1
|
Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics 2021; 13:pharmaceutics13101609. [PMID: 34683902 PMCID: PMC8537677 DOI: 10.3390/pharmaceutics13101609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
The use of cyclodextrins as drug nano-carrier systems for drug delivery is gaining importance in the pharmaceutical industry due to the interesting pharmacokinetic properties of the resulting inclusion complexes. In the present work, complexes of the anti-cancer alkaloids camptothecin and luotonin A have been prepared with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. These cyclodextrin complexes were characterized by nuclear magnetic resonance spectroscopy (NMR). The variations in the 1H-NMR and 13C-NMR chemical shifts allowed to establish the inclusion modes of the compounds into the cyclodextrin cavities, which were supported by docking and molecular dynamics studies. The efficiency of the complexation was quantified by UV-Vis spectrophotometry and spectrofluorimetry, which showed that the protonation equilibria of camptothecin and luotonin A were drastically hampered upon formation of the inclusion complexes. The stabilization of camptothecin towards hydrolysis inside the cyclodextrin cavity was verified by the quantitation of the active lactone form by reverse phase liquid chromatography fluorimetric detection, both in basic conditions and in the presence of serum albumin. The antitumor activity of luotonin A and camptothecin complexes were studied in several cancer cell lines (breast, lung, hepatic carcinoma, ovarian carcinoma and human neuroblastoma) and an enhanced activity was found compared to the free alkaloids, particularly in the case of hydroxypropyl-β-cyclodextrin derivatives. This result shows that the cyclodextrin inclusion strategy has much potential towards reaching the goal of employing luotonin A or its analogues as stable analogues of camptothecin.
Collapse
|
2
|
Shirazi AS, Varshochian R, Rezaei M, Ardakani YH, Dinarvand R. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:78. [PMID: 34191134 PMCID: PMC8245372 DOI: 10.1007/s10856-021-06538-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
SN38 is the active metabolite of irinotecan with 1000-fold greater cytotoxicity compared to the parent drug. Despite the potential, its application as a drug is still seriously limited due to its stability concerns and low solubility in acceptable pharmaceutical solvents. To address these drawbacks here nanostructured lipid carrier (NLC) containing SN38 was prepared and its cytotoxicity against U87MG glioblastoma cell line was investigated. The formulations were prepared using hot ultrasonication and solvent evaporation/emulsification methods. NLCs with a mean size of 140 nm and particle size distribution (PDI) of 0.25 were obtained. The average loading efficiency was 9.5% and its entrapment efficiency was 81%. In order to obtain an accurate determination of released amount of SN38 a novel medium and extraction method was designed, which lead to an appropriate in vitro release profile of the drug from the prepared NLCs. The MTT test results revealed the significant higher cytotoxicity of NLCs on U87MG human glioblastoma cell line compared with the free drug. The confocal microscopy images confirmed the proper penetration of the nanostructures into the cells within the first 4 h. Consequently, the results indicated promising potentials of the prepared NLCs as a novel treatment for glioblastoma.
Collapse
Affiliation(s)
- Ali Sabouri Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Varshochian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- School of chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Yalda Hosseinzadeh Ardakani
- Department of Pharmaceutics, Biopharmaceutics and Pharmacokinetics Division, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline) - poly (l-amino acid) block copolymer: A-synthesis and physicochemical characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Zhao K, Guo T, Sun X, Xiong T, Ren X, Wu L, Yang R, Sun H, Shi S, Zhang J. Mechanism and optimization of supramolecular complexation-enhanced fluorescence spectroscopy for the determination of SN-38 in plasma and cells. LUMINESCENCE 2020; 36:531-542. [PMID: 33125824 DOI: 10.1002/bio.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Quantitative detection of two different forms of SN-38 in biological samples is, currently, cumbersome and difficult. A revisit to the mechanism of supramolecular complexation-enhanced fluorescence spectroscopy helps to optimize the determination of SN-38 in plasma and the cellular pharmacokinetics in A549 cells based on the supramolecular complexation. Firstly, the inclusion mechanism dominated by thermodynamic constants was determined by measuring kinetic/thermodynamic parameters (kon , koff , ΔG, ΔH, ΔS). On this basis, the best effect of fluorescence sensitization was optimized through screening the interaction conditions (cyclodextrin species and concentrations, drug levels, temperature, pH of the buffer, and reaction time). Furthermore, the proportional relationship between the concentration of the inclusion complex and the fluorescence intensity was confirmed. Finally, a highly sensitive, selective spectrofluorimetric method was established and validated for quantitative analysis of the lactone and carboxylate molecular states of SN-38 plasma levels in rats and cell membrane transfer kinetics in A549 cell lines. The limits of detection for the lactone and carboxylate forms in plasma were found to be 0.44 ng·ml-1 and 0.28 ng·ml-1 , respectively. Precision and accuracy met the requirements of biological samples analysis. The proposed detection method provided a reference for elucidating the biodistribution of SN-38.
Collapse
Affiliation(s)
- Kena Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.,Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tao Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xian Sun
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ting Xiong
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China.,Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaohong Ren
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rui Yang
- Institute for Control of Pharmaceutical Excipient and Packaging Material, National Institutes for Food and Drug Control, Beijing, 100050, China.,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 102600, China
| | - Huimin Sun
- Institute for Control of Pharmaceutical Excipient and Packaging Material, National Institutes for Food and Drug Control, Beijing, 100050, China.,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 102600, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jiwen Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.,Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, 201203, China.,Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 102600, China
| |
Collapse
|
5
|
Salmanpour M, Yousefi G, Samani SM, Mohammadi S, Anbardar MH, Tamaddon A. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. Eur J Pharm Sci 2019; 136:104941. [DOI: 10.1016/j.ejps.2019.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
|
6
|
Tartaggia S, Alvau MD, Meneghello A, Casetta B, Polo F, Toffoli G. Practical fluorimetric assay for the detection of anticancer drug SN-38 in human plasma. J Pharm Biomed Anal 2018; 159:73-81. [PMID: 29980022 DOI: 10.1016/j.jpba.2018.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022]
Abstract
The implementation of therapeutic drug monitoring in the routine clinical practice in oncology is mainly limited by the lack of therapeutic indexes for the majority of the anticancer drugs, and by the absence of suitable analytical tools, which can accurately quantify in real time the concentration of the administered drugs and their relevant metabolites in biological fluids. In this work, a simple and efficient fluorimetric determination of SN-38, the active metabolite of the anticancer drug irinotecan, was developed and applied to human plasma samples. The intrinsic fluorescence of SN-38 allowed its quantification in the range 10-500 ng mL-1 with a LOQ of 5.0 ng mL-1 and a LOD of 1.5 ng mL-1. Low interferences due to main metabolites of irinotecan and comedications, commonly associated with administration of irinotecan, were observed. A validation study, according to FDA and EMA guidelines for bioanalytical method validation, was carried out and, finally, blind samples were analyzed in parallel with a HPLC-MS method obtaining an excellent agreement between the two techniques.
Collapse
Affiliation(s)
- Stefano Tartaggia
- Experimental and Clinical Pharmacology Unit, National Cancer Institute - Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081, Aviano, Italy.
| | - Maria Domenica Alvau
- Experimental and Clinical Pharmacology Unit, National Cancer Institute - Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081, Aviano, Italy
| | - Anna Meneghello
- Experimental and Clinical Pharmacology Unit, National Cancer Institute - Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081, Aviano, Italy
| | - Bruno Casetta
- Experimental and Clinical Pharmacology Unit, National Cancer Institute - Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081, Aviano, Italy
| | - Federico Polo
- Experimental and Clinical Pharmacology Unit, National Cancer Institute - Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081, Aviano, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, National Cancer Institute - Centro di Riferimento Oncologico, Via Franco Gallini 2, I-33081, Aviano, Italy
| |
Collapse
|
7
|
Manaspon C, Nasongkla N, Chaimongkolnukul K, Nittayacharn P, Vejjasilpa K, Kengkoom K, Boongird A, Hongeng S. Injectable SN-38-loaded Polymeric Depots for Cancer Chemotherapy of Glioblastoma Multiforme. Pharm Res 2016; 33:2891-2903. [DOI: 10.1007/s11095-016-2011-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/29/2016] [Indexed: 01/19/2023]
|
8
|
Li IC, Moore AN, Hartgerink JD. "Missing Tooth" Multidomain Peptide Nanofibers for Delivery of Small Molecule Drugs. Biomacromolecules 2016; 17:2087-95. [PMID: 27253735 DOI: 10.1021/acs.biomac.6b00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The clinical administration of many small molecule hydrophobic drugs is challenged by the insolubility of these drugs under physiological conditions. Because of this, the development of biocompatible scaffolds capable of effectively delivering hydrophobic drug molecules is of particular interest. Multidomain peptides (MDPs) provide biocompatible hydrogel scaffolds that are injectable and space-conforming, allowing for in situ delivery of a variety of drugs. Here we demonstrate that through manipulation of peptide primary sequence, a molecular cavity can be incorporated into the hydrophobic core of these peptide nanofibers allowing for encapsulation and delivery of small molecule drugs with poor water solubility. Using SN-38, daunorubicin, diflunisal, etodolac, levofloxacin, and norfloxacin, we demonstrate drug encapsulation and release from multidomain peptide fibers. Steady-state fluorescence and drug release studies show that hydrogels loaded with SN-38, diflunisal, and etodolac exhibit prolonged drug release profiles due to intrafibrillar drug encapsulation. This study establishes multidomain peptides as promising carriers for localized in situ delivery of small molecule drugs with poor water solubility.
Collapse
Affiliation(s)
- I-Che Li
- Departments of Chemistry and Bioengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Amanda N Moore
- Departments of Chemistry and Bioengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Departments of Chemistry and Bioengineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
9
|
del Carmen Hurtado-Sánchez M, Acedo-Valenzuela MI, Durán-Merás I, Rodríguez-Cáceres MI. Determination of chemotherapeutic drugs in human urine by capillary electrophoresis with UV and fluorimetric detection using solid-supported liquid-liquid extraction for sample clean-up. J Sep Sci 2015; 38:1990-7. [DOI: 10.1002/jssc.201401443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Isabel Durán-Merás
- Department of Analytical Chemistry, University of Extremadura; Badajoz Spain
| | | |
Collapse
|
10
|
Bobeničová M, Valko M, Brezová V, Dvoranová D. UVA generated free radicals in irinotecan (CPT-11) in the presence of copper ions. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Manaspon C, Nittayacharn P, Vejjasilpa K, Fongsuk C, Nasongkla N. SN-38:β-cyclodextrin inclusion complex for in situ solidifying injectable polymer implants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3241-4. [PMID: 22255030 DOI: 10.1109/iembs.2011.6090881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most useful techniques to treat cancer is chemotherapy. However, anticancer drugs, such as SN-38, have limited solubility with strong side effects. This work aims to use SN-38:β-cyclodextrin (β-CD) inclusion complex for an injectable polymeric in situ forming implant containing poly(ethylene glycol) (PEG), poly(ε-caprolactone), and poly(D, L-lactide). It was found that implant formation and SN-38 encapsulation efficiency directly depended on weight ratio of SN-38 and β-CD. At the ratio of SN-38:β-CD of 1:7, the implant could not be formed perfectly and had lower encapsulation efficiency. Reduction of the amount of β-CD to the ratio of 1:3 showed the higher encapsulation efficiency at 89.7 %. SN-38 release rate was also found to depend on β-CD content and the implant weight. In addition, their active form was protected when encapsulated inside implants.
Collapse
Affiliation(s)
- Chawan Manaspon
- Biomedical Engineering Department, Mahidol University, Nakorn Pathom, CO 73170, Thailand
| | | | | | | | | |
Collapse
|
12
|
DURÁN MARTÍN-MERÁS I, RODRÍGUEZ-CÁCERES MI, HURTADO-SÁNCHEZ MDC. First-Order Multivariate Calibration Applied to the Simultaneous Fluorometric Determination of the Anticancer Agents CPT-11 and SN-38 in Serum and Urine Samples. ANAL SCI 2011; 27:745. [DOI: 10.2116/analsci.27.745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|