1
|
Ru G, Yan X, Wang H, Feng J. Preparation of Single-Helical Curdlan Hydrogel and Its Activation with Coagulation Factor G. Polymers (Basel) 2024; 16:1323. [PMID: 38794515 PMCID: PMC11125141 DOI: 10.3390/polym16101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
β-1,3-glucans are a kind of natural polysaccharide with immunomodulatory, antitumor, and anti-inflammatory properties. Curdlan, as the simplest linear β-1,3-glucan, possesses a variety of biological activities and thermogelation properties. However, due to the complexity and variability of the conformations of curdlan, the exact structure-activity relationship remains unclear. We prepare a chemically crosslinked curdlan hydrogel with the unique single-helical skeleton (named S gel) in 0.4 wt% NaOH at 40 °C, confirmed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). X-ray diffractometry (XRD) data show that S gel maintains the single-helical crystal structure, and the degree of crystallinity of the S gel is ~24%, which is slightly lower than that of the raw powder (~31%). Scanning electron microscopy (SEM) reveals that S gel has a continuous network structure, with large pores measuring 50-200 μm, which is consistent with its high swelling property. Using the 13C high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) method, we determine that most of the single-helical skeleton carbon signals in the swollen S gel are visible, suggesting that the single-helical skeleton of S gel exhibits fascinating mobility at room temperature. Finally, we reveal that the binding of S gel to coagulation Factor G from tachypleus amebocyte lysate increases and saturates at 20 μL tachypleus amebocyte lysate per mg of S gel. Our prepared S gel can avoid the transformation of curdlan conformations and retain the bioactivity of binding to coagulation Factor G, making it a valuable material for use in the food industry and the pharmaceutical field. This work deepens the understanding of the relationship between the single-helical structure and the activity of curdlan, promoting the development and application of β-1,3-glucans.
Collapse
Affiliation(s)
- Geying Ru
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoshuang Yan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiwen Feng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Xu Y, Liang X, Kong B, Sun F, Xia X, Zhang H, Liu Q, Cao C. Evaluating the effect of thermo-reversible and thermo-irreversible curdlan gels on the gelling properties and in vitro digestibility of myofibrillar protein gels under low-salt condition. Food Res Int 2024; 181:114115. [PMID: 38448099 DOI: 10.1016/j.foodres.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
The purpose of the present study was to investigate the gelling properties and in vitro digestibility of myofibrillar protein (MP) gels under low-salt condition as mediated by different concentrations of thermo-reversible curdlan gels (TRC) or thermo-irreversible curdlan gels (TIRC). The results showed that the incorporation of TRC or TIRC obviously improved the gel strength and water holding capacity of MP gels (P < 0.05). Those properties were most improved by adding 0.3 % TRC or TIRC with gel strength of 0.18 N or 0.17 N and WHC of 54.85 % or 49.05 %. Meanwhile, both TRC and TIRC promoted the transformation of α-helix into β-sheet, as well as hydrophobic interactions and disulfide bonds, which are the main forces for the maintenance of the MP gels. The microstructure revealed that the formation of dense and uniform protein network structures can be promoted by the addition of TRC or TIRC. The different modes of interaction between TRC or TIRC and MP resulted in different microstructures of the MP gels. Furthermore, incorporation of TRC or TIRC significantly reduced in vitro protein digestibility, especially for the 0.3 % (w/w) form (P < 0.05). Meanwhile, MP gels had the lowest in vitro protein digestibility after the addition of TRC (66.67 %) compared to the form of TIRC (70.93 %). Therefore, our present study indicated that incorporation form of TRC or TIRC have distinct implications on regulating the gelling properties and in vitro digestibility of MP gels under low-salt condition.
Collapse
Affiliation(s)
- Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Yang R, Wang S, Sun C, Zhao Y, Cao Y, Lu W, Zhang Y, Fang Y. High-moisture extrusion of curdlan: Texture and structure. Int J Biol Macromol 2024; 258:129109. [PMID: 38161009 DOI: 10.1016/j.ijbiomac.2023.129109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
High-moisture extrusion is a promising thermomechanical technology extensively employed in manufacturing fibrous meat analogues from plant-based proteins, garnering considerable research attention. However, polysaccharide-based extrusion has been rarely explored. The present study investigates the effects of varying extruder barrel temperatures (130 °C-200 °C) on the texture and structure of curdlan extrudates, and highlights the formation mechanism. Results showed that the single chain of curdlan aggregates to form triple-helix chains upon extrusion, consequently enhancing the crystallinity, particularly at 170 °C. The hardness, chewiness, and mechanical properties improved with increasing barrel temperature. Moreover, barrel temperatures affected the macrostructure, the extrudates maintained intact morphologies except at 160 °C due to the melting of curdlan gel as confirmed by the differential scanning calorimetry thermogram. Microstructural analysis revealed that curdlan extrudates transited through three phases: original gel (130 °C, 140 °C, and 150 °C), transition state (160 °C), and regenerated gel (170 °C, 180 °C, 190 °C, and 200 °C). The steady state of regenerated gel (170 °C) exhibited higher crystallinity and smaller fractal dimension, resulting in a more compact and crosslinked gel network. This study elucidates the structure transition of curdlan gel at extremely high temperatures, offering valuable technical insights for developing theories and methods with respect to polysaccharide-based extrusion that may find applications in food-related fields.
Collapse
Affiliation(s)
- Rong Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shurui Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiping Cao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Improving properties of curdlan/nanocellulose blended film via optimizing drying temperature. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Gieroba B, Kalisz G, Krysa M, Khalavka M, Przekora A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int J Mol Sci 2023; 24:ijms24032630. [PMID: 36768949 PMCID: PMC9916414 DOI: 10.3390/ijms24032630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Polysaccharides are one of the most abundant natural polymers and their molecular structure influences many crucial characteristics-inter alia hydrophobicity, mechanical, and physicochemical properties. Vibrational spectroscopic techniques, such as infrared (IR) and Raman spectroscopies are excellent tools to study their arrangement during polymerization and cross-linking processes. This review paper summarizes the application of the above-mentioned analytical methods to track the structure of natural polysaccharides, such as cellulose, hemicellulose, glucan, starch, chitosan, dextran, and their derivatives, which affects their industrial and medical use.
Collapse
Affiliation(s)
- Barbara Gieroba
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
- Correspondence:
| | - Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
- Department of Industrial Technology of Drugs, National University of Pharmacy, Pushkins’ka 63 Street, 61002 Kharkiv, Ukraine
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties. Carbohydr Polym 2022; 278:119003. [PMID: 34973803 DOI: 10.1016/j.carbpol.2021.119003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Physical gels from natural polysaccharides present the advantage of no toxic cross-linking agents and no chemical modification during preparation. Herein, novel physical gels, transparent organogels and opaque hydrogels from the microorganism-derived (1,3)-β-D-glucan of curdlan were prepared in dimethyl sulfoxide (DMSO) using the freeze-thaw technique, followed by a solvent-exchange strategy with water. The mechanical and structural properties of these gels were investigated by rheology, scanning electron microscopy, attenuated total reflection infrared spectroscopy, wide-angle X-ray diffraction and small-angle X-ray scattering. Gelation mechanisms and intermolecular interaction models have also been proposed. The good solvent DMSO serves as both a crosslinker and a pore-foaming agent in organogels. The reversible macromolecular conformation changes and phase separation of curdlan endow the gels with reversible transparency, volume change and tunable mechanical strength. The new design strategy of facile preparation and performance tuning provides a platform for developing new organogels and sterile hydrogels of curdlan.
Collapse
|
7
|
Yan X, Liu B, Ru G, Feng J. Preparation and characterization of curdlan with unique single-helical conformation and its assembly with Congo Red. Carbohydr Polym 2021; 263:117985. [PMID: 33858578 DOI: 10.1016/j.carbpol.2021.117985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Elucidating the structure-activity relationship of curdlan is hampered by a lack of characterization with unique specific conformations (i.e., single- or triple-helix). In this study, single-helical curdlan is generated in dilute NaOH solutions at 35-50 °C, and characterized with NMR, SAXS, and GPC. The conformational transition from coil to single-helix and the intramolecular hydrogen bond interaction are explored using NMR. It is found that the two aforementioned types of curdlan interact with Congo Red in very different ways. Single-helical curdlan can encapsulate Congo Red to form a stable, supramolecular dye assembly, which is demonstrated by the shortest distance between the H3 of curdlan and the phenyl groups of Congo Red, and also the same self-diffusion coefficients of Congo Red and curdlan. In contrast, random-coil curdlan interacts weakly with Congo Red and cannot enwrap it. This study offers insight into the specific structure-activity relationship of beta-(1,3)-glucans.
Collapse
Affiliation(s)
- Xiaoshuang Yan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Biaolan Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Geying Ru
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| |
Collapse
|
8
|
Feng X, Li F, Ding M, Zhang R, Shi T, Jiang W. Molecular dynamic simulation: Structural insights of multi-stranded curdlan in aqueous solution. Carbohydr Polym 2021; 261:117844. [PMID: 33766340 DOI: 10.1016/j.carbpol.2021.117844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
In this work, by using molecular dynamic simulation we provide microscale structure information which helps to reveal the molecular mechanisms concerning the multi-chain conformational behavior of short curdlan. Through simulations starting with different conformations of curldan dodecasaccharides, it is found that the right-handed triple helix is thermodynamically the most stable conformation in aqueous solutions, which is well maintained and stabilized by an inter-strand hydrogen bonding network of the C2 hydroxyls. Unlike any predicted forms, the inter-strand hydrogen bonds exhibit a left-handed double helix pattern with preferred global orientations. Temperature REMD results suggest that the formation of triple helix is temperature sensitive, but the already formed triple helix is not. Investigation of curdlan with numbers of repeating units from 3 to 12 captures a critical value of 6, which in a way elucidates the relationship between the formation of triple helix and the chain length.
Collapse
Affiliation(s)
- Xuan Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Fan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
9
|
Gieroba B, Sroka-Bartnicka A, Kazimierczak P, Kalisz G, Pieta IS, Nowakowski R, Pisarek M, Przekora A. Effect of Gelation Temperature on the Molecular Structure and Physicochemical Properties of the Curdlan Matrix: Spectroscopic and Microscopic Analyses. Int J Mol Sci 2020; 21:ijms21176154. [PMID: 32858980 PMCID: PMC7504023 DOI: 10.3390/ijms21176154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 01/31/2023] Open
Abstract
In order to determine the effect of different gelation temperatures (80 °C and 90 °C) on the structural arrangements in 1,3-β-d-glucan (curdlan) matrices, spectroscopic and microscopic approaches were chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and Raman spectroscopy are well-established techniques that enable the identification of functional groups in organic molecules based on their vibration modes. X-ray photoelectron spectroscopy (XPS) is a quantitative analytical method utilized in the surface study, which provided information about the elemental and chemical composition with high surface sensitivity. Contact angle goniometer was applied to evaluate surface wettability and surface free energy of the matrices. In turn, the surface topography characterization was obtained with the use of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Described techniques may facilitate the optimization, modification, and design of manufacturing processes (such as the temperature of gelation in the case of the studied 1,3-β-d-glucan) of the organic polysaccharide matrices so as to obtain biomaterials with desired characteristics and wide range of biomedical applications, e.g., entrapment of drugs or production of biomaterials for tissue regeneration. This study shows that the 1,3-β-d-glucan polymer sample gelled at 80 °C has a distinctly different structure than the matrix gelled at 90 °C.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (G.K.)
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (G.K.)
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: or (A.S.-B.); (A.P.); Tel.: +48-81448-7225 (A.S.-B.); +48-81448-7026 (A.P.)
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (G.K.)
| | - Izabela S. Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (I.S.P.); (R.N.); (M.P.)
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (I.S.P.); (R.N.); (M.P.)
| | - Marcin Pisarek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (I.S.P.); (R.N.); (M.P.)
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Correspondence: or (A.S.-B.); (A.P.); Tel.: +48-81448-7225 (A.S.-B.); +48-81448-7026 (A.P.)
| |
Collapse
|
10
|
Yan JK, Cai WD, Wang C, Yu YB, Zhang HN, Yang Y, Wang WH. Macromolecular behavior, structural characteristics and rheological properties of alkali-neutralization curdlan at different concentrations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Suflet DM, Popescu I, Prisacaru AI, Pelin IM. Synthesis and characterization of curdlan – phosphorylated curdlan based hydrogels for drug release. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dana Mihaela Suflet
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Irina Popescu
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Irina Mihaela Pelin
- Laboratory of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
12
|
Сhiral and Racemic Fields Concept for Understanding of the Homochirality Origin, Asymmetric Catalysis, Chiral Superstructure Formation from Achiral Molecules, and B-Z DNA Conformational Transition. Symmetry (Basel) 2019. [DOI: 10.3390/sym11050649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The four most important and well-studied phenomena of mirror symmetry breaking of molecules were analyzed for the first time in terms of available common features and regularities. Mirror symmetry breaking of the primary origin of biological homochirality requires the involvement of an external chiral inductor (environmental chirality). All reviewed mirror symmetry breaking phenomena were considered from that standpoint. A concept of chiral and racemic fields was highly helpful in this analysis. A chiral gravitational field in combination with a static magnetic field (Earth’s environmental conditions) may be regarded as a hypothetical long-term chiral inductor. Experimental evidences suggest a possible effect of the environmental chiral inductor as a chiral trigger on the mirror symmetry breaking effect. Also, this effect explains a conformational transition of the right-handed double DNA helix to the left-handed double DNA helix (B-Z DNA transition) as possible DNA damage.
Collapse
|
13
|
Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability. Food Chem 2017; 232:369-378. [PMID: 28490087 DOI: 10.1016/j.foodchem.2017.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/02/2017] [Accepted: 04/04/2017] [Indexed: 12/23/2022]
Abstract
Curdlan is a linear polysaccharide composed of glucose units joined by β-(1,3) bonds that possesses unique gelation properties. This study aimed to characterize the structure and evaluate the gelling properties of curdlan produced by Agrobacterium sp. IFO 13140 and its gels, as well as apply it in food. FT-Raman analysis highlighted the structural changes that occurred during the formation of gels, with variations related to the hydrogen bonds and hydrophobic interactions, which occur with the formation of the low-set and high-set gels, respectively. Rheological analysis showed that the pre-gelled commercial curdlan and the curdlan produced by Agrobacterium sp. IFO 13140 differed in terms of gelation properties, which depends of the degree of polymerization of the polysaccharide, but when applied to pasta products, both improved the texture parameters. The curdlan gels were found to have great potential as gelling agents to improve texture, water retention capacity and stability of food products.
Collapse
|
14
|
Mangolim CS, da Silva TT, Fenelon VC, Koga LN, Ferreira SBDS, Bruschi ML, Matioli G. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide. PLoS One 2017; 12:e0171469. [PMID: 28245244 PMCID: PMC5330454 DOI: 10.1371/journal.pone.0171469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/21/2017] [Indexed: 12/20/2022] Open
Abstract
Curdlan is a linear polysaccharide considered a dietary fiber and with gelation properties. This study evaluated the structure, morphology and the physicochemical and technological properties of curdlan produced by Agrobacterium sp. IFO 13140 recovered by pre-gelation and precipitation methods. Commercial curdlan submitted or otherwise to the pre-gelation process was also evaluated. The data obtained from structural analysis revealed a similarity between the curdlan produced by Agrobacterium sp. IFO 13140 (recovered by both methods) and the commercial curdlans. The results showed that the curdlans evaluated differed significantly in terms of dispersibility and gelation, and only the pre-gelled ones had significant potential for food application, because this method influence on the size of the particles and in the presence of NaCl. In terms of technological properties, the curdlan produced by Agrobacterium sp. IFO 13140 (pre-gelation method) had a greater water and oil holding capacity (64% and 98% greater, respectively) and a greater thickening capacity than the pre-gelled commercial curdlan. The pre-gelled commercial curdlan displayed a greater gelling capacity at 95°C than the others. When applied to food, only the pre-gelled curdlans improved the texture parameters of yogurts and reduced syneresis. The curdlan gels, which are rigid and stable in structure, demonstrated potential for improving the texture of food products, with potential industrial use.
Collapse
Affiliation(s)
- Camila Sampaio Mangolim
- Postgraduate Program in Food Science, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | | | - Vanderson Carvalho Fenelon
- Postgraduate Program in Pharmaceutical Science, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | - Luciana Numata Koga
- Postgraduate Program in Pharmaceutical Science, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | | | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Science, State University of Maringá (UEM), Maringá, Paraná, Brazil
| | - Graciette Matioli
- Postgraduate Program in Food Science, State University of Maringá (UEM), Maringá, Paraná, Brazil
- Postgraduate Program in Pharmaceutical Science, State University of Maringá (UEM), Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Maalej H, Hmidet N, Boisset C, Bayma E, Heyraud A, Nasri M. Rheological and emulsifying properties of a gel-like exopolysaccharide produced by Pseudomonas stutzeri AS22. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Pavlov VA, Klabunovskii EI. The origin of homochirality in nature: a possible version. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Zhang R, Edgar KJ. Properties, Chemistry, and Applications of the Bioactive Polysaccharide Curdlan. Biomacromolecules 2014; 15:1079-96. [DOI: 10.1021/bm500038g] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ruoran Zhang
- Macromolecules and Interfaces Institute and ‡Department of
Sustainable Biomaterials, Virginia Tech Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Macromolecules and Interfaces Institute and ‡Department of
Sustainable Biomaterials, Virginia Tech Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Lehtovaara BC, Gu FX. Pharmacological, structural, and drug delivery properties and applications of 1,3-β-glucans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6813-6828. [PMID: 21609131 DOI: 10.1021/jf200964u] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
1,3-β-Glucans are a class of natural polysaccharides with unique pharmacological properties and the ability to form single- and triple-helical structures that can be formed into resilient gels with the application of heat and humidity. The pharmacological capabilities of 1,3-β-glucans include the impartation of tumor inhibition, resistance to infectious disease, and improvements in wound healing. Curdlan is a linear 1,3-β-glucan that has been used extensively to study the nature of these helical structures and gels, and Curdlan sulfates have found ongoing application in the inhibition of HIV infection. 1,3-β-Glucan gels have been used in food science as stabilizers and encapsulating agents, in nanoscience as scaffolds to build nanofibers and nanowires, and in drug delivery to form nanoparticles and create helical micelles encapsulating polynucleotides. 1,3-β-Glucans are beginning to have enormous significance due to their dual nature as structure-forming agents and pharmacological substances, and research is especially focused on the application of these polymers in animal nutrition and drug delivery.
Collapse
Affiliation(s)
- Benjamin C Lehtovaara
- Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario, Canada
| | | |
Collapse
|
20
|
Williams PD, Oztop MH, McCarthy MJ, McCarthy KL, Lo YM. Characterization of Water Distribution in Xanthan-Curdlan Hydrogel Complex Using Magnetic Resonance Imaging, Nuclear Magnetic Resonance Relaxometry, Rheology, and Scanning Electron Microscopy. J Food Sci 2011; 76:E472-8. [DOI: 10.1111/j.1750-3841.2011.02227.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gagnon MA, Lafleur M. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels. J Colloid Interface Sci 2011; 357:419-27. [DOI: 10.1016/j.jcis.2011.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
|
22
|
Gagnon MA, Lafleur M. Comparison between nuclear magnetic resonance profiling and the source/sink approach for characterizing drug diffusion in hydrogel matrices. Pharm Dev Technol 2010; 16:651-6. [DOI: 10.3109/10837450.2010.502900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11705-009-0254-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Gagnon MA, Lafleur M. Self-Diffusion and Mutual Diffusion of Small Molecules in High-Set Curdlan Hydrogels Studied by 31P NMR. J Phys Chem B 2009; 113:9084-91. [DOI: 10.1021/jp811105p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc-André Gagnon
- Department of Chemistry, Center for Self-Assembled Chemical Systems (CSACS), Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Québec, H3C 3J7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Systems (CSACS), Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
25
|
Peng HT, Blostein MD, Shek PN. Experimental optimization of anin situforming hydrogel for hemorrhage control. J Biomed Mater Res B Appl Biomater 2009; 89:199-209. [DOI: 10.1002/jbm.b.31206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|