1
|
Ai J, Li J, Chang AK, Pei Y, Li H, Liu K, Li R, Xu L, Wang N, Liu Y, Su W, Liu W, Wang T, Jiang Z, Chen L, Liang X. Toxicokinetics and bioavailability of indoxacarb enantiomers and their new metabolites in rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106024. [PMID: 39084783 DOI: 10.1016/j.pestbp.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Indoxacarb is a chiral insecticide that consists of two enantiomers, S-(+)-indoxacarb and R-(-)-indoxacarb, of which only S-(+)-indoxacarb has insecticidal activity. Previous enantioselective toxicology studies of indoxacarb focused mostly on simple environmental model organisms. The lack of a toxicology evaluation of indoxacarb conducted in a mammalian system could mean that the extent of the potential health risk posed by the insecticide to humans is not adequately known. In this study, we reported on a new pair of enantiomers, S-IN-RM294 and R-IN-RM294, derived from the metabolic breakdown of S-(+)-indoxacarb and R-(-)-indoxacarb, respectively, in rats. The toxicokinetics of S-(+)-indoxacarb, R-(-)-indoxacarb, S-IN-RM294, and R-IN-RM294 in rats were evaluated to provide a more comprehensive risk assessment of these molecules. The bioavailability and excretion rates of both S-(+)-indoxacarb and R-(-)-indoxacarb were relatively low, which may be due to their faster metabolism and accumulation in the tissues. In addition, there were significant differences in the metabolism and distribution between the two indoxacarb enantiomers and their metabolites in vivo. S-(+)-Indoxacarb was found to be more easily metabolized in the blood compared with R-(-)-indoxacarb, as shown by the differences in pharmacokinetic parameters between oral and intravenous administration. Analysis of their tissue distribution showed that S-(+)-indoxacarb was less likely to accumulate in most tissues. The results obtained for the two metabolites were consistent with those of the two parent compounds. S-IN-RM294 was more readily cleared from the blood and less likely to accumulate in the tissues compared with R-IN-RM294. Therefore, whether from the perspective of insecticidal activity or from the perspective of mammalian and environmental friendliness, the application of optically pure S-(+)-indoxacarb in agriculture may be a more efficient and safer strategy.
Collapse
Affiliation(s)
- Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Nan Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Yuhui Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
2
|
Wang Q, Rui C, Wang Q, Wang L, Li F, Nahiyoon SA, Yuan H, Cui L. Mechanisms of Increased Indoxacarb Toxicity in Methoxyfenozide-Resistant Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). TOXICS 2020; 8:toxics8030071. [PMID: 32957560 PMCID: PMC7560286 DOI: 10.3390/toxics8030071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
Indoxacarb is an important insecticide for the selective control of Helicoverpa armigera. It can be bioactivated to the more effective N-decarbomethoxylated indoxacarb (DCJW) by esterases in pests. It was observed that both field and laboratory selected populations of H. armigera showed negative cross-resistance between indoxacarb and methoxyfenozide. The Handan population exhibited moderate resistance to indoxacarb, but was susceptible to methoxyfenozide; the Baoding and Yishui populations exhibited moderate resistance to methoxyfenozide, but they were susceptible to indoxacarb. Moreover, the toxicity of indoxacarb was enhanced 1.83-fold in the laboratory methoxyfenozide-resistant H. armigera, and susceptibility to methoxyfenozide was increased 2.81-fold in the laboratory indoxacarb-resistant H. armigera. In vivo, DCJW concentrations in the susceptible and methoxyfenozide-selected (laboratory methoxyfenozide-resistant) populations were 4.59- and 4.31-fold greater than in the indoxacarb-resistant Handan population 1 h after dosing. After 2 h, the highest concentrations of DCJW and indoxacarb appeared in the methoxyfenozide-selected population. Meanwhile, increased carboxyl esterase (CarE) and decreased glutathione S-transferase (GST) activities were observed in the methoxyfenozide-selected population. However, the indoxacarb-selected (laboratory indoxacarb-resistant) and Handan populations showed a higher disappearance of indoxacarb and DCJW, and the activity of cytochrome P450 mono-oxygenase in these populations were significantly increased. This study showed that the improved toxicity of indoxacarb, as observed in the methoxyfenozide-selected H. armigera, was correlated with increased CarE activity, decreased GST activity, and the in vivo accumulation of indoxacarb and DCJW. The significantly increased cytochrome P450 activity and higher disappearance of indoxacarb and DCJW in indoxacarb-resistant H. armigera resulted in the decreased toxicity of indoxacarb.
Collapse
Affiliation(s)
- Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
| | - Qiyuan Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
| | - Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
| | - Fugen Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Shahzad Ali Nahiyoon
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China; (Q.W.); (C.R.); (Q.W.); (L.W.); (S.A.N.); (H.Y.)
- Correspondence: ; Tel.: +86-10-6281-5944
| |
Collapse
|
3
|
Gondhalekar AD, Nakayasu ES, Silva I, Cooper B, Scharf ME. Indoxacarb biotransformation in the German cockroach. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 134:14-23. [PMID: 27914535 DOI: 10.1016/j.pestbp.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Insecticides that are used for pest control undergo physical and biological (enzymatic) degradation. Indoxacarb is an oxadiazine class sodium channel blocker insecticide used for German cockroach (Blattella germanica L.) control. At present, no information is available on enzymatic biotransformation or metabolism of indoxacarb in this important urban pest. We studied the biotransformation pathways of indoxacarb in one susceptible and three field strains with varying susceptibility levels using liquid chromatography and high-resolution mass spectrometry. As shown in other insect species we found evidence for hydrolase-based bioactivation of indoxacarb to a toxic decarbomethoxylated metabolite, DCJW. In addition, both indoxacarb and DCJW were further metabolized to hydroxy, oxadiazine ring-opened and hydroxylated ring-opened metabolites. In general, higher indoxacarb disappearance, increased formation of DCJW and the above-mentioned metabolites were observed in the three field strains. In vitro biotransformation studies showed that hydroxylated and oxadiazine ring-opened metabolite formation is NADPH/cytochrome P450-dependent. Bioassays and in vivo metabolism experiments using the enzyme-inhibiting insecticide synergists, piperonyl butoxide (PBO) and S,S,S,-tributyl phosphorotrithioate (DEF), provided insights into potential indoxacarb resistance mechanisms that may proliferate in German cockroach field strains following unchecked selection pressures. The information presented here is an essential step toward developing indoxacarb resistance management programs and also reveals mechanisms of secondary/tertiary indoxacarb toxicity.
Collapse
Affiliation(s)
- Ameya D Gondhalekar
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1201 W. State St., West Lafayette, IN 47907, USA
| | - Isabel Silva
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA
| | - Bruce Cooper
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1201 W. State St., West Lafayette, IN 47907, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA.
| |
Collapse
|