1
|
Kurotani R, Sato Y, Okawara A, Fukuda N, Hada K, Sakahara S, Takakura K, Abe H, Konno H, Kimura S. Secretoglobin 3A2 peptides have therapeutic potential for allergic airway inflammation. Life Sci 2024; 359:123222. [PMID: 39515417 PMCID: PMC11631205 DOI: 10.1016/j.lfs.2024.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Three isoforms of secretoglobin (SCGB) 3A2, namely type A, B, and C, are endogenously produced through alternative splicing. SCGB3A2 type A, the correctly spliced major type, begins to be expressed from embryonic day 11.5 in mice and shows various physiological activities such as promoting lung maturation and bronchial branching, anti-inflammatory effects, and ameliorating induced pulmonary fibrosis. To investigate the potential of SCGB3A2 peptides as a therapeutic to treat respiratory diseases, in this study, serially overlapping nine peptides were synthesized to cover the entire type C isoform, and five and one peptides covering the C-terminal region of type A and B, respectively. To evaluate their biological activities, each peptide was subjected to cell proliferation and apoptosis analyses in vitro using mouse lung fibroblast-derived MLg cells, bronchial branching rate using ex vivo mouse fetal lung organ cultures, and in vivo allergic airway inflammation mouse model. Among type A and C peptides, those corresponding to the C-terminal region of the SCGB3A2 sequence exhibited its unique biological activities of promoting cell proliferation and bronchial branching, and/or inhibiting apoptosis. The type B peptide did not show any proliferative effect while inhibited apoptosis. In a mouse model of allergic airway inflammation, lung inflammation was improved by the administration of most of the C-terminal region-derived type A and type C peptides. The results suggest that the bioactivity resides towards the C-terminal region of SCGB3A2 sequence, and the peptides covering this region could be used as a therapeutic in treating lung inflammation.
Collapse
Affiliation(s)
- Reiko Kurotani
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan.
| | - Yui Sato
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Nichika Fukuda
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kengo Hada
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | | | - Kei Takakura
- Faculty of Engineering, Yamagata University, Yamagata, Japan
| | - Hiroyuki Abe
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Guo Y, Donnelly LE. Identification of an emphysema-specific ATII cell: a step towards understanding impaired lung regeneration in COPD? Eur Respir J 2024; 64:2401741. [PMID: 39638365 DOI: 10.1183/13993003.01741-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Yiling Guo
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Yu Y, Liu JY, Yang HJ, Luo XQ, Gao XP, Huang XX, Tang AX, Mary Cheng HY, Liu WC, Zhang P. Circadian disruption during fetal development promotes pathological cardiac remodeling in male mice. iScience 2024; 27:109008. [PMID: 38352228 PMCID: PMC10863319 DOI: 10.1016/j.isci.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Disruption of circadian rhythms during fetal development may predispose mice to developing heart disease later in life. Here, we report that male, but not female, mice that had experienced chronic circadian disturbance (CCD) in utero were more susceptible to pathological cardiac remodeling compared with mice that had developed under normal intrauterine conditions. CCD-treated males showed ventricular chamber dilatation, enhanced myocardial fibrosis, decreased contractility, higher rates of induced tachyarrhythmia, and elevated expression of biomarkers for heart failure and myocardial remodeling. In utero CCD exposure also triggered sex-dependent changes in cardiac gene expression, including upregulation of the secretoglobin gene, Scgb1a1, in males. Importantly, cardiac overexpression of Scgb1a1 was sufficient to induce myocardial hypertrophy in otherwise naive male mice. Our findings reveal that in utero CCD exposure predisposes male mice to pathological remodeling of the heart later in life, likely as a consequence of SCGB1A1 upregulation.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hui-Jiao Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Qin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ping Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Xin Huang
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ao-Xue Tang
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Wei-Chao Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
4
|
Chae S, Park TJ, Kwon T. Convergent differentiation of multiciliated cells. Sci Rep 2023; 13:23028. [PMID: 38155158 PMCID: PMC10754865 DOI: 10.1038/s41598-023-50077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Multiciliated cells (MCCs) are epithelial cells that control body fluid flow and contribute to the clearance of pathogenic microbes and other particles from the airways, egg transport in oviducts, and circulation of cerebrospinal fluid in the central nervous system. Although MCCs have shared functions to control fluid flow via coordinated motility of multiple ciliary structures, they are found in multiple mammalian tissues originating from distinct germ layers and differentiate via distinct developmental pathways. To understand the similarities and differences of MCCs in multiple tissues, we investigated single-cell transcriptome data of nasal epithelial cells, bronchial tubes, fallopian tubes, and ependymal cells in the subventricular zone from humans and mice by cross-species data integration. Expression of cilia-associated genes was indistinguishable between these MCCs, although cell populations had unique properties by the species and tissue, demonstrating that they share the same final differentiation status for ciliary functions. We further analyzed the final differentiation step of MCCs from their distinctive progenitors and confirmed their convergent gene set expression for ciliogenesis at the final step. These results may provide new insight into understanding ciliogenesis during the developmental process.
Collapse
Affiliation(s)
- Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
5
|
Chen M, Wang J, Yuan M, Long M, Sun Y, Wang S, Luo W, Zhou Y, Zhang W, Jiang W, Chao J. AT2 cell-derived IgA trapped by the extracellular matrix in silica-induced pulmonary fibrosis. Int Immunopharmacol 2023; 122:110545. [PMID: 37390644 DOI: 10.1016/j.intimp.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Mengling Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yuheng Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sha Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun Zhou
- Department of Health Management, School of Health Science, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Wei Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China.
| |
Collapse
|
6
|
Kurotani R, Ono S, Miyano Y, Nakayama S, Liu H, Aibara D, Sakahara S, Sato M, Sato K, Inoue S, Shibata Y, Lee MP, Abe H, Kimura S. Secretoglobin 3A2 protects lung from developing cigarette smoke-induced pulmonary emphysema. Int J Biochem Cell Biol 2023; 157:106390. [PMID: 36796505 PMCID: PMC10118454 DOI: 10.1016/j.biocel.2023.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Secretoglobin (SCGB) 3A2 is a bioactive molecule exhibiting various functions such as improving allergic airway inflammation and pulmonary fibrosis and promoting bronchial branching and proliferation during lung development. To determine if and how SCGB3A2 is involved in chronic obstructive pulmonary disease (COPD), a multifactorial disease with both airway and emphysematous lesions, a COPD mouse model was created by exposing Scgb3a2-deficient (KO), Scgb3a2-lung-specific overexpressing (TG), and wild type (WT) mice to cigarette smoke (CS) for 6 months. The KO mice showed loss of lung structure under control condition, and CS exposure resulted in more expansion of airspace and destruction of alveolar wall than WT mouse lungs. In contrast, TG mouse lungs showed no significant changes after CS exposure. SCGB3A2 increased the expression and phosphorylation of signal transducers and activators of transcription (STAT)1 and STAT3, and the expression of α1-antitrypsin (A1AT) in mouse lung fibroblast-derived MLg cells and mouse lung epithelial-derived MLE-15 cells. In MLg cells, A1AT expression was decreased in Stat3-knockdown cells, and increased upon Stat3 overexpression. STAT3 formed a homodimer when cells were stimulated with SCGB3A2. Chromatin immunoprecipitation and reporter assays demonstrated that STAT3 binds to specific binding sites on the Serpina1a gene encoding A1AT and upregulates its transcription in lung tissues of mice. Furthermore, nuclear localization of phosphorylated STAT3 upon SCGB3A2 stimulation was detected by immunocytochemistry. These findings demonstrate that SCGB3A2 protects the lungs from the development of CS-induced emphysema by regulating A1AT expression through STAT3 signaling.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan.
| | - Sotaro Ono
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Yuki Miyano
- Genome Informatics Unit, Institute for Promotion of Medical Science Research, Yamagata University School of Medicine, Yamagata, Japan
| | - Shun Nakayama
- Department of Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan; Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Huaitian Liu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA; Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Daisuke Aibara
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, USA; Faculty of Pharmaceutical Science, Fukuoka University, Japan
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
7
|
Li X, Wei S, Deng L, Tao H, Liu M, Zhao Z, Du X, Li Y, Hou J. Sex-biased molecular differences in lung adenocarcinoma are ethnic and smoking specific. BMC Pulm Med 2023; 23:99. [PMID: 36964522 PMCID: PMC10039609 DOI: 10.1186/s12890-023-02387-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Sex-related differences in cancer epidemiology, tumor biology, immune system activity, and pharmacogenomics have been suggested to be important considerations for precision cancer control. Here we elucidated systematically sex biases in genetic variants, gene expression profiles, and immunological landscapes of lung adenocarcinoma patients (LUADs) with different ancestry and smoking status. METHODS Somatic mutation and mRNA expression data of Asian and Non-Asian LUADs were obtained from public databases. Sex-biased genetic mutations, gene expression, biological pathways, and immune infiltration were identified in the context of smoking status and race. RESULTS Among nonsmokers, male-biased mutations were prevalent in Asian LUADs, while few sex-biased mutations were detected in Non-Asian LUADs. EGFR was the only mutation whose frequency was significantly higher in females than males in both Asian and Non-Asian nonsmokers. More genes exhibited sex-biased expression in Non-Asian LUADs compared to Asian LUADs. Moreover, genes distinctly expressed in females were mainly related to immune-related pathways, whereas those in males were more involved in activation of DNA repair, E2F_targets, and MYC_targets pathways. We also detected sex-specific immune infiltration in the context of genetic variation. In EGFR-mutant LUADs, males had a significantly increased infiltration of CD8 + T cells, whereas resting CD4 + memory T cells were more abundant in females. Additionally, in KRAS-mutant LUADs, CD8 + and CD4 + T cells were more abundant in females than males. In addition, we detected all female patients with high SCGB3A2 expression were exclusively sensitive to immunotherapy, while this phenomenon was not observed in male patients. CONCLUSIONS Our findings provided evidence that sex-related molecular and cellular components are involved in shaping tumor distinct genetic and immune features, which might have important impact on personalized targeted and immune therapy.
Collapse
Affiliation(s)
- Xuetao Li
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Liaoyuan Deng
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - HongYan Tao
- Department of Pulmonary Diseases, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Mingkai Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Yujun Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Jun Hou
- Center for Medical Research On Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
8
|
Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec (Hoboken) 2023. [PMID: 36808710 DOI: 10.1002/ar.25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Exciting new imaging and molecular tools, combined with state-of-the-art genetically modified mouse models, have recently boosted interest in pulmonary (vagal) sensory pathway investigations. In addition to the identification of diverse sensory neuronal subtypes, visualization of intrapulmonary projection patterns attracted renewed attention on morphologically identified sensory receptor end-organs, such as the pulmonary neuroepithelial bodies (NEBs) that have been our area of expertise for the past four decades. The current review aims at providing an overview of the cellular and neuronal components of the pulmonary NEB microenvironment (NEB ME) in mice, underpinning the role of these complexly organized structures in the mechano- and chemosensory potential of airways and lungs. Interestingly, the pulmonary NEB ME additionally harbors different types of stem cells, and emerging evidence suggests that the signal transduction pathways that are active in the NEB ME during lung development and repair also determine the origin of small cell lung carcinoma. Although documented for many years that NEBs appear to be affected in several pulmonary diseases, the current intriguing knowledge on the NEB ME seems to encourage researchers that are new to the field to explore the possibility that these versatile sensor-effector units may be involved in lung pathogenesis or pathobiology.
Collapse
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Kimura S, Yokoyama S, Pilon AL, Kurotani R. Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol Ther 2022; 236:108112. [PMID: 35016921 PMCID: PMC9271138 DOI: 10.1016/j.pharmthera.2022.108112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Secretoglobin (SCGB) 3A2 was first identified in 2001 as a protein exhibiting similarities in amino acid sequence and gene structure to SCGB1A1, a multi-functional cytokine-like molecule highly expressed in airway epithelial Club cells that was the first identified and extensively studied member of the SCGB gene superfamily. SCGB3A2 is a small secretory protein of ~10 kDa that forms a dimer and a tetramer. SCGB3A2 is predominantly expressed in airway epithelial Club cells, and has anti-inflammatory, growth factor, anti-fibrotic, and anti-cancer activities that influence various lung diseases. This review summarizes the current understanding of SCGB3A2 biological functions and its role in human diseases with emphasis on its mechanisms of actions and signaling pathway.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shigetoshi Yokoyama
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Kurotani R, Kurumazuka A, Sakahara S, Takakura K, Yokoyama Y, Xu L, Dai J, Lee MP, Kumaki N, Abe H, Kimura S. Development of Aging-Related Emphysematous and Lymphoma-Like Lesions is Enhanced by the Lack of Secretoglobin 3A2 in Mouse Lungs. Int J Chron Obstruct Pulmon Dis 2022; 17:1247-1260. [PMID: 35651829 PMCID: PMC9150920 DOI: 10.2147/copd.s330170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Secretoglobin (SCGB) 3A2 is a novel bioactive molecule with anti-inflammatory and anti-fibrotic activities. SCGB3A2 also promotes the maturation of bronchial divergence and the lungs during embryonic development. However, much remains unknown concerning the roles of SCGB3A2 in diseases associated with aging. Methods The lungs of Scgb3a2-knockout (KO) mice and their wild-type (WT) littermates were subjected to histological analysis, Victoria blue staining to evaluate of elastic fibers, and lung morphometric analysis during the postnatal period (birth to 8 weeks) and during aging (8 weeks to 2 years). Their spleens were also histologically evaluated. The expression of lung surfactant protein (SP) mRNAs was examined by quantitative reverse transcriptase-polymerase chain reaction. RNA sequencing (RNAseq) analysis was performed on 3-month-old KO and WT mouse lungs. Results The alveolar spaces of KO mice continuously expanded between 0.5 and 2 years of age, accompanied by increases of the mean linear intercept and destructive index. KO mouse lungs displayed inflammation associated with lymphocyte aggregate starting at 1 year of age, and the inflammation was worse than that of WT mouse lungs. A high number of lymphoma-like cells were presented in 2-year-old KO mouse lungs. White pulp fusion was detected in the spleens of both WT and KO mice older than 0.5 years; however, the fusion was more severe in KO mice than in WT mice. The expression of surfactant protein (SP)-A, SP-B, SP-C, and SP-D mRNAs in KO mouse lungs decreased with age, and after 1 year of age, the expression of most SPs was significantly lower in KO mice than in WT mice. RNAseq demonstrated that the expression of immune system-related genes was highly altered in KO mouse lungs. Conclusion SCGB3A2 may be required for maintaining homeostasis and immune activity in the lungs during aging. SCGB3A2 deficiency might increase the risk of emphysema of the lung.
Collapse
Affiliation(s)
- Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Akira Kurumazuka
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Kei Takakura
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Yutaro Yokoyama
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Lei Xu
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jieqiong Dai
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nobue Kumaki
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Hongu T, Pein M, Insua-Rodríguez J, Gutjahr E, Mattavelli G, Meier J, Decker K, Descot A, Bozza M, Harbottle R, Trumpp A, Sinn HP, Riedel A, Oskarsson T. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. NATURE CANCER 2022; 3:486-504. [PMID: 35469015 PMCID: PMC9046090 DOI: 10.1038/s43018-022-00353-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.
Collapse
Affiliation(s)
- Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Kristin Decker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Arnaud Descot
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Bozza
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Heidelberg, Germany.
- Department of Molecular Oncology and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
13
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
14
|
Song X, Chen Q, Wang J, Mao Q, Xia W, Xu L, Jiang F, Dong G. Clinical and prognostic implications of an immune-related risk model based on TP53 status in lung adenocarcinoma. J Cell Mol Med 2021; 26:436-448. [PMID: 34877770 PMCID: PMC8743672 DOI: 10.1111/jcmm.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/08/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
TP53 mutation is the most widespread mutation in lung adenocarcinoma (LUAD). Meanwhile, p53 (encoded by TP53) has recently been implicated in immune responses. However, it is still unknown whether TP53 mutation remodels the tumour microenvironment to influence tumour progression and prognosis in LUAD. In this study, we developed a 6‐gene immune‐related risk model (IRM) to predict the survival of patients with LUAD in The Cancer Genome Atlas (TCGA) cohort based on TP53 status, and the predictive ability was confirmed in 2 independent cohorts. TP53 mutation led to a decreased immune response in LUAD. Further analysis revealed that patients in the high‐index group had observably lower relative infiltration of memory B cells and regulatory T cells and significantly higher relative infiltration of neutrophils and resting memory CD4+ T cells. Additionally, the IRM index positively correlated with the expression of critical immune checkpoint genes, including PDCD1 (encoding PD‐1) and CD274 (encoding PD‐L1), which was validated in the Nanjing cohort. Furthermore, as an independent prognostic factor, the IRM index was used to establish a nomogram for clinical application. In conclusion, this IRM may serve as a powerful prognostic tool to further optimize LUAD immunotherapy.
Collapse
Affiliation(s)
- Xuming Song
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | | | - Jifan Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Qixing Mao
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Wenjie Xia
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
15
|
Melocchi V, Dama E, Mazzarelli F, Cuttano R, Colangelo T, Di Candia L, Lugli E, Veronesi G, Pelosi G, Ferretti GM, Taurchini M, Graziano P, Bianchi F. Aggressive early-stage lung adenocarcinoma is characterized by epithelial cell plasticity with acquirement of stem-like traits and immune evasion phenotype. Oncogene 2021; 40:4980-4991. [PMID: 34172935 DOI: 10.1038/s41388-021-01909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Lung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40-50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis. However, the biological and molecular features of such subtypes have not been further explored. Consequently, the mechanisms driving the emergence of aggressive LUAD remained unclear. Here, we adopted a multi-tiered approach ranging from molecular to functional characterization of LUAD and used it on multiple cohorts of patients (for a total of 1227 patients) and LUAD cell lines. We investigated the tumor transcriptome and the mutational and immune gene expression profiles, and we used LUAD cell lines for cancer cell phenotypic screening. We found that loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and immune evasion phenotypes, explain the aggressive behavior of a specific subset of lung adenocarcinoma that we called C1-LUAD, including early-stage disease. This subset can be identified using a 10-gene prognostic signature. Poor prognosis patients appear to have this specific molecular lung adenocarcinoma subtype which is characterized by peculiar molecular and biological features. Our data support the hypothesis that transformed lung stem/progenitor cells and/or reprogrammed epithelial cells with CSC characteristics are hallmarks of this aggressive disease. Such discoveries suggest alternative, more aggressive, therapeutic strategies for early-stage C1-LUAD.
Collapse
Affiliation(s)
- Valentina Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Dama
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Mazzarelli
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Roberto Cuttano
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Colangelo
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Leonarda Di Candia
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Giulia Veronesi
- Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy
| | - Gian Maria Ferretti
- Thoracic Surgical Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Taurchini
- Thoracic Surgical Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
16
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
17
|
Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 2021; 40:6748-6758. [PMID: 34663877 PMCID: PMC8677623 DOI: 10.1038/s41388-021-02054-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
Recent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.
Collapse
|
18
|
Schmelzer E, Miceli V, Chinnici CM, Bertani A, Gerlach JC. Effects of Mesenchymal Stem Cell Coculture on Human Lung Small Airway Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9847579. [PMID: 32309444 PMCID: PMC7149353 DOI: 10.1155/2020/9847579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) and their secreted extracellular vesicles have been used effectively in different lung disease animal models and clinical trials. Their specific beneficial effects, the potential differences between MSCs derived from different organs, and interactions between MSC products and target cells still need to be studied further. Therefore, we investigated the effects of secreted products of human MSCs derived from the bone marrow and adipose tissue on human lung small airway epithelial (AE) cells in vitro. AE cells were cocultured with MSCs in inserts that allowed the free exchange of medium but did not allow direct cell-to-cell contact. We examined the effects on AE cell viability, proliferation, cell numbers, expression of AE cell-specific genes, and CD54 (intercellular adhesion molecule 1 (ICAM1)) surface positivity, as well as the secretion/uptake of growth factors relevant for AE cell. We found that coculture increased the viability of AE cells. The majority of AE cells expressed CD54 on their surface, but the percentage of cells being positive for CD54 did not increase in coculture. However, ICAM1 gene expression was increased in coculture. Also, we observed increased gene expression of mucin (MUC1), a lung-enriched cell surface glycoprotein. These observed effects were the same between bone marrow and adipose tissue MSCs. However, MSCs derived from adipose tissue reduced angiopoietin concentrations in coculture, whereas those from the bone marrow did not. Conclusively, MSCs influenced AE cells positively by increasing their viability and affecting gene expression, with some effects being specific for the tissue origin of MSCs.
Collapse
Affiliation(s)
- Eva Schmelzer
- 1Department of Surgery, University of Pittsburgh, Pennsylvania, USA
| | - Vitale Miceli
- 2Research Department, IRCCS-ISMETT Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, UPMC Italy, Palermo, Italy
| | - Cinzia Maria Chinnici
- 3Fondazione Ri.MED, Regenerative Medicine and Biomedical Technologies Unit, UPMC Italy, Palermo, Italy
- 4Regenerative Medicine and Biomedical Technologies Unit, IRCCS-ISMETT Palermo, Italy
| | - Alessandro Bertani
- 5Division of Thoracic Surgery and Lung Transplantation, IRCCS-ISMETT Palermo, Italy
| | - Jörg C. Gerlach
- 1Department of Surgery, University of Pittsburgh, Pennsylvania, USA
- 6Department of Bioengineering, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|