1
|
Pfeiffer C, Sunderkötter C. [Differential diagnosis of sclerosing skin diseases: scleredema adultorum of Buschke]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:232-236. [PMID: 38347238 DOI: 10.1007/s00105-024-05305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Scleredema adultorum of Buschke is an important differential diagnosis in sclerosing diseases. Diagnosis is based on the typical histology with mucin deposits and grossly increased dermal width and a clinical presentation of diffuse non-pitting induration of the skin starting at the nape of the neck and interscapular region extending to shoulders and upper thorax, causing dysmobility due to dermal stiffness. Even though the pathogenesis remains unclear, three subtypes can be distinguished: association with infections, paraproteins, or most frequently with diabetes mellitus. Management of the disease includes physiotherapy, physical therapies such as ultraviolet (UV) or ionizing irradiation, intravenous immunoglobulins and interdisciplinary treatment directed at associated diseases. Optimizing diabetes therapy and thereby decreasing insulin use may confer significant improvement.
Collapse
Affiliation(s)
- Christiane Pfeiffer
- Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum - Campus Innenstadt, Frauenlobstr. 9-11, 80337, München, Deutschland.
- Klinik für Dermatologie, München Klinik, Thalkirchner Str. 48, 80337, München, Deutschland.
| | - Cord Sunderkötter
- Abteilung für translationale Dermatoinfektiologie, Westfälische Wilhelms-Universität Münster, Röntgenstr. 21, 48149, Münster, Deutschland
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland
| |
Collapse
|
2
|
Gerovska D, Araúzo-Bravo MJ. Systemic Lupus Erythematosus Patients with DNASE1L3·Deficiency Have a Distinctive and Specific Genic Circular DNA Profile in Plasma. Cells 2023; 12:cells12071061. [PMID: 37048133 PMCID: PMC10093232 DOI: 10.3390/cells12071061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Cell-free (cf) extrachromosomal circular DNA (eccDNA) has a potential clinical application as a biomarker. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with a complex immunological pathogenesis, associated with autoantibody synthesis. A previous study found that SLE patients with deoxyribonuclease 1-like 3 (DNASE1L3) deficiency exhibit changes in the frequency of short and long eccDNA in plasma compared to controls. Here, using the DifCir method for differential analysis of short-read sequenced purified eccDNA data based on the split-read signal of the eccDNA on circulomics data, we show that SLE patients with DNASE1L3 deficiency have a distinctive profile of eccDNA excised by gene regions compared to controls. Moreover, this profile is specific; cf-eccDNA from the top 93 genes is detected in all SLE with DNASE1L3 deficiency samples, and none in the control plasma. The top protein coding gene producing eccDNA-carrying gene fragments is the transcription factor BARX2, which is involved in skeletal muscle morphogenesis and connective tissue development. The top gene ontology terms are ‘positive regulation of torc1 signaling’ and ‘chondrocyte development’. The top Harmonizome terms are ‘lymphopenia’, ‘metabolic syndrome x’, ‘asthma’, ‘cardiovascular system disease‘, ‘leukemia’, and ‘immune system disease’. Here, we show that gene associations of cf-eccDNA can serve as a biomarker in the autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Correspondence: (D.G.); (M.J.A.-B.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics, Roentgenstr. 20, 48149 Muenster, Germany
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (D.G.); (M.J.A.-B.)
| |
Collapse
|
3
|
The Interplay of Glycosaminoglycans and Cysteine Cathepsins in Mucopolysaccharidosis. Biomedicines 2023; 11:biomedicines11030810. [PMID: 36979788 PMCID: PMC10045161 DOI: 10.3390/biomedicines11030810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Mucopolysaccharidosis (MPS) consists of a group of inherited lysosomal storage disorders that are caused by a defect of certain enzymes that participate in the metabolism of glycosaminoglycans (GAGs). The abnormal accumulation of GAGs leads to progressive dysfunctions in various tissues and organs during childhood, contributing to premature death. As the current therapies are limited and inefficient, exploring the molecular mechanisms of the pathology is thus required to address the unmet needs of MPS patients to improve their quality of life. Lysosomal cysteine cathepsins are a family of proteases that play key roles in numerous physiological processes. Dysregulation of cysteine cathepsins expression and activity can be frequently observed in many human diseases, including MPS. This review summarizes the basic knowledge on MPS disorders and their current management and focuses on GAGs and cysteine cathepsins expression in MPS, as well their interplay, which may lead to the development of MPS-associated disorders.
Collapse
|
4
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
5
|
Ramarajan MG, Saraswat M, Budhraja R, Garapati K, Raymond K, Pandey A. Mass spectrometric analysis of chondroitin sulfate-linked peptides. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:187-203. [PMID: 36213313 PMCID: PMC9526814 DOI: 10.1007/s42485-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components composed of linear glycosaminoglycan (GAG) side chains attached to a core protein. CSPGs play a vital role in neurodevelopment, signal transduction, cellular proliferation and differentiation and tumor metastasis through interaction with growth factors and signaling proteins. These pleiotropic functions of proteoglycans are regulated spatiotemporally by the GAG chains attached to the core protein. There are over 70 chondroitin sulfate-linked proteoglycans reported in cells, cerebrospinal fluid and urine. A core glycan linker of 3-6 monosaccharides attached to specific serine residues can be extended by 20-200 disaccharide repeating units making intact CSPGs very large and impractical to analyze. The current paradigm of CSPG analysis involves digesting the GAG chains by chondroitinase enzymes and analyzing either the protein part, the disaccharide repeats, or both by mass spectrometry. This method, however, provides no information about the site of attachment or the composition of linker oligosaccharides and the degree of sulfation and/or phosphorylation. Further, the analysis by mass spectrometry and subsequent identification of novel CSPGs is hampered by technical challenges in their isolation, less optimal ionization and data analysis. Unknown identity of the linker oligosaccharide also makes it more difficult to identify the glycan composition using database searching approaches. Following chondroitinase digestion of long GAG chains linked to tryptic peptides, we identified intact GAG-linked peptides in clinically relevant samples including plasma, urine and dermal fibroblasts. These intact glycopeptides including their core linker glycans were identified by mass spectrometry using optimized stepped higher energy collision dissociation and electron-transfer/higher energy collision dissociation combined with hybrid database search/de novo glycan composition search. We identified 25 CSPGs including three novel CSPGs that have not been described earlier. Our findings demonstrate the utility of combining enrichment strategies and optimized high-resolution mass spectrometry analysis including alternative fragmentation methods for the characterization of CSPGs. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-022-00092-3.
Collapse
Affiliation(s)
- Madan Gopal Ramarajan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560 029 India
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560 029 India
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905 USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
6
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Zhang L, Shi R, Ouyang H, Li Y. Cloning and characterization of chst11 from Procambarus clarkii involved in the host immune response of white spot syndrome virus and Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 102:82-91. [PMID: 32302771 DOI: 10.1016/j.fsi.2020.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Carbohydrate sulfotransferases 11 (chst11) is one of the enzymes that synthesize chondroitin sulfate (CS), which has extensive immune functions in vitro and plays a critical role in mediating the infection of host by pathogenic microorganisms. However, whether it has immune functions in crayfish is still poorly understood. In our previous study of transcriptome, chst11 was differentially expressed in susceptible individuals and resistant individuals of Procambarus clarkii after white spot syndrome virus (WSSV) injection. Thus, in this study, the sequence of chst11 was obtained from P. clarkii for the first time and analyzed, and the expression pattern of chst11 was investigated. Besides, the purified recombinant protein of chst11 effect in protection in WSSV infection was explored. The full length of chst11 was 1536 bp with an 831-bp open reading frame (ORF), which encoding 276 amino acids residues with a calculated molecular mass of 33.1 kDa. The chst11 contains a Sulfotransfer_2 domain, one N-glycosylation site and three O-glycosylation sites. Phylogenetic analysis results showed that chst11 had the highest similarity to Penaeus vannamei (79.93%). The expression pattern of chst11 in different tissues indicated that chst11 was expressed highest in gut, gill and hypodermis, lowest in testicular duct, periesophageal nerve and hemocytes. The chst11 had different expression patterns in different tissues when the crayfish was challenged by WSSV, Aeromonas hydrophila and CpG ODN. Recombinant chst11 protein significantly reduced the amount of WSSV copy number in hepatopancreas at 6 h and 12 h post injection compared to the control group injected with bovine serum albumin (BSA). It was found that chst11 protein enhanced the expression of peroxinectin, proPO in hepatopancreas and midgut and the C-type lectin (ctl) in hemocytes and hepatopancreas. Intramuscularly injection of juvenile crayfish with chst11 protein decreased 60% mortality compared to the control group with BSA. This study is the first report on the antiviral function of chst11 in the immune system of crustacean.
Collapse
Affiliation(s)
- Long Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ruixue Shi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Haofeng Ouyang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yanhe Li
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
8
|
Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: a Comprehensive Review. Clin Rev Allergy Immunol 2018; 53:306-336. [PMID: 28712039 DOI: 10.1007/s12016-017-8625-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Scleroderma refers to an autoimmune connective tissue fibrosing disease, including three different subsets: localized scleroderma, limited cutaneous systemic sclerosis, and diffuse cutaneous systemic sclerosis with divergent patterns of organ involvement, autoantibody profiles, management, and prognostic implications. Although systemic sclerosis is considered the disease prototype that causes cutaneous sclerosis, there are many other conditions that can mimic and be confused with SSc. They can be classified into immune-mediated/inflammatory, immune-mediated/inflammatory with abnormal deposit (mucinoses), genetic, drug-induced and toxic, metabolic, panniculitis/vascular, and (para)neoplastic disorders according to clinico-pathological and pathogenetic correlations. This article reviews the clinical presentation with emphasis on cutaneous disease, etiopathogenesis, diagnosis, and treatment options available for the different forms of scleroderma firstly and for scleroderma-like disorders, including scleromyxedema, scleredema, nephrogenic systemic fibrosis, eosinophilic fasciitis, chronic graft-versus-host disease, porphyria cutanea tarda, diabetic stiff-hand syndrome (diabetic cheiroartropathy), and other minor forms. This latter group of conditions, termed also scleroderma mimics, sclerodermiform diseases, or pseudosclerodermas, shares the common thread of skin thickening but presents with distinct cutaneous manifestations, skin histology, and systemic implications or disease associations, differentiating each entity from the others and from scleroderma. The lack of Raynaud's phenomenon, capillaroscopic abnormalities, or scleroderma-specific autoantibodies is also important diagnostic clues. As cutaneous involvement is the earliest, most frequent and characteristic manifestation of scleroderma and sclerodermoid disorders, dermatologists are often the first-line doctors who must be able to promptly recognize skin symptoms to provide the affected patient a correct diagnosis and appropriate management.
Collapse
Affiliation(s)
- Caterina Ferreli
- Section of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Giulia Gasparini
- Section of Dermatology, Department of Health Sciences, DISSAL, IRCSS-AOU S. Martino-IST, University of Genoa, Genoa, Italy
| | - Aurora Parodi
- Section of Dermatology, Department of Health Sciences, DISSAL, IRCSS-AOU S. Martino-IST, University of Genoa, Genoa, Italy
| | - Emanuele Cozzani
- Section of Dermatology, Department of Health Sciences, DISSAL, IRCSS-AOU S. Martino-IST, University of Genoa, Genoa, Italy
| | - Franco Rongioletti
- Section of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Laura Atzori
- Section of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
D'Ascola A, Scuruchi M, Avenoso A, Bruschetta G, Campo S, Mandraffino G, Campo GM. Serglycin is involved in inflammatory response in articular mouse chondrocytes. Biochem Biophys Res Commun 2018; 499:506-512. [PMID: 29588174 DOI: 10.1016/j.bbrc.2018.03.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Serglycin is expressed by a variety of cell types and mediates different functions in both normal and pathological conditions by interacting with different biological molecules, such as the CD44 receptor. Many studies suggest that serglycin has a crucial role in inflammatory response, but there are limited data on the functions of this proteoglycan in chondrocytes. In this study we investigated the effect of serglycin knockdown induced by a specific serglycin small interfering RNA (SRGN siRNA) in normal mouse chondrocytes stimulated with lipopolysaccharide (LPS). LPS administration in normal chondrocytes increased the expression of serglycin mRNA and related protein and the production of the pro-inflammatory mediators TNF-alpha, IL-1beta, IL-6, iNOS and MMP-9, through NF-kB activation. In addition, a marked increased expression of CD44 after LPS stimulation was observed. Notably, the CD44 expression and the inflammatory response were significantly reduced by SRGN siRNA treatment in LPS treated chondrocytes. Similar results were obtained in normal mouse chondrocytes exposed to LPS, using a specific blocking antibody against CD44. These results indicate that serglycin produced in LPS-induced inflammation in normal mouse chondrocytes is able to modulate inflammation by interacting with CD44 receptor, suggesting a possible key role in the cartilage inflammation.
Collapse
Affiliation(s)
- Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy.
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy
| |
Collapse
|
10
|
Chockalingam R, Duvic M. Scleromyxedema: long-term follow-up after high-dose melphalan with autologous stem cell transplantation. Int J Dermatol 2016; 55:e539-43. [PMID: 27207484 DOI: 10.1111/ijd.13315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Scleromyxedema is a cutaneous mucinosis that is often accompanied by severe systemic manifestations. New therapeutic options have been introduced for this condition, but data on the long-term efficacy of treatments are limited. OBJECTIVES This study was designed to evaluate the long-term efficacy and safety of treatment with high-dose melphalan and autologous peripheral blood stem cell transplantation (PBSCT). METHODS In an original study published in 2006, seven patients with scleromyxedema were treated with high-dose melphalan and autologous PBSCT between April 2000 and November 2003. This follow-up retrospective study evaluated the long-term efficacy and safety of the treatment in five of the original seven patients. RESULTS Responses were seen in all five patients. Three patients achieved complete responses, and one achieved a partial response. One patient achieved a complete response followed by a partial response after recurrence. Paraprotein levels were stable in two patients. In one patient, paraprotein level was undetectable 10 years following treatment, and in the other two patients, paraprotein levels decreased significantly following treatment. No long-term complications or adverse effects were noted in any of the patients. CONCLUSIONS High-dose melphalan with autologous stem cell transplantation appears to be a safe and effective long-term treatment in patients with scleromyxedema. However, further studies are required to investigate this in larger groups of patients.
Collapse
Affiliation(s)
| | - Madeleine Duvic
- Department of Dermatology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Nakamura K, Jinnin M, Kudo H, Inoue K, Nakayama W, Honda N, Kajihara I, Masuguchi S, Fukushima S, Ihn H. The role of PSMB9 upregulated by interferon signature in the pathophysiology of cutaneous lesions of dermatomyositis and systemic lupus erythematosus. Br J Dermatol 2016; 174:1030-41. [PMID: 26713607 DOI: 10.1111/bjd.14385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dermatomyositis (DM) and systemic lupus erythematosus (SLE) have common skin features, including dermal mucin deposition and interferon signature, although their roles are unknown. OBJECTIVES To identify common or specific molecular changes in DM and SLE skin. METHODS Proteomic analysis was performed using DM and healthy skin. Glycosaminoglycans were analysed by high-performance liquid chromatography. RESULTS The expression of 60 proteins was upregulated or downregulated in DM skin compared with healthy skin in the proteomic analysis. Among those proteins, PSMB9, an immunoproteasome subunit, was upregulated in the epidermis of DM and SLE, but not in other skin diseases. Furthermore, versican V1, a core protein for glycosaminoglycans, was upregulated, while type I collagen was downregulated in the dermis of DM and SLE skin. Interferon stimulated PSMB9 expression in cultured keratinocytes and reduced collagen expression in dermal fibroblasts, but did not affect versican expression. The PSMB9 knock-down in keratinocytes led to significant suppression of transforming growth factor (TGF)-β2 and TGF-β3, inducers of versican synthesis. TGF-β3 expression was upregulated in both DM and SLE, while TGF-β2 expression was increased only in the DM epidermis. ΔDiHS-diS1, a component of heparan sulfate, was significantly increased only in DM. TGF-β2 expression significantly increased the ΔDiHS-diS1 expression in dermal fibroblasts in vitro. CONCLUSIONS The interferon signature in DM and SLE skin reduces collagen in dermal fibroblasts, whereas overexpression of PSMB9 induced by interferon stimulates versican inducers in epidermal keratinocytes. In addition, the TGF-β2-ΔDiHS-diS1 pathway may be responsible for the specific molecular change in DM skin.
Collapse
Affiliation(s)
- K Nakamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - M Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - H Kudo
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - K Inoue
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - W Nakayama
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - N Honda
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - I Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - S Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - S Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - H Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| |
Collapse
|
12
|
Smith MM, Melrose J. Proteoglycans in Normal and Healing Skin. Adv Wound Care (New Rochelle) 2015; 4:152-173. [PMID: 25785238 DOI: 10.1089/wound.2013.0464] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 02/04/2023] Open
Abstract
Significance: Proteoglycans have a distinct spatial localization in normal skin and are essential for the correct structural development, organization, hydration, and functional properties of this tissue. The extracellular matrix (ECM) is no longer considered to be just an inert supportive material but is a source of directive, spatial and temporal, contextual information to the cells via components such as the proteoglycans. There is a pressing need to improve our understanding of how these important molecules functionally interact with other matrix structures, cells and cellular mediators in normal skin and during wound healing. Recent Advances: New antibodies to glycosaminoglycan side chain components of skin proteoglycans have facilitated the elucidation of detailed localization patterns within skin. Other studies have revealed important proliferative activities of proteinase-generated fragments of proteoglycans and other ECM components (matricryptins). Knockout mice have further established the functional importance of skin proteoglycans in the assembly and homeostasis of the normal skin ECM. Critical Issues: Our comprehension of the molecular and structural complexity of skin as a complex, dynamic, constantly renewing, layered connective tissue is incomplete. The impact of changes in proteoglycans on skin pathology and the wound healing process is recognized as an important area of pathobiology and is an area of intense investigation. Future Directions: Advanced technology is allowing the development of new artificial skins. Recent knowledge on skin proteoglycans can be used to incorporate these molecules into useful adjunct therapies for wound healing and for maintenance of optimal tissue homeostasis in aging skin.
Collapse
Affiliation(s)
- Margaret Mary Smith
- Raymond Purves Research Laboratories, Kolling Institute (University of Sydney), Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - James Melrose
- Raymond Purves Research Laboratories, Kolling Institute (University of Sydney), Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
13
|
Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, Theocharis AD. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 2014; 3:327. [PMID: 24455486 PMCID: PMC3888995 DOI: 10.3389/fonc.2013.00327] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Serglycin has been initially characterized as an intracellular proteoglycan expressed by hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in granules, where it interacts with numerous inflammatory mediators, such as proteases, chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the granules and their protection since they are secreted as complexes and delivered to their targets after secretion. During the last decade, numerous studies have demonstrated that serglycin is also synthesized by various non-hematopoietic cell types. It has been shown that serglycin is highly expressed by tumor cells and promotes their aggressive phenotype and confers resistance against drugs and complement system attack. Apart from its direct beneficial role to tumor cells, serglycin may promote the inflammatory process in the tumor cell microenvironment thus enhancing tumor development. In the present review, we discuss the role of serglycin in inflammation and tumor progression.
Collapse
Affiliation(s)
- Angeliki Korpetinou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review will provide the clinician with an update on the pathogenesis, clinical manifestations, and therapy for skin disease in dermatomyositis. Recent insights into the role for interferon in skin disease as well as the development and validation of quantitative tools to measure skin disease activity allow the possibility that, for the first time, dermatomyositis skin disease can serve as a valid outcome for clinical trials of targeted therapies. Also, the increasing appreciation of the heterogeneity of skin disease in dermatomyositis has already provided evidence that clinical subtypes of disease can provide important prognostic and diagnostic information to the clinician. RECENT FINDINGS It is becoming apparent that the skin inflammation alone has implications for systemic and malignancy risk in dermatomyositis patients, and that there may be several pathogenic similarities between muscle and skin inflammation in dermatomyositis. Recent data on therapy for calcinosis cutis highlights that more prospective studies are needed to evaluate how best to manage all manifestations of skin inflammation in dermatomyositis. SUMMARY A more careful description and classification of skin disease in dermatomyositis may allow the clinician to predict more accurately which patients will be at higher risk for cancer, lung disease, or muscle inflammation. In addition, given the similarities in perturbed gene expression between skin and muscle tissue, it is likely that analysis of a more readily evaluable target organ such as skin might shed light on mechanisms of disease propagation throughout the body.
Collapse
|
15
|
Current world literature. Curr Opin Rheumatol 2012; 24:694-702. [PMID: 23018859 DOI: 10.1097/bor.0b013e328359ee5b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Couchman JR, Pataki CA. An introduction to proteoglycans and their localization. J Histochem Cytochem 2012; 60:885-97. [PMID: 23019015 DOI: 10.1369/0022155412464638] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteoglycans comprise a core protein to which one or more glycosaminoglycan chains are covalently attached. Although a small number of proteins have the capacity to be glycanated and become proteoglycans, it is now realized that these macromolecules have a range of functions, dependent on type and in vivo location, and have important roles in invertebrate and vertebrate development, maintenance, and tissue repair. Many biologically potent small proteins can bind glycosaminoglycan chains as a key part of their function in the extracellular matrix, at the cell surface, and also in some intracellular locations. Therefore, the participation of proteoglycans in disease is receiving increased attention. In this short review, proteoglycan structure, function, and localizations are summarized, with reference to accompanying reviews in this issue as well as other recent literature. Included are some remarks on proteoglycan and glycosaminoglycan localization techniques, with reference to the special physicochemical properties of these complex molecules.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| | | |
Collapse
|
17
|
Scully OJ, Chua PJ, Harve KS, Bay BH, Yip GW. Serglycin in Health and Diseases. Anat Rec (Hoboken) 2012; 295:1415-20. [DOI: 10.1002/ar.22536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/17/2012] [Accepted: 06/23/2012] [Indexed: 11/08/2022]
|
18
|
Gottron's papules exhibit dermal accumulation of CD44 variant 7 (CD44v7) and its binding partner osteopontin: a unique molecular signature. J Invest Dermatol 2012; 132:1825-32. [PMID: 22456539 PMCID: PMC3375388 DOI: 10.1038/jid.2012.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accumulated mucin in non-Gottron’s dermatomyositis (DM) lesions is primarily chondroitin-4-sulfate (C4S), which is immunomodulatory in vitro. Gottron’s papules are a particularly resistant manifestation of DM that often persist after other lesions have resolved with therapy. We examined non-Gottron’s DM lesions and Gottron’s papule skin biopsies for C4S, CD44v7, a CS-binding isoform causally implicated in autoimmunity, and osteopontin, a CD44v7 ligand implicated in chronic inflammation. Gottron’s papule dermis contained more C4S and CD44v7 than non-Gottron’s lesions. Normal skin showed less CD44v7 over joints relative to Gottron’s lesions. All DM dermis had increased osteopontin compared to healthy skin. Mechanically stretching cultured fibroblasts for six hours induced CD44v7 mRNA and protein, while IFN-γ treatment induced OPN mRNA and protein. Osteopontin alone did not induce CD44v7, but stretching dermal fibroblasts in the presence of osteopontin increased THP-1 monocyte binding, which is blunted by anti-CD44v7 blocking antibody. C4S, CD44v7, and osteopontin are three molecules uniquely present in Gottron’s papules that contribute to inflammation individually and in association with one another. We propose that stretch-induced CD44v7 over joints, in concert with dysregulated osteopontin levels in the skin of DM patients, increases local inflammatory cell recruitment and contributes to the pathogenesis and resistance of Gottron’s papules.
Collapse
|