1
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
2
|
Rey V, Tornín J, Alba-Linares JJ, Robledo C, Murillo D, Rodríguez A, Gallego B, Huergo C, Viera C, Braña A, Astudillo A, Heymann D, Szuhai K, Bovée JVMG, Fernández AF, Fraga MF, Alonso J, Rodríguez R. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine 2024; 102:105090. [PMID: 38547578 PMCID: PMC10990714 DOI: 10.1016/j.ebiom.2024.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).
Collapse
Affiliation(s)
- Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Jose Alba-Linares
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Cristina Viera
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Alejandro Braña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Traumatology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab. Université de Nantes, 44805, Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustín F Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Matsuo H, Inagami A, Ito Y, Ito N, Iyoda S, Harata Y, Higashitani M, Shoji K, Tanaka M, Noura M, Mikami T, Kato I, Takita J, Nakahata T, Adachi S. Parbendazole as a promising drug for inducing differentiation of acute myeloid leukemia cells with various subtypes. Commun Biol 2024; 7:123. [PMID: 38267545 PMCID: PMC10808455 DOI: 10.1038/s42003-024-05811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy characterized by differentiation arrest of hematopoietic precursor cells. Differentiation therapy is effective for patients with acute promyelocytic leukemia; however, only a few effective differentiation therapies have been established for patients with other AML subtypes. In this study, seven benzimidazole anthelmintics were examined to determine the effects of differentiation on AML cells. The expression of monocyte markers (CD11b and CD14) was elevated after treatment with most benzimidazole anthelmintics. Among these drugs, parbendazole (PBZ) induced AML cell differentiation at low concentration. PBZ induced the monocyte marker expression, KLF4/DPYSL2A gene expression, and apoptosis for 21 AML cell lines with various subtypes and a primary AML sample. Finally, an in vivo analysis using an AML patient-derived xenograft mouse model showed a significant decrease in the chimerism level and prolonged survival in PBZ-treated mice. These findings could lead to a more effective differentiation therapy for AML.
Collapse
Affiliation(s)
- Hidemasa Matsuo
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Aina Inagami
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuri Ito
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nana Ito
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinju Iyoda
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutarou Harata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Moe Higashitani
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kota Shoji
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miu Tanaka
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mina Noura
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Schoedel K, Heim T, Duensing A, Lohse I, Presutti L, Belayneh R, Bhogal S, Singh-Varma A, Chang A, Chandran U, Marker D, Szabo-Rogers H, Weiss K. Grade 2, 3 and Dedifferentiated Chondrosarcomas: A Comparative Study of Isocitrate Dehydrogenase-Mutant and Wild-Type Tumors with Implications for Prognosis and Therapy. Cancers (Basel) 2024; 16:247. [PMID: 38254737 PMCID: PMC10813891 DOI: 10.3390/cancers16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Grade 2 and 3 and dedifferentiated chondrosarcomas (CS) are frequently associated with isocitrate dehydrogenase (IDH) mutations and often exhibit a poor clinical outcome. Treatment is limited mainly to surgery. Defining IDH status (wild type (WT) and mutant) and the associated transcriptome may prove useful in determining other therapeutic options in these neoplasms. METHODS Formalin-fixed paraffin-embedded material from 69 primary and recurrent grade 2, 3 and dedifferentiated CS was obtained. DNA sequencing for IDH1 and IDH2 mutations (n = 47) and RNA sequencing via Nextseq 2000 (n = 14) were performed. Differentially expressed genes (DEGs) were identified and used to predict aberrant biological pathways with Ingenuity Pathway Analysis (IPA) software (Qiagen). Gene Set Enrichment Analyses (GSEA) using subsets C3, C5 and C7 were performed. Differentially expressed genes were validated by immunohistochemistry. Outcome analysis was performed using the Wilcoxon test. RESULTS A set of 69 CS (28 females, 41 males), average age 65, distributed among femur, pelvis, humerus, and chest wall were identified from available clinical material. After further selection based on available IDH status, we evaluated 15 IDH WT and 32 IDH mutant tumors as part of this dataset. Out of 15 IDH WT tumors, 7 involved the chest wall/scapula, while 1 of 32 mutants arose in the scapula. There were far more genes overexpressed in IDH WT tumors compared to IDH mutant tumors. Furthermore, IDH WT and IDH mutant tumors were transcriptomically distinct in the IPA and GSEA, with IDH mutant tumors showing increased activity in methylation pathways and endochondral ossification, while IDH WT tumors showed more activity in normal matrix development pathways. Validation immunohistochemistry demonstrated expression of WT1 and AR in IDH WT tumors, but not in IDH mutants. SATB2 was expressed in IDH mutant tumors and not in WT tumors. Outcome analysis revealed differences in overall survival between mutant and WT tumors (p = 0.04), dedifferentiated mutant and higher-grade (2, 3) mutant tumors (p = 0.03), and dedifferentiated mutant and higher-grade (2, 3) WT tumors (p = 0.03). The longest survival times were observed in patients with higher-grade WT tumors, while patients with dedifferentiated mutant tumors showed the lowest survival. Generally, patients with IDH WT tumors displayed longer survival in both the higher-grade and dedifferentiated groups. CONCLUSIONS Grade 2, 3 and dedifferentiated chondrosarcomas are further characterized by IDH status, which in turn informs transcriptomic phenotype and overall survival. The transcriptome is distinct depending on IDH status, and implies different treatment targets.
Collapse
Affiliation(s)
- Karen Schoedel
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tanya Heim
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anette Duensing
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ines Lohse
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Laura Presutti
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rebekah Belayneh
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Sumail Bhogal
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anya Singh-Varma
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Daniel Marker
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Heather Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Kurt Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
5
|
Wang Q, Liang Q, Wei W, Niu W, Liang C, Wang X, Wang X, Pan H. Concordance analysis of cerebrospinal fluid with the tumor tissue for integrated diagnosis in gliomas based on next-generation sequencing. Pathol Oncol Res 2023; 29:1611391. [PMID: 37822669 PMCID: PMC10562547 DOI: 10.3389/pore.2023.1611391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Purpose: The driver mutations of gliomas have been identified in cerebrospinal fluid (CSF). Here we compared the concordance between CSF and tumor tissue for integrated diagnosis in gliomas using next-generation sequencing (NGS) to evaluate the feasibility of CSF detection in gliomas. Patients and methods: 27 paired CSF/tumor tissues of glioma patients were sequenced by a customized gene panel based on NGS. All CSF samples were collected through lumbar puncture before surgery. Integrated diagnosis was made by analysis of histology and tumor DNA molecular pathology according to the 2021 WHO classification of the central nervous system tumors. Results: A total of 24 patients had detectable circulating tumor DNA (ctDNA) and 22 had at least one somatic mutation or chromosome alteration in CSF. The ctDNA levels varied significantly across different ages, Ki-67 index, magnetic resonance imaging signal and glioma subtypes (p < 0.05). The concordance between integrated ctDNA diagnosis and the final diagnosis came up to 91.6% (Kappa, 0.800). We reclassified the clinical diagnosis of 3 patients based on the results of CSF ctDNA sequencing, and 4 patients were reassessed depending on tumor DNA. Interestingly, a rare IDH1 R132C was identified in CSF ctDNA, but not in the corresponding tumor sample. Conclusion: This study demonstrates a high concordance between integrated ctDNA diagnosis and the final diagnosis of gliomas, highlighting the practicability of NGS based detection of mutations of CSF in assisting integrated diagnosis of gliomas, especially glioblastoma.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Qiujin Liang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Wuting Wei
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Xiaoxuan Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
6
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
7
|
Cellular distribution of IDH mutations in AML during morphologic remission. Leuk Res 2023; 124:106993. [PMID: 36459762 DOI: 10.1016/j.leukres.2022.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Limited information exists about the cellular distribution of mutations which persist in remission in acute myeloid leukemia (AML) (variably considered pre-leukemic mutations). We hypothesized that mutations detectable in all cell compartments may be less pathogenic than those that are myeloid-restricted. Here, we describe the cellular compartments that have IDH mutations in five patients with IDH-mutated AML in morphologic remission. Unlike pre-leukemic clones harboring the more common DNMT3A, TET2 and ASXL1 (DTA) mutations, we show that IDH mutations are myeloid-restricted. This finding provides an explanation for the reports that IDH mutations carry a higher risk for relapse than DTA mutations. Detailed analysis of one case also shows acquisition of additional mutations in distinct cellular compartments, illustrating subclonal complexity associated with therapeutics.
Collapse
|
8
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
9
|
Glioblastoma Stem-Like Cells (GSCs) with Mesenchymal Signature: Lipid Profiles of Mobile Lipids Obtained with MRS before and after Radio/Chemical Treatments. Biomolecules 2022; 12:biom12081051. [PMID: 36008944 PMCID: PMC9405836 DOI: 10.3390/biom12081051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common and lethal primary malignant brain tumor in adults. Glioblastoma stem cells (GSCs) promote and are responsible for glioblastoma intratumoral heterogeneity and therapy resistance, due to their two main features: self-renewal and differentiation. Lipids have important biological and physiological functions that are critical for understanding the regulation and control of stem cell fate; lipid metabolism and related unsaturation levels play a possible role as the target of therapeutics to overcome glioblastoma radioresistance. This paper aimed at an in-depth analysis of 13 GSC mesenchymal (MES) lines, two subclones, and a stabilized glioblastoma line (T98G) by magnetic resonance spectroscopy (MRS). Particularly, 2D MRS was used to investigate lipid unsaturation behavior during growth in culture and after treatment with etomoxir and photon beams. MES lines, although belonging to the same genetic and metabolic cluster, showed metabolic heterogeneity when observed by MRS, focusing on lipid signals. Nonetheless, the observed unsaturation level stability for two representative lines after stressful treatments suggests unusual robustness of the unsaturation levels for each line, as a peculiar and intrinsic characteristic of GSCs.
Collapse
|
10
|
Fan S, Wu N, Chang S, Chen L, Sun X. The immune regulation of BCL3 in glioblastoma with mutated IDH1. Aging (Albany NY) 2022; 14:3856-3873. [PMID: 35488886 PMCID: PMC9134951 DOI: 10.18632/aging.204048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Background: Glioblastoma in the brain is the most malignant solid tumor with a poor prognosis. Screening critical targets and exploring underlying mechanisms will be a benefit for diagnoses and treatment. IDH1 mutation (R132) was used to distinguish glioblastoma grade and predict prognosis as a significant marker. However, the manner of IDH1 mutation regulating glioblastoma development was still unclear. Methods: To study the function of IDH1 mutation, multi-type sequencing data (transcriptome, methylation and copy number variation) from the GEO and TCGA database were analyzed using bioinformatics techniques. The biological functions of IDH1 mutation (R132) would be comprehensively evaluated from the regulatory networks, tumor immune microenvironment and clinical relevance. Then the analysis result would be validated by experimental techniques. Results: Compared with adjacent tissues, IDH1 was up-regulated in glioblastoma, which also positively correlated with the malignant degree and a poor prognosis. To further study the mechanism of mutated IDH1 (R132) function, 5 correlated genes (FABP5, C1RL, MIR155HG, CSTA and BCL3) were identified by different expression gene screening, enrichment analysis and network construction successively. Among them, the BCL3 was a transcription factor that may induce IDH1expression. Through calculating the correlation coefficient, it was found that in IDH1mut glioblastoma, the dendritic cell infiltration was reduced which may result in a better prognosis. In addition, the level of IDH1, FABP5, C1RL, MIR155HG, CSTA and BCL3 might also influence lymphocytes infiltration (eg. CD4+ T cell) and chemokine expression (CXCL family). Conclusions: IDH1 may participate in pathological mechanisms of glioblastoma via expression alteration or gene mutation. Furthermore, IDH1 mutation might improve prognosis via suppressing the expression of FABP5, C1RL, MIR155HG, CSTA and BCL3. Meanwhile, it was identified that BCL3 might perform similar immunomodulatory functions with IDH1 as an upstream transcript factor.
Collapse
Affiliation(s)
- Shibing Fan
- Department of Neurosurgery, Chongqing Medical University, Chongqing, China.,Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Na Wu
- Department of Neurosurgery, Chongqing Medical University, Chongqing, China.,Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Shichuan Chang
- Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Long Chen
- Chongqing University, Shapingba, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, Chongqing Medical University, Chongqing, China
| |
Collapse
|