1
|
Zhang L, Brown MC, Mutter AC, Greenland KN, Cooley JW, Koder RL. Protein dynamics govern the oxyferrous state lifetime of an artificial oxygen transport protein. Biophys J 2023; 122:4440-4450. [PMID: 37865818 PMCID: PMC10698322 DOI: 10.1016/j.bpj.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
It has long been known that the alteration of protein side chains that occlude or expose the heme cofactor to water can greatly affect the stability of the oxyferrous heme state. Here, we demonstrate that the rate of dynamically driven water penetration into the core of an artificial oxygen transport protein also correlates with oxyferrous state lifetime by reducing global dynamics, without altering the structure of the active site, via the simple linking of the two monomers in a homodimeric artificial oxygen transport protein using a glycine-rich loop. The tethering of these two helices does not significantly affect the active site structure, pentacoordinate heme-binding affinity, reduction potential, or gaseous ligand affinity. It does, however, significantly reduce the hydration of the protein core, as demonstrated by resonance Raman spectroscopy, backbone amide hydrogen exchange, and pKa shifts in buried histidine side chains. This further destabilizes the charge-buried entatic state and nearly triples the oxyferrous state lifetime. These data are the first direct evidence that dynamically driven water penetration is a rate-limiting step in the oxidation of these complexes. It furthermore demonstrates that structural rigidity that limits water penetration is a critical design feature in metalloenzyme construction and provides an explanation for both the failures and successes of earlier attempts to create oxygen-binding proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, New York
| | - Mia C Brown
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Andrew C Mutter
- Department of Biochemistry, The City College of New York, New York, New York
| | - Kelly N Greenland
- Department of Physics, The City College of New York, New York, New York
| | - Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York; Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York.
| |
Collapse
|
2
|
Kumar V, Holtum T, Sebena D, Giese M, Voskuhl J, Schlücker S. Ultraviolet resonance Raman spectroscopy with a continuously tunable picosecond laser: Application to the supramolecular ligand guanidiniocarbonyl pyrrole (GCP). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119359. [PMID: 33418476 DOI: 10.1016/j.saa.2020.119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
We present a UVRR spectroscopy setup which is equipped with a picosecond pulsed laser excitation source continuously tunable in the 210-2600 nm wavelength range. This laser source is based on a three-stage optical parametric amplifier (OPA) pumped by a bandwidth-compressed second harmonic output of an amplified Yb:KGW laser. It provides <15 cm-1 linewidth pulses below 270 nm, which is sufficient for resolving Raman lines of samples in condensed phase studies. For demonstrating the capability of this tunable setup for UVRR spectroscopy we present its application to the artificial ligand guanidiniocarbonyl pyrrole (GCP), a carboxylate binder used in peptide and protein recognition. A UVRR excitation study in the range 244-310 nm was performed for identifying the optimum laser excitation wavelength for UVRR spectroscopy of this ligand (λmax = 298 nm) at submillimolar concentrations (400 µM) in aqueous solution. The optimum UVRR spectrum is observed for laser excitation with λexc = 266 nm. Only in the relatively narrow range of λexc = 266-275 nm UVRR spectra with a sufficiently high signal-to-noise ratio and without severe interference from autofluorescence (AF) were detectable. At longer excitation wavelengths the UVRR signal is masked by AF. At shorter excitation wavelengths the UVRR spectrum is sufficiently separated from the AF, but the resonance enhancement is not sufficient. The presented tunable UVRR setup provides the flexibility to also identify optimum conditions for other supramolecular ligands for peptide/protein recognition.
Collapse
Affiliation(s)
- Vikas Kumar
- Physical Chemistry, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
| | - Tim Holtum
- Physical Chemistry, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Sebena
- Organic Chemistry, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Michael Giese
- Organic Chemistry, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Jens Voskuhl
- Organic Chemistry, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
| |
Collapse
|
3
|
Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 2021; 50:3519-3564. [PMID: 33501926 DOI: 10.1039/d0cs01059f] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gaining insight into the mode of operation of heterogeneous catalysts is of great scientific and economic interest. Raman spectroscopy has proven its potential as a powerful vibrational spectroscopic technique for a fundamental and molecular-level characterization of catalysts and catalytic reactions. Raman spectra provide important insight into reaction mechanisms by revealing specific information on the catalysts' (defect) structure in the bulk and at the surface, as well as the presence of adsorbates and reaction intermediates. Modern Raman instrumentation based on single-stage spectrometers allows high throughput and versatility in design of in situ/operando cells to study working catalysts. This review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman spectroscopy to working catalysts. The main focus will be on gas-solid catalytic reactions, but (photo)catalytic reactions in the liquid phase will be touched on if it appears appropriate. The discussion begins with the main instrumentation now available for applying vibrational Raman spectroscopy to catalysis research, including in situ/operando cells for studying gas-solid catalytic processes. The focus then moves to the different types of information available from Raman spectra in the bulk and on the surface of solid catalysts, including adsorbates and surface depositions, as well as the use of theoretical calculations to facilitate band assignments and to describe (resonance) Raman effects. This is followed by a presentation of major developments in enhancing the Raman signal of heterogeneous catalysts by use of UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and shell-isolated nanoparticle surface-enhanced Raman spectroscopy (SHINERS). The application of time-resolved Raman studies to structural and kinetic characterization is then discussed. Finally, recent developments in spatially resolved Raman analysis of catalysts and catalytic processes are presented, including the use of coherent anti-Stokes Raman spectroscopy (CARS) and tip-enhanced Raman spectroscopy (TERS). The review concludes with an outlook on potential future developments and applications of Raman spectroscopy in heterogeneous catalysis.
Collapse
Affiliation(s)
- Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
4
|
Liu X, Gong P, Yang Y, Song G, Lin Z. Nitrate nonlinear optical crystals: A survey on structure-performance relationships. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213045] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Shutov AD, Petrov GV, Wang DW, Scully MO, Yakovlev VV. Highly efficient tunable picosecond deep ultraviolet laser system for Raman spectroscopy. OPTICS LETTERS 2019; 44:5760-5763. [PMID: 31774773 PMCID: PMC7426198 DOI: 10.1364/ol.44.005760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 05/14/2023]
Abstract
We present a narrowband laser system tunable from 219 to 236 nm for deep ultraviolet (DUV) Raman spectroscopy. The demonstrated laser system produces 6.7 ps nearly transform-limited pulses with energy up to 0.36 µJ at 100 kHz repetition rate. The system consists of a two-stage optical parametric amplifier (OPA) of a narrowband continuous wave diode laser and subsequent frequency conversion to the DUV radiation. We achieve more than 300 mW in the signal wave using ${{\rm LiB}_3}{{\rm O}_5}$LiB3O5 (LBO) and ${{\rm BaB}_2}{{\rm O}_4}$BaB2O4 (BBO) crystals, with the total 2.7 W pump after the two-stage OPA. We reach 12% conversion efficiency of the OPA signal wave into the DUV radiation using type-I phase matching in the BBO crystal. Finally, we demonstrate the applicability of the system for DUV Raman spectroscopy by collecting a high dynamic range, high spectral resolution spontaneous Raman spectrum of air.
Collapse
Affiliation(s)
- Anton D. Shutov
- Texas A&M University, 4242 TAMU, College Station, Texas 77840, USA
| | - Georgi V. Petrov
- Texas A&M University, 4242 TAMU, College Station, Texas 77840, USA
| | - Da-Wei Wang
- Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Marlan O. Scully
- Texas A&M University, 4242 TAMU, College Station, Texas 77840, USA
- Baylor University, 1301 S University Parks Dr, Waco, Texas 76706, USA
| | | |
Collapse
|
6
|
Reshak AH. Lithium borate Li 3B 5O 8(OH) 2 with large second harmonic generation and a high damage threshold in the deep-ultraviolet spectral range. Phys Chem Chem Phys 2017; 19:30703-30714. [PMID: 29120475 DOI: 10.1039/c7cp06006h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure and linear and nonlinear optical susceptibility dispersions of lithium borate Li3B5O8(OH)2 are comprehensively investigated. The investigation is achieved on Li3B5O8(OH)2 in the form of single crystals, taking into account the influence of the packing of the structural units on the linear and nonlinear optical susceptibility dispersion. The calculations highlight that the BO3 structural unit packing is the main source of the large birefringence in Li3B5O8(OH)2 due to the high anisotropic electron distribution, and, hence, it affects the macroscopic second harmonic generation (SHG) coefficients. This work provides a new path for the design of UV-NLO materials with high SHG efficiencies and short cutoff edges by introducing an alkali metal into borates. The large SHG is due to hyperpolarizability formed by co-parallel BO3 triangle groups. The absorption edge of Li3B5O8(OH)2 occurs at λ = 190 nm and the optical band gap is estimated to be 6.52 eV, which is in good agreement with the experimental data (6.526 eV). The energy gap value confirms that Li3B5O8(OH)2 exhibits an exceptional laser damage threshold and is expected to produce coherent radiation in the deep-ultraviolet (DUV) region. The obtained value of SHG at λ = 1064 nm is about 1.5 times that of the well-known NLO crystal KH2PO4 (KDP) at λ = 1064 nm and 3.5 times that of KDP at λ = 190 nm, which is transparent down to the DUV region. Thus, one can conclude that the combination of an alkali metal with borates leads to the generation of promising DUV-NLO crystals. This work is aimed at qualitative and quantitative investigation to report a reliable SHG value and provide details of the NLO tensor for bulk Li3B5O8(OH)2 single crystals.
Collapse
Affiliation(s)
- A H Reshak
- New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic.
| |
Collapse
|
7
|
|
8
|
López-Peña I, Leigh BS, Schlamadinger DE, Kim JE. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy. Biochemistry 2015. [PMID: 26219819 DOI: 10.1021/acs.biochem.5b00514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy is a form of vibrational spectroscopy based on inelastic scattering of light. In resonance Raman spectroscopy, the wavelength of the incident light falls within an absorption band of a chromophore, and this overlap of excitation and absorption energy greatly enhances the Raman scattering efficiency of the absorbing species. The ability to probe vibrational spectra of select chromophores within a complex mixture of molecules makes resonance Raman spectroscopy an excellent tool for studies of biomolecules. In this Current Topic, we discuss the type of molecular insights obtained from steady-state and time-resolved resonance Raman studies of a prototypical photoactive protein, rhodopsin. We also review recent efforts in ultraviolet resonance Raman investigations of soluble and membrane-associated biomolecules, including integral membrane proteins and antimicrobial peptides. These examples illustrate that resonance Raman is a sensitive, selective, and practical method for studying the structures of biological molecules, and the molecular bonding, geometry, and environments of protein cofactors, the backbone, and side chains.
Collapse
Affiliation(s)
- Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Brian S Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Diana E Schlamadinger
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Xiong J, Roach CA, Oshokoya OO, Schroell RP, Yakubu RA, Eagleburger MK, Cooley JW, Jiji RD. Role of bilayer characteristics on the structural fate of aβ(1-40) and aβ(25-40). Biochemistry 2014; 53:3004-11. [PMID: 24702518 DOI: 10.1021/bi4016296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The β-amyloid (Aβ) peptide is derived from the transmembrane (TM) helix of the amyloid precursor protein (APP) and has been shown to interact with membrane surfaces. To understand better the role of peptide-membrane interactions in cell death and ultimately in Alzheimer's disease, a better understanding of how membrane characteristics affect the binding, solvation, and secondary structure of Aβ is needed. Employing a combination of circular dichroism and deep-UV resonance Raman spectroscopies, Aβ(25-40) was found to fold spontaneously upon association with anionic lipid bilayers. The hydrophobic portion of the disease-related Aβ(1-40) peptide, Aβ(25-40), has often been used as a model for how its legacy TM region may behave structurally in aqueous solvents and during membrane encounters. The structure of the membrane-associated Aβ(25-40) peptide was found to depend on both the hydrophobic thickness of the bilayer and the duration of incubation. Similarly, the disease-related Aβ(1-40) peptide also spontaneously associates with anionic liposomes, where it initially adopts mixtures of disordered and helical structures. The partially disordered helical structures then convert to β-sheet structures over longer time frames. β-Sheet structure is formed prior to helical unwinding, implying a model in which β-sheet structure, formed initially from disordered regions, prompts the unwinding and destabilization of membrane-stabilized helical structure. A model is proposed to describe the mechanism of escape of Aβ(1-40) from the membrane surfaces following its formation by cleavage of APP within the membrane.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Chemistry, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jin S, Fan F, Guo M, Zhang Y, Feng Z, Li C. Note: deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:046105. [PMID: 24784683 DOI: 10.1063/1.4870444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Deep UV Raman spectrograph with the laser excitation line down to 177.3 nm was developed in this laboratory. An ellipsoidal mirror and a dispersed-subtractive triple monochromator were used to collect and disperse Raman light, respectively. The triple monochromator was arranged in a triangular configuration with only six mirrors used. 177.3 nm laser excited Raman spectrum with cut-off wavenumber down to 200 cm(-1) and spectral resolution of 8.0 cm(-1) can be obtained under the condition of high purity N2 purging. With the C-C σ bond in Teflon selectively excited by the 177.3 nm laser, resonance Raman spectrum of Teflon with good quality was recorded on the home-built instrument and the σ-σ(*) transition of C-C bond was studied. The result demonstrates that deep UV Raman spectrograph is powerful for studying the systems with electronic transition located in the deep UV region.
Collapse
Affiliation(s)
- Shaoqing Jin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Meiling Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ying Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Brown MC, Mutter A, Koder RL, JiJi RD, Cooley JW. Observation of persistent α-helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deep-UV resonance Raman spectroscopy. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2013; 44:957-962. [PMID: 27795611 PMCID: PMC5082991 DOI: 10.1002/jrs.4316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molten globule state can aide in the folding of a protein to a functional structure and is loosely defined as an increase in structural disorder with conservation of the ensemble secondary structure content. Simultaneous observation of persistent secondary structure content with increased disorder has remained experimentally problematic. As a consequence, modeling how the molten globule state remains stable and how it facilitates proper folding remains difficult due to a lack of amenable spectroscopic techniques to characterize this class of partially unfolded proteins. Previously, deep-UV resonance Raman (dUVRR) spectroscopy has proven useful in the resolution of global and local structural fluctuations in the secondary structure of proteins. In this work, dUVRR was employed to study the molten globule to ordered transition of a model four-helix bundle protein, HP7. Both the average ensemble secondary structure and types of local disorder were monitored, without perturbation of the solvent, pH, or temperature. The molten globule to ordered transition is induced by stepwise coordination of two heme molecules. Persistent dUVRR spectral features in the amide III region at 1295-1301 and 1335-1338 cm-1 confirm previous observations that HP7 remains predominantly helical in the molten globule versus the fully ordered state. Additionally, these spectra represent the first demonstration of conserved helical content in a molten globule protein. With successive heme binding significant losses are observed in the spectral intensity of the amide III3 and S regions (1230-1260 and 1390 cm-1, respectively), which are known to be sensitive to local disorder. These observations indicate that there is a decrease in the structural populations able to explore various extended conformations, with successive heme binding events. DUVRR spectra indicate that the first heme coordination between two helical segments diminishes exploration of more elongated backbone structural conformations in the inter-helical regions. A second heme coordination by the remaining two helices further restricts protein motion.
Collapse
Affiliation(s)
- Mia C. Brown
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Andrew Mutter
- Department of Physics, The City College of New York, New York, NY 10031
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY 10031
| | - Renee D. JiJi
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Jason W. Cooley
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| |
Collapse
|
13
|
Balakrishnan G, Hu Y, Spiro TG. His26 protonation in cytochrome c triggers microsecond β-sheet formation and heme exposure: implications for apoptosis. J Am Chem Soc 2012; 134:19061-9. [PMID: 23094892 PMCID: PMC3529097 DOI: 10.1021/ja307100a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome c unfolds locally and reversibly upon heating at pH 3. UV resonance Raman (UVRR) spectra reveal that instead of producing unordered structure, unfolding converts turns and some helical elements to β-sheet. It also disrupts the Met80-heme bond, and has been previously shown to induce peroxidase activity. Aromatic residues that are H-bonded to a heme propionate (Trp59 and Tyr48) alter their orientation, indicating heme displacement. T-jump/UVRR measurements give time constants of 0.2, 3.9, and 67 μs for successive phases of β-sheet formation and concomitant reorientation of Trp59. UVRR spectra reveal protonation of histidines, and specifically of His26, whose H-bond to Pro44 anchors the 40s Ω loop; this loop is known to be the least stable 'foldon' in the protein. His26 protonation is proposed to disrupt its H-bond with Pro44, triggering the extension of a short β-sheet segment at the 'neck' of the 40s Ω loop into the loop itself and back into the 60s and 70s helices. The secondary structure change displaces the heme via H-bonds from residues in the growing β-sheet, thereby exposing it to exogenous ligands, and inducing peroxidase activity. This unfolding mechanism may play a role in cardiolipin peroxidation by cyt c during apoptosis.
Collapse
|
14
|
Arzhantsev S, Vilker V, Kauffman J. Deep-ultraviolet (UV) resonance raman spectroscopy as a tool for quality control of formulated therapeutic proteins. APPLIED SPECTROSCOPY 2012; 66:1262-1268. [PMID: 23146181 DOI: 10.1366/11-06572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A deep-ultraviolet (UV) Raman spectrometer with excitation source tunable from 193 to 210 nm has been built and characterized. The dispersion of the spectrometer over the entire range was measured and described theoretically. The relative sensitivity of the spectrometer was estimated using the integrated intensity ratio of two Raman bands of cyclohexane. Resonance Raman spectra of three formulated insulin products were measured and compared. A band-targeted entropy minimization algorithm was applied to the collected spectra for mixture analysis of insulin products. We conclude that it is feasible to develop robust qualitative methods for quality control of protein-based formulated drug using DUVRR spectroscopy.
Collapse
Affiliation(s)
- Sergey Arzhantsev
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, US Food and Drug Administration, Saint Louis, MO 63101, USA.
| | | | | |
Collapse
|
15
|
Halsey CM, Benham DA, JiJi RD, Cooley JW. Influence of the lipid environment on valinomycin structure and cation complex formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:200-206. [PMID: 22683555 DOI: 10.1016/j.saa.2012.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Carrier-type molecular ionophores, such as the cyclic dodecadepsipeptide valinomycin, often must undergo structural changes during the binding and transport of a cation across the lipid membrane. Observing the structural fluctuations that occur during this process experimentally has proven extremely difficult due to the complexities of spectroscopic analysis of protein structure/dynamics in native lipid bilayer environments. Currently, our understanding of how valinomycin selectively transports ions across membranes is derived from atomic structures solved of the cyclic macromolecule solvated in various organic solvents and complimentary in silico dynamics experiments. We have shown recently that deep-UV excited resonance Raman spectroscopy (DUVRR) has a unique ability to characterize secondary structure content and simultaneously provide information about the relative solvation of the probed peptide backbone C.M. Halsey, J. Xiong, O. Oshokoya, J.A. Johnson, S. Shinde, J.T. Beatty, G. Ghirlanda, R.D. JiJi, J.W. Cooley, Simultaneous observation of peptide backbone lipid solvation and a-helical structure by deep-UV resonance Raman spectroscopy, ChemBioChem 12 (2011) 2125-2128, [16]. Interpretation of DUVRR spectra of valinomycin in swelled lipid and unilamellar lipid bilayer environments indicate that the uncomplexed valinomycin molecule dynamically samples both the open and closed conformations as described for the structures derived from polar and non-polar organic solvents, respectively. Upon introduction of potassium, the structure of valinomycin in swelled lipid environments resembles more closely that of the open conformation. The shift in structure upon complexation is accompanied by a significant decrease in the valinomycin DUVRR spectral amide I intensity, indicating that the open conformation is more water solubilized and is seemingly "trapped" or predominantly located close to the lipid-water interface. The trapping of the valinomycin in the act of complex of potassium at the bilayer-solvent interface and its analysis by DUVRR represents the first spectroscopic description of this state. Conversely, an opposite trend is observed in the amide I intensity upon potassium complexation in unilamellar (or extruded) vesicles, implying the predominant conformation upon potassium binding in native bilayers is one where the peptide backbone of valinomycin is desolvated as would be expected if the molecule were more readily able to traverse a bilayer interior. Interpretation of the DUVRR spectral features is also consistent with the loss or formation of hydrogen bonds observed in the open and closed structures, respectively. Valinomycin must then sample several conformations in the absence of appropriate ions depending upon its locale in the lipid bilayer until potassium causes a greater degree of closure of the open conformer and an increased residency within the more non-polar interior. The potassium induced decreased solubility enables diffusion across the membrane where potassium release can occur by equilibration at the opposite lipid water interface.
Collapse
|
16
|
Halsey CM, Oshokoya OO, Jiji RD, Cooley JW. Deep-UV Resonance Raman Analysis of theRhodobacter capsulatusCytochromebc1Complex Reveals a Potential Marker for the Transmembrane Peptide Backbone. Biochemistry 2011; 50:6531-8. [DOI: 10.1021/bi200596w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Halsey CM, Xiong J, Oshokoya OO, Johnson JA, Shinde S, Beatty JT, Ghirlanda G, JiJi RD, Cooley JW. Simultaneous observation of peptide backbone lipid solvation and α-helical structure by deep-UV resonance Raman spectroscopy. Chembiochem 2011; 12:2125-8. [PMID: 21796753 DOI: 10.1002/cbic.201100433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher M Halsey
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia, MO 65211-7600, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Deep UV Resonance Raman Spectroscopy with a Tunable 4 kHz Nanosecond Solid-State Laser and a 1 mL Circulating Free-Flow System. Z PHYS CHEM 2011. [DOI: 10.1524/zpch.2011.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Deep UVRR spectra of the aromatic amino acids Phe and Tyr in the wavenumber range 800–1800 cm−1 with λ
exc=195–208 nm exhibit a selective enhancement of signals arising from vibrations localized in the aromatic ring. For λ
exc>198 nm, the UVRR spectra of Phe and Tyr are dominated by contributions from the in-plane ring stretching modes ν
8a
and ν
8b
at ∼1600 cm−1. For λ
exc≤198 nm, intense signals from the symmetric ring stretching, in-plane C–H bending and phenyl–C stretching vibrations below 1400 cm−1 are observed. Excellent stray light rejection is achieved by a triple monochromator, which can be used either in the additive or subtractive mode for high-resolution and low-wavenumber measurements, respectively. A home-built circulating free-flow system allows the investigation of sample volumes as small as 1 mL.
Collapse
|
19
|
Schlamadinger DE, Gable JE, Kim JE. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins. J Phys Chem B 2010; 113:14769-78. [PMID: 19817473 DOI: 10.1021/jp905473y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectra of tryptophan compounds in various solvents and a model peptide are presented and reveal systematic changes that reflect solvent polarity, hydrogen bond strength, and cation-pi interaction. The commonly utilized UVRR spectral marker for environment polarity that has been based on off-resonance Raman data, the tryptophan Fermi doublet ratio I1360/I1340, exhibits different values in on- and off-resonance Raman spectra as well as for different tryptophan derivatives. Specifically, the UVRR Fermi doublet ratio for indole ranges from 0.3 in polar solvents to 0.8 in nonpolar solvents, whereas the respective values reported here and previously for off-resonance Raman spectra are 0.5-1.3. UVRR Fermi doublet ratios for the more biologically relevant molecule, N-acetyl tryptophan ethyl ester (NATEE), are in a smaller range of 1.1 (polar solvent) to 1.7 (nonpolar solvent) and correlate to the solvent polarity/polarization parameters pi* and ETN. As has been reported previously, several UVRR modes are also sensitive to the hydrogen bond strength of the indole N-H moiety. Here, we report a new unambiguous marker for H-bonding: the ratio of the W10 (approximately 1237 cm-1) intensity to that of the W9 (approximately 1254 cm-1) mode (RW10). This ratio is 0.7 for NATEE in the absence of hydrogen bond acceptors and increases to 3.1 in the presence of strong hydrogen bond acceptors, with a value of 2.3 in water. The W8 and W17 modes shift more than +10 and approximately -5 cm-1 upon increase in hydrogen bond strength; this range for W17 is smaller than that reported previously and reflects a more realistic range for proteins and peptides in solution. Finally, our data provide evidence for change in the W18 and W16 relative intensity in the presence of cation-pi interactions. These UVRR markers are utilized to interpret spectra of model membrane-bound systems tryptophan octyl ester and the peptide toxin melittin. These spectra reveal the importance of intra- and intermolecular hydrogen bonding and cation-pi interactions that likely influence the partitioning of membrane-associated biomolecules to lipid bilayers or self-associated soluble oligomers. The UVRR analysis presented here modifies and augments prior reports and provides an unambiguous set of spectral makers that can be applied to elucidate the molecular microenvironment and structure of a wide range of complex systems, including anchoring tryptophan residues in membrane proteins and peptides.
Collapse
Affiliation(s)
- Diana E Schlamadinger
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
20
|
Kim H, Kosuda KM, Van Duyne RP, Stair PC. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 2010; 39:4820-44. [DOI: 10.1039/c0cs00044b] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Simpson JV, Balakrishnan G, JiJi RD. MCR-ALS analysis of two-way UV resonance Raman spectra to resolve discrete protein secondary structural motifs. Analyst 2009; 134:138-47. [DOI: 10.1039/b814392g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Weeks CL, Polishchuk A, Getahun Z, DeGrado WF, Spiro TG. Investigation of an unnatural amino acid for use as a resonance Raman probe: Detection limits, solvent and temperature dependence of the νC≡N band of 4-cyanophenylalanine. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2008; 39:1606-1613. [PMID: 20648227 PMCID: PMC2905815 DOI: 10.1002/jrs.2067] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incorporation of unnatural amino acids into proteins that act as spectroscopic probes can be used to study protein structure and function. One such probe is 4-cyanophenylalanine (PheCN), the nitrile group of which has a stretching mode that occurs in a region of the vibrational spectrum that does not contain any modes from the usual components of proteins and the wavenumber is sensitive to the polarity of its environment. In this work we evaluate the potential of UV resonance Raman spectroscopy for monitoring the sensitivity of the νC≡N band of PheCN incorporated into proteins to the protein environment. Measurement of the Raman excitation profile of PheCN showed that considerable resonance enhancement of the Raman signal was obtained using UV excitation and the best signal-to-noise ratios were obtained with excitation wavelengths of 229 and 244 nm. The detection limit for PheCN in proteins was ~10 μM, approximately a hundred-fold lower than the concentrations used in IR studies, which increases the potential applications of PheCN as a vibrational probe. The wavenumber of the PheCN νC≡N band was strongly dependent on the polarity of its environment, when the solvent was changed from H(2)O to THF it decreased by 8 cm(-1). The presence of liposomes caused a similar though smaller decrease in νC≡N for a peptide, mastoparan X, modified to contain PheCN. The selectivity and sensitivity of resonance Raman spectroscopy of PheCN mean that it can be a useful probe of intra- and intermolecular interactions in proteins and opens the door to its application in the study of protein dynamics using time-resolved resonance Raman spectroscopy.
Collapse
Affiliation(s)
- Colin L. Weeks
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Alexei Polishchuk
- Department of Biochemistry and Biophysics, School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104-6059
| | - Zelleka Getahun
- Department of Biochemistry and Biophysics, School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104-6059
| | - William F. DeGrado
- Department of Chemistry, School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104-6059
- Department of Biochemistry and Biophysics, School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104-6059
| | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| |
Collapse
|
23
|
Balakrishnan G, Weeks CL, Ibrahim M, Soldatova AV, Spiro TG. Protein dynamics from time resolved UV Raman spectroscopy. Curr Opin Struct Biol 2008; 18:623-9. [PMID: 18606227 DOI: 10.1016/j.sbi.2008.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Raman spectroscopy can provide unique information on the evolution of structure in proteins over a wide range of time scales; the picosecond to millisecond range can be accessed with pump-probe techniques. Specific parts of the molecule are interrogated by tuning the probe laser to a resonant electronic transition, including the UV transitions of aromatic residues and of the peptide bond. Advances in laser technology have enabled the characterization of transient species at an unprecedented level of structural detail. Applications to protein unfolding and allostery are reviewed.
Collapse
|
24
|
Kubo M, Uchida T, Nakashima S, Kitagawa T. Construction of a subnanosecond time-resolved, high-resolution ultraviolet resonance Raman measurement system and its application to reveal the dynamic structures of proteins. APPLIED SPECTROSCOPY 2008; 62:30-37. [PMID: 18230205 DOI: 10.1366/000370208783412573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A subnanosecond time-resolved ultraviolet (UV) resonance Raman system has been developed to study protein structural dynamics. The system is based on a 1 kHz Nd:YLF-pumped Ti:Sapphire regenerative amplifier with harmonic generation that can deliver visible (412, 440, 458, and 488 nm) and UV (206, 220, 229, and 244 nm) pulses. A subnanosecond (0.2 ns) tunable near-infrared pulse from a custom-made Ti:Sapphire oscillator is used to seed the regenerative amplifier. A narrow linewidth of the subnanosecond pulse offers the advantage of high resolution of UV resonance Raman spectra, which is critical to obtain site-specific information on protein structures. By combination with a 1 m single spectrograph equipped with a 3600 grooves/mm holographic grating and a custom-made prism prefilter, the present system achieves excellent spectral (<10 cm(-1)) and frequency (approximately 1 cm(-1)) resolutions with a relatively high temporal resolution (<0.5 ns). We also report the application of this system to two heme proteins, hemoglobin A and CooA, with the 440 nm pump and 220 nm probe wavelengths. For hemoglobin A, a structural change during the transition to the earliest intermediate upon CO photodissociation is successfully observed, specifically, nanosecond cleavage of the A-E interhelical hydrogen bonds within each subunit at Trpalpha14 and Trpbeta15 residues. For CooA, on the other hand, rapid structural distortion (<0.5 ns) by CO photodissociation and nanosecond structural relaxation following CO geminate recombination are observed through the Raman bands of Phe and Trp residues located near the heme. These results demonstrate the high potential of this instrument to detect local protein motions subsequent to photoreactions in their active sites.
Collapse
Affiliation(s)
- Minoru Kubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Thomas G Spiro
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
26
|
Balakrishnan G, Hu Y, Bender GM, Getahun Z, DeGrado WF, Spiro TG. Enthalpic and entropic stages in alpha-helical peptide unfolding, from laser T-jump/UV Raman spectroscopy. J Am Chem Soc 2007; 129:12801-8. [PMID: 17910449 PMCID: PMC2887291 DOI: 10.1021/ja073366l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-helix is a ubiquitous structural element in proteins, and a number of studies have addressed the mechanism of helix formation and melting in simple peptides. However, fundamental issues remain to be resolved, particularly the temperature (T) dependence of the rate. In this work, we report application of a novel kHz repetition rate solid-state tunable NIR (pump) and deep UV Raman (probe) laser system to study the dynamics of helix unfolding in Ac-GSPEA3KA4KA4-CO-D-Arg-CONH2, a peptide designed for helix stabilization in aqueous solution. Its T-dependent UV resonance Raman (UVRR) spectra, excited at 197 nm for optimal enhancement of amide vibrations, were decomposed into variable contributions from helix and coil spectra. The helix fractions derived from the UVRR spectra and from far UV CD spectra were coincident at low T but deviated increasingly at high T, the UVRR curve giving higher helix content. This difference is consistent with the greater sensitivity of UVRR spectra to local conformation than CD. After a laser-induced T-jump, the UVRR-determined helix fractions defined monoexponential decays, with time-constants of approximately 120 ns, independent of the final T (Tf = 18-61 degrees C), provided the initial T (Ti) was held constant (6 degrees C). However, there was also a prompt loss of helicity, whose amplitude increased with increasing Tf, thereby defining an initial enthalpic phase, distinct from the subsequent entropic phase. These phases are attributed to disruption of H-bonds followed by reorientation of peptide links, as the chain is extended. When Ti was raised in parallel with Tf (10 degrees C T-jumps), the prompt phase merged into an accelerating slow phase, an effect attributable to the shifting distribution of initial helix lengths. Even greater acceleration with rising Ti has been reported in T-jump experiments monitored by IR and fluorescence spectroscopies. This difference is attributable to the longer range character of these probes, whose responses are therefore more strongly weighted toward the H-bond-breaking enthalpic process.
Collapse
Affiliation(s)
| | - Ying Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Gretchen M. Bender
- Department Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zelleka Getahun
- Department Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William F. DeGrado
- Department Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
27
|
Jensen L, Autschbach J, Krykunov M, Schatz GC. Resonance vibrational Raman optical activity: A time-dependent density functional theory approach. J Chem Phys 2007; 127:134101. [DOI: 10.1063/1.2768533] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Balakrishnan G, Hu Y, Case MA, Spiro TG. Microsecond melting of a folding intermediate in a coiled-coil peptide, monitored by T-jump/UV Raman spectroscopy. J Phys Chem B 2007; 110:19877-83. [PMID: 17020373 DOI: 10.1021/jp061987f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A truncated version of the GCN4 coiled-coil peptide has been studied by ultraviolet resonance Raman (UVRR) spectroscopy with 197 nm excitation, where amide modes are optimally enhanced. Although the CD melting curve could be satisfactorily described with a two-state transition having Tm = 30 degrees C, singular value decomposition of the UVRR data yielded three principal components, whose temperature dependence implicates an intermediate form between the folded and unfolded forms, with formation and melting temperatures of 10 and 40 degrees C. Two alpha-helical amide III bands, at 1340 and 1300 cm(-1), melted out selectively at 10 and 40 degrees C, respectively, and are assigned to hydrated and unhydrated helical regions. The hydrated regions are proposed to be melted in the intermediate form, while the unhydrated regions are intact. Time-resolved UVRR spectra following laser-induced temperature jumps revealed two relaxations, with time constants of 0.2 and 15 mus. These are suggested to reflect the melting times of hydrated and unhydrated helices. The unhydrated helical region may be associated with a 14-residue "trigger" sequence that has been identified in the C-terminal half of GCN4. Dehydration of helices may be a key step in the folding of coiled-coils.
Collapse
|
29
|
Balakrishnan G, Hu Y, Oyerinde OF, Su J, Groves JT, Spiro TG. A conformational switch to beta-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis. J Am Chem Soc 2007; 129:504-5. [PMID: 17227009 PMCID: PMC2596592 DOI: 10.1021/ja0678727] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
30
|
JiJi RD, Balakrishnan G, Hu Y, Spiro TG. Intermediacy of poly(L-proline) II and beta-strand conformations in poly(L-lysine) beta-sheet formation probed by temperature-jump/UV resonance Raman spectroscopy. Biochemistry 2006; 45:34-41. [PMID: 16388578 PMCID: PMC2596612 DOI: 10.1021/bi051507v] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraviolet resonance Raman spectroscopy (UVRR) in combination with a nanosecond temperature jump (T-jump) was used to investigate early steps in the temperature-induced alpha-helix to beta-sheet conformational transition of poly(L-lysine) [poly(K)]. Excitation at 197 nm from a tunable frequency-quadrupled Ti:sapphire laser provided high-quality UVRR spectra, containing multiple conformation-sensitive amide bands. Although un-ionized poly(K) (pH 11.6) is mainly alpha-helical below 30 degrees C, there is a detectable fraction (approximately 15%) of unfolded polypeptide, which is mainly in the poly(L-proline) II (PPII) conformation. However, deviations from the expected amide I and II signals indicate an additional conformation, suggested to be beta-strand. Above 30 degrees C un-ionized poly(K) forms a beta-sheet at a rate (minutes) which increases with increasing temperature. A 22-44 degrees C T-jump is accompanied by prompt amide I and II difference signals suggested to arise from a rapid shift in the PPII/beta-strand equilibrium. These signals are superimposed on a subsequently evolving difference spectrum which is characteristic of PPII, although the extent of conversion is low, approximately 2% at the 3 micros time limit of the experiment. The rise time of the PPII signals is approximately 250 ns, consistent with melting of short alpha-helical segments. A model is proposed in which the melted PPII segments interconvert with beta-strand conformation, whose association through interstrand H-bonding nucleates the formation of beta-sheet. The intrinsic propensity for beta-strand formation could be a determinant of beta-sheet induction time, with implications for the onset of amyloid diseases.
Collapse
Affiliation(s)
- Renee D JiJi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
31
|
Balakrishnan G, Hu Y, Spiro TG. Temperature-jump apparatus with Raman detection based on a solid-state tunable (1.80-2.05 microm) kHz optical parametric oscillator laser. APPLIED SPECTROSCOPY 2006; 60:347-51. [PMID: 16613628 DOI: 10.1366/000370206776593799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The operating characteristics of a pulsed (10 ns) tunable near-infrared (NIR) laser source are described for temperature-jump (T-jump) applications. A Q-switched Nd:YLF laser (approximately 10 ns pulses) with a 1 kHz repetition rate is used to pump a potassium titanyl arsenate (KTA) crystal-based optical parametric oscillator (OPO), producing approximately 1 mJ NIR pulses that are tunable (1.80-2.05 microm) across the 1.9 microm vibrational overtone band of water. This T-jump source has been coupled to a deep ultraviolet (UV) probe laser for Raman studies of protein dynamics. T-jumps of up to 30 degrees C, as measured via the O-H stretching Raman band of water, are readily achieved. Application to cytochrome c unfolding is demonstrated.
Collapse
|
32
|
Efremov EV, Ariese F, Mank AJG, Gooijer C. Strong Overtones and Combination Bands in Ultraviolet Resonance Raman Spectroscopy. Anal Chem 2006; 78:3152-7. [PMID: 16643007 DOI: 10.1021/ac052253m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally anticipated, for molecules such as pyrene and anthracene, strong overtones and combination bands can show up; it is demonstrated that their intensity depends critically on the applied laser wavelength. If the excitation wavelength corresponds with a purely electronic transition--this applies to a good approximation for 244-nm excitation in the case of pyrene and for 257-nm excitation in the case of anthracene--mostly fundamental vibrations (up to 1700 cm(-1)) are observed. Overtones and combination bands are detected but are rather weak. However, if the laser overlaps with the vibronic region--as holds for 229- and 257-nm excitation for pyrene and 244-nm excitation for anthracene--very strong bands are found in the region 1700-3400 cm(-1). As illustrated for pyrene at 257 nm, all these bands can be assigned to first overtones or binary combinations of fundamental vibrations. Their intensity distribution can roughly be simulated by multiplying the relative intensities of the fundamental bands. Significant bands can also be found in the region 3400-5000 cm(-1), corresponding with second overtones and ternary combinations. It is shown that these findings are not restricted to planar and rigid molecules with high symmetry. Substituted pyrenes exhibit similar effects, and relatively strong overtones are also observed for adenosine monophosphate and for abietic acid. The reasons for these observations are discussed, as well as the potential applicability for analytical purposes.
Collapse
Affiliation(s)
- Evtim V Efremov
- Department of Analytical Chemistry and Applied Spectroscopy, Laser Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
33
|
Bykov S, Lednev I, Ianoul A, Mikhonin A, Munro C, Asher SA. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region. APPLIED SPECTROSCOPY 2005; 59:1541-52. [PMID: 16390595 DOI: 10.1366/000370205775142511] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We describe a state-of-the-art tunable ultraviolet (UV) Raman spectrometer for the 193-270 nm spectral region. This instrument allows for steady-state and transient UV Raman measurements. We utilize a 5 kHz Ti-sapphire continuously tunable laser (approximately 20 ns pulse width) between 193 nm and 240 nm for steady-state measurements. For transient Raman measurements we utilize one Coherent Infinity YAG laser to generate nanosecond infrared (IR) pump laser pulses to generate a temperature jump (T-jump) and a second Coherent Infinity YAG laser that is frequency tripled and Raman shifted into the deep UV (204 nm) for transient UV Raman excitation. Numerous other UV excitation frequencies can be utilized for selective excitation of chromophoric groups for transient Raman measurements. We constructed a subtractive dispersion double monochromator to minimize stray light. We utilize a new charge-coupled device (CCD) camera that responds efficiently to UV light, as opposed to the previous CCD and photodiode detectors, which required intensifiers for detecting UV light. For the T-jump measurements we use a second camera to simultaneously acquire the Raman spectra of the water stretching bands (2500-4000 cm(-1)) whose band-shape and frequency report the sample temperature.
Collapse
Affiliation(s)
- Sergei Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|