4 and 1 dB/cm in near- and mid-IR, respectively). Additional optimization of the waveguide structure can potentially extend its operating range and decrease transmission losses, offering an attractive alternative to tellurite and chalcogenide-based fibers. Featuring the transparency in mid-IR, HC MOWs are promising candidates for the creation of MOW-based sensors for chemical and biomedical applications.
Collapse
|
7
|
Nikodem M. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3983. [PMID: 32916799 PMCID: PMC7557433 DOI: 10.3390/ma13183983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Thanks to the guidance of an optical wave in air, hollow-core fibers may serve as sampling cells in an optical spectroscopic system. This paper reviews applications of hollow-core optical fibers to laser-based gas sensing. Three types of hollow-core fibers are discussed: Hollow capillary waveguides, photonic band-gap fibers, and negative curvature fibers. Their advantages and drawbacks when used for laser-based trace gas detection are analyzed. Various examples of experimental sensing systems demonstrated in the literature over the past 20 years are discussed.
Collapse
Affiliation(s)
- Michal Nikodem
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
8
|
Hollow-Core Photonic Crystal Fiber Gas Sensing. SENSORS 2020; 20:s20102996. [PMID: 32466269 PMCID: PMC7288133 DOI: 10.3390/s20102996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 02/05/2023]
Abstract
Fiber gas sensing techniques have been applied for a wide range of industrial applications. In this paper, the basic fiber gas sensing principles and the development of different fibers have been introduced. In various specialty fibers, hollow-core photonic crystal fibers (HC-PCFs) can overcome the fundamental limits of solid fibers and have attracted intense interest recently. Here, we focus on the review of HC-PCF gas sensing, including the light-guiding mechanisms of HC-PCFs, various sensing configurations, microfabrication approaches, and recent research advances including the mid-infrared gas sensors via hollow core anti-resonant fibers. This review gives a detailed and deep understanding of HC-PCF gas sensors and will promote more practical applications of HC-PCFs in the near future.
Collapse
|
9
|
Ermatov T, Skibina JS, Tuchin VV, Gorin DA. Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E921. [PMID: 32092963 PMCID: PMC7078627 DOI: 10.3390/ma13040921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Microstructured optical fiber-based sensors (MOF) have been widely developed finding numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity to the refractive index variation, arising from the strong interaction between a guided mode and an analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis of solutions with small volume and low concentration. Here, we review the modern techniques used for the modification of the fiber's structure, which leads to an enhanced detection sensitivity, as well as the surface functionalization processes used for selective adsorption of target molecules. Novel functionalized MOF-based devices possessing these unique properties, emphasize the potential applications for fiber optics in the field of modern biophotonics, such as remote sensing, thermography, refractometric measurements of biological liquids, detection of cancer proteins, and concentration analysis. In this work, we discuss the approaches used for the functionalization of MOFs, with a focus on potential applications of the produced structures.
Collapse
Affiliation(s)
- Timur Ermatov
- Skolkovo Institute of Science and Technology, 3 Nobelya str., 121205 Moscow, Russia
| | - Julia S. Skibina
- SPE LLC Nanostructured Glass Technology, 101 50 Let Oktjabrja, 410033 Saratov, Russia;
| | - Valery V. Tuchin
- Research Educational Institute of Optics and Biophotonics, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia;
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, 36 Lenin’s av., 634050 Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, 24 Rabochaya str., 410028 Saratov, Russia
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya str., 121205 Moscow, Russia
| |
Collapse
|
10
|
A Dual Hollow Core Antiresonant Optical Fiber Coupler Based on a Highly Birefringent Structure-Numerical Design and Analysis. FIBERS 2019. [DOI: 10.3390/fib7120109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the growing interest in hollow-core antiresonant fibers (HC-ARF), attributed to the development of their fabrication technology, the appearance of more sophisticated structures is understandable. One of the recently advancing concepts is that of dual hollow-core antiresonant fibers, which have the potential to be used as optical fiber couplers. In the following paper, a design of a dual hollow-core antiresonant fiber (DHC-ARF) acting as a polarization fiber coupler is presented. The structure is based on a highly birefringent hollow-core fiber design, which is proven to be a promising solution for the purpose of propagation of polarized signals. The design of an optimized DHC-ARF with asymmetrical cores is proposed, together with analysis of its essential coupling parameters, such as the extinction ratio, coupling length ratio, and coupling strength. The latter two for the x- and y-polarized signals were ~2 and 1, respectively, while the optical losses were below 0.3 dB/cm in the 1500–1700 nm transmission band.
Collapse
|
11
|
Talataisong W, Ismaeel R, Marques THR, Abokhamis Mousavi S, Beresna M, Gouveia MA, Sandoghchi SR, Lee T, Cordeiro CMB, Brambilla G. Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform. Sci Rep 2018; 8:8113. [PMID: 29802299 PMCID: PMC5970260 DOI: 10.1038/s41598-018-26561-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022] Open
Abstract
Mid-infrared (mid-IR) optical fibers have long attracted great interest due to their wide range of applications in security, biology and chemical sensing. Traditionally, research was directed towards materials with low absorption in the mid-IR region, such as chalcogenides, which are difficult to manipulate and often contain highly toxic elements. In this paper, we demonstrate a Polyethylene Terephthalate Glycol (PETG) hollow-core fiber (HCF) with guiding properties in the mid-IR. Guiding is provided by the fiber geometry, as PETG exhibits a material attenuation 2 orders of magnitude larger than the HCF propagation loss. The structured plastic fiber preforms were fabricated using commercial 3D printing technology and then drawn using a conventional fiber drawing tower. The final PETG fiber outer diameter was 466 µm with a hollow-core diameter of 225 µm. Thermal imaging at the fiber facet performed within the wavelength range 3.5–5 µm clearly indicates air guidance in the fiber hollow-core.
Collapse
Affiliation(s)
- Wanvisa Talataisong
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Rand Ismaeel
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Thiago H R Marques
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Instituto de Filosofia e Ciências Humanas, UNICAMP, Campinas, Brazil
| | | | - Martynas Beresna
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - M A Gouveia
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Seyed Reza Sandoghchi
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Timothy Lee
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Cristiano M B Cordeiro
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gilberto Brambilla
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
12
|
Seddon AB. Mid-infrared (MIR) photonics: MIR passive and active fiberoptics chemical and biomedical, sensing and imaging. ACTA ACUST UNITED AC 2016. [DOI: 10.1117/12.2242488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Kang J, Takenaka M, Takagi S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. OPTICS EXPRESS 2016; 24:11855-64. [PMID: 27410108 DOI: 10.1364/oe.24.011855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present Ge rib waveguide devices fabricated on a Ge-on-insulator (GeOI) wafer as a proof-of-concept Ge mid-infrared photonics platform. Numerical analysis revealed that the driving current for a given optical attenuation in a carrier-injection Ge waveguide device at a 1.95 μm wavelength can be approximately five times smaller than that in a Si device, enabling in-line carrier-injection Ge optical modulators based on free-carrier absorption. We prepared a GeOI wafer with a 2-μm-thick buried oxide layer (BOX) by wafer bonding. By using the GeOI wafer, we fabricated Ge rib waveguides. The Ge rib waveguides were transparent to 2 μm wavelengths and the propagation loss was found to be 1.4 dB/mm, which may have been caused by sidewall scattering. We achieved a negligible bend loss in the Ge rib waveguide, even with a 5 μm bend radius, owing to the strong optical confinement in the GeOI structure. We also formed a lateral p-i-n junction along the Ge rib waveguide to explore the capability of absorption modulation by carrier injection. By injecting current through the lateral p-i-n junction, we achieved optical intensity modulation in the 2 μm band based on the free-carrier absorption in Ge.
Collapse
|
14
|
Urich A, Maier RRJ, Yu F, Knight JC, Hand DP, Shephard JD. Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures. BIOMEDICAL OPTICS EXPRESS 2013; 4:193-205. [PMID: 23413120 PMCID: PMC3567706 DOI: 10.1364/boe.4.000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 05/24/2023]
Abstract
We present the delivery of high energy microsecond pulses through a hollow-core negative-curvature fiber at 2.94 µm. The energy densities delivered far exceed those required for biological tissue manipulation and are of the order of 2300 J/cm(2). Tissue ablation was demonstrated on hard and soft tissue in dry and aqueous conditions with no detrimental effects to the fiber or catastrophic damage to the end facets. The energy is guided in a well confined single mode allowing for a small and controllable focused spot delivered flexibly to the point of operation. Hence, a mechanically and chemically robust alternative to the existing Er:YAG delivery systems is proposed which paves the way for new routes for minimally invasive surgical laser procedures.
Collapse
Affiliation(s)
- A. Urich
- Applied Optics and Photonics group, School of Engineering and
Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - R. R. J. Maier
- Applied Optics and Photonics group, School of Engineering and
Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Fei Yu
- Centre for Photonics and Photonic Materials, Department of Physics,
University of Bath, Bath, BA2 7AY, UK
| | - J. C. Knight
- Centre for Photonics and Photonic Materials, Department of Physics,
University of Bath, Bath, BA2 7AY, UK
| | - D. P. Hand
- Applied Optics and Photonics group, School of Engineering and
Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - J. D. Shephard
- Applied Optics and Photonics group, School of Engineering and
Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
15
|
Patimisco P, Spagnolo V, Vitiello MS, Scamarcio G, Bledt CM, Harrington JA. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications. SENSORS 2013; 13:1329-40. [PMID: 23337336 PMCID: PMC3574738 DOI: 10.3390/s130101329] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ∼5 mrad were measured. Using a HGW fiber with internal core size of 300 μm we obtained single mode laser transmission at 10.54 μm and successful employed it in a quartz enhanced photoacoustic gas sensor setup.
Collapse
Affiliation(s)
- Pietro Patimisco
- CNR-IFN and Dipartimento Interateneo di Fisica, Università and Politecnico di Bari, Via Amendola 173, I-70126 Bari, Italy; E-Mails: (V.S.); (G.S.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Vincenzo Spagnolo
- CNR-IFN and Dipartimento Interateneo di Fisica, Università and Politecnico di Bari, Via Amendola 173, I-70126 Bari, Italy; E-Mails: (V.S.); (G.S.)
| | - Miriam S. Vitiello
- CNR-Dipartimento di Scienze Fisiche e Tecnologie della Materia, Largo E. Fermi 5, 50125 Firenze, Italy; E-Mail:
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Gaetano Scamarcio
- CNR-IFN and Dipartimento Interateneo di Fisica, Università and Politecnico di Bari, Via Amendola 173, I-70126 Bari, Italy; E-Mails: (V.S.); (G.S.)
| | - Carlos M. Bledt
- Department of Material Science & Engineering, Rutgers University, Piscataway, NJ 08855, USA; E-Mails: (C.M.B.); (J.A.H.)
| | - James A. Harrington
- Department of Material Science & Engineering, Rutgers University, Piscataway, NJ 08855, USA; E-Mails: (C.M.B.); (J.A.H.)
| |
Collapse
|
16
|
Cubillas AM, Unterkofler S, Euser TG, Etzold BJM, Jones AC, Sadler PJ, Wasserscheid P, Russell PSJ. Photonic crystal fibres for chemical sensing and photochemistry. Chem Soc Rev 2013; 42:8629-48. [PMID: 23753016 DOI: 10.1039/c3cs60128e] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ana M Cubillas
- Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bldg. 24, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu F, Wadsworth WJ, Knight JC. Low loss silica hollow core fibers for 3-4 μm spectral region. OPTICS EXPRESS 2012; 20:11153-11158. [PMID: 22565738 DOI: 10.1364/oe.20.011153] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe a silica hollow-core fiber for mid-infrared transmission with a minimum attenuation of 34 dB/km at 3050 nm wavelength. The design is based on the use of a negative curvature core wall. Similar fiber designed for longer wavelengths has a transmission band extending beyond 4 µm.
Collapse
Affiliation(s)
- Fei Yu
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Claverton Down, Bath, UK.
| | | | | |
Collapse
|
18
|
Urich A, Maier RRJ, Mangan BJ, Renshaw S, Knight JC, Hand DP, Shephard JD. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre. OPTICS EXPRESS 2012; 20:6677-6684. [PMID: 22418551 DOI: 10.1364/oe.20.006677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.
Collapse
Affiliation(s)
- A Urich
- Applied Optics and Photonics group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jones AM, Nampoothiri AVV, Ratanavis A, Fiedler T, Wheeler NV, Couny F, Kadel R, Benabid F, Washburn BR, Corwin KL, Rudolph W. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. OPTICS EXPRESS 2011; 19:2309-2316. [PMID: 21369049 DOI: 10.1364/oe.19.002309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate for the first time an optically pumped gas laser based on population inversion using a hollow core photonic crystal fiber (HC-PCF). The HC-PCF filled with 12C2H2 gas is pumped with ~5 ns pulses at 1.52 μm and lases at 3.12 μm and 3.16 μm in the mid-infrared spectral region. The maximum measured laser pulse energy of ~6 nJ was obtained at a gas pressure of 7 torr with a fiber with 20 dB/m loss near the lasing wavelengths. While the measured slope efficiencies of this prototype did not exceed a few percent due mainly to linear losses of the fiber at the laser wavelengths, 25% slope efficiency and pulse energies of a few mJ are the predicted limits of this laser. Simulations of the laser's behavior agree qualitatively with experimental observations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pryamikov AD, Biriukov AS, Kosolapov AF, Plotnichenko VG, Semjonov SL, Dianov EM. Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. OPTICS EXPRESS 2011; 19:1441-1448. [PMID: 21263685 DOI: 10.1364/oe.19.001441] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a numerical and experimental demonstration of a waveguide regime in a broad band spectral range for the hollow core microstructured optical fibers (HC MOFs) made of silica with a negative curvature of the core boundary. It is shown that HC MOFs with the cladding consisting only of one row of silica capillaries allows to guide light from the near to mid infrared despite of high material losses of silica in this spectral region. Such result can be obtained by a special arrangement of cladding capillaries which leads to a change in the sign of the core boundary curvature. The change in the sign of the core boundary curvature leads to a loss of simplicity of boundary conditions for core modes and to "localization" and limitation of their interaction with the cladding material in space. Such HC MOFs made of different materials can be potential candidates for solving problem of ultra high power transmission including transmission of CO and CO2 laser radiation.
Collapse
Affiliation(s)
- Andrey D Pryamikov
- Fiber Optics Research Center of Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
21
|
Beaudou B, Couny F, Wang YY, Light PS, Wheeler NV, Gérôme F, Benabid F. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre. OPTICS EXPRESS 2010; 18:12381-12390. [PMID: 20588364 DOI: 10.1364/oe.18.012381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report on a novel means which lifts the restriction of the limited optical bandwidth of photonic bandgap hollow-core photonic crystal fiber on generating high order stimulated Raman scattering in gaseous media. This is based on H(2)-filled tapered HC-PCF in which the taper slope is matched with the effective length of Raman process. Raman orders outside the input-bandwidth of the HC-PCF are observed with more than 80% quantum-conversion using a compact, low-power 1064 nm microchip laser. The technique opens prospects for efficient sources in spectral regions that are poorly covered by currently existing lasers such as mid-IR.
Collapse
Affiliation(s)
- B Beaudou
- Gas-phase Photonic materials group, CPPM, Physics department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Chavez Boggio JM, Zlatanovic S, Gholami F, Aparicio JM, Moro S, Balch K, Alic N, Radic S. Short wavelength infrared frequency conversion in ultra-compact fiber device. OPTICS EXPRESS 2010; 18:439-445. [PMID: 20173863 DOI: 10.1364/oe.18.000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Linear and nonlinear characteristics of devices using millimeter-scale spools of highly nonlinear fiber are experimentally investigated within 2000-2400nm spectral range. Coils with radius larger than 3.5 mm indicate that macro-bending induced radiation loss is negligible up to 2400nm. Devices with smaller diameter coiling resulted in macro-bending losses that dominate over micro-bending losses beyond 2200nm. A tunable short-wave infrared source was constructed using a coin-sized fiber module to demonstrate an efficient nonlinear conversion from 1.26 to 2.2 microm.
Collapse
|
23
|
Lyngsø JK, Mangan BJ, Jakobsen C, Roberts PJ. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm. OPTICS EXPRESS 2009; 17:23468-23473. [PMID: 20052054 DOI: 10.1364/oe.17.023468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 microm to 2.3 microm have been fabricated. The transmission loss follows the approximately lambda(-3) dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 microm. One fiber with a transmission loss of 26 dB/km at 2.3 microm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength.
Collapse
Affiliation(s)
- J K Lyngsø
- NKT Photonics A/S, Blokken 84, DK-3460 Birkerød, Denmark.
| | | | | | | |
Collapse
|
24
|
Février S, Gérôme F, Labruyère A, Beaudou B, Humbert G, Auguste JL. Ultraviolet guiding hollow-core photonic crystal fiber. OPTICS LETTERS 2009; 34:2888-2890. [PMID: 19794757 DOI: 10.1364/ol.34.002888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present what we believe to be the first experimental demonstration of low-loss guiding of UV radiation in hollow-core photonic crystal fiber. The "kagomé" latticed fiber was designed to guide 0.355 microm wavelength radiation with approximately 2 dB/m loss. Moreover, an excellent agreement between modeling and experimental results was obtained. From this comparison it was inferred that propagation loss only arises from the lack of confinement, thereby indicating that such fibers may be designed for even shorter wavelengths where material loss prohibits the use of fused silica as a core material. As an example, a fiber was designed to be operated at 0.25 microm with 0.4 dB/m loss.
Collapse
Affiliation(s)
- Sébastien Février
- Xlim UMR 6172, CNRS-University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Amezcua-Correa R, Broderick NG, Petrovich MN, Poletti F, Richardson DJ. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. OPTICS EXPRESS 2006; 14:7974-7985. [PMID: 19529167 DOI: 10.1364/oe.14.007974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The operational bandwidth of hollow-core photonic bandgap fibers (PBGFs) is drastically affected by interactions between the fundamental core mode and surface modes guided at the core-cladding interface. By systematically studying realistic hollow-core PBGFs we identify a new design regime robust in eliminating the presence of surface modes. We present new fiber designs with a fundamental core mode free of anticrossings with surface modes at all wavelengths within the bandgap, allowing for a low-loss operational bandwidth of ~17% of the central gap wavelength.
Collapse
|