1
|
Bateman LM, Streeter SS, Hebert KA, Parker DJ, Obando K, Moreno KSS, Zanazzi GJ, Barth CW, Wang LG, Gibbs SL, Henderson ER. Ex Vivo Human Tissue Functions as a Testing Platform for the Evaluation of a Nerve-Specific Fluorophore. Mol Imaging Biol 2024:10.1007/s11307-024-01968-0. [PMID: 39658767 DOI: 10.1007/s11307-024-01968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
SIGNIFICANCE Selecting a nerve-specific lead fluorescent agent for translation in fluorescence-guided surgery is time-consuming and expensive. Preclinical fluorescent agent studies rely primarily on animal models, which are a critical component of preclinical testing, but these models may not predict fluorophore performance in human tissues. AIM The primary aim of this study was to evaluate and compare two preclinical models to test tissue-specific fluorophores based on discarded human tissues. The secondary aim was to use these models to determine the ability of a molecularly targeted fluorophore, LGW16-03, to label ex vivo human nerve tissues. APPROACH Patients undergoing standard-of-care transtibial or transfemoral amputation were consented and randomized to topical or systemic administration of LGW16-03 following amputation. After probe administration, nerves and background tissues were surgically resected and imaged to determine nerve fluorescence signal-to-background tissue ratio (SBR) and signal-to-noise ratio (SNR) metrics. Analysis of variance (ANOVA) determined statistical differences in metric means between administration cohorts and background tissue groups. Receiver operating characteristic (ROC) curve-derived statistics quantified the discriminatory performance of LGW16-03 fluorescence for labeling nerve tissues. RESULTS Tissue samples from 18 patients were analyzed. Mean nerve-to-adipose SBR was greater than nerve-to-muscle SBR (p = 0.001), but mean nerve-to-adipose SNR was not statistically different from mean nerve-to-muscle SNR (p = 0.069). Neither SBR nor SNR means were statistically different between fluorophore administration cohorts (p ≥ 0.448). When administration cohorts were combined, nerve-to-adipose SBR was greater than nerve-to-muscle SBR (mean ± standard deviation; 4.2 ± 2.9 vs. 1.8 ± 1.9; p < 0.001), but SNRs for nerve-to-adipose and nerve-to-muscle were not significantly different (5.1 ± 4.0 vs. 3.1 ± 3.4; p = 0.055). ROC curve-derived statistics to quantify LGW16-03 nerve labeling performance varied widely between patients, with sensitivities and specificities ranging from 0.2-99.9% and 0.4-100.0%. CONCLUSION Systemic and topical administration of LGW16-03 yielded similar fluorescence labeling of nerve tissues. Both administration approaches provided nerve-specific contrast similar to that observed in preclinical animal models. Fluorescence contrast was generally higher for nerve-to-adipose versus nerve-to-muscle. Ex vivo human tissue models provide safe evaluation of fluorophores in the preclinical phase and can aid in the selection of lead agents prior to first-in-human trials.
Collapse
Affiliation(s)
- Logan M Bateman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Samuel S Streeter
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Kendra A Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Dylan J Parker
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Kaye Obando
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | - George J Zanazzi
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Connor W Barth
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Eric R Henderson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Wang LG, Montaño AR, Masillati AM, Jones JA, Barth CW, Combs JR, Kumarapeli SU, Shams NA, van den Berg NS, Antaris AL, Galvis SN, McDowall I, Rizvi SZH, Alani AWG, Sorger JM, Gibbs SL. Nerve Visualization using Phenoxazine-Based Near-Infrared Fluorophores to Guide Prostatectomy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304724. [PMID: 37653576 DOI: 10.1002/adma.202304724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Fluorescence-guided surgery (FGS) is poised to revolutionize surgical medicine through near-infrared (NIR) fluorophores for tissue- and disease-specific contrast. Clinical open and laparoscopic FGS vision systems operate nearly exclusively at NIR wavelengths. However, tissue-specific NIR contrast agents compatible with clinically available imaging systems are lacking, leaving nerve tissue identification during prostatectomy a persistent challenge. Here, it is shown that combining drug-like molecular design concepts and fluorophore chemistry enabled the production of a library of NIR phenoxazine-based fluorophores for intraoperative nerve-specific imaging. The lead candidate readily delineated prostatic nerves in the canine and iliac plexus in the swine using the clinical da Vinci Surgical System that has been popularized for minimally invasive prostatectomy procedures. These results demonstrate the feasibility of molecular engineering of NIR nerve-binding fluorophores for ready integration into the existing surgical workflow, paving the path for clinical translation to reduce morbidity from nerve injury for prostate cancer patients.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Anas M Masillati
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Connor W Barth
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jason R Combs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | - Nourhan A Shams
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | | | - S N Galvis
- Intuitive Surgical, Sunnyvale, CA, 94086, USA
| | | | - Syed Zaki Husain Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Adam W G Alani
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | | | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
3
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
4
|
Wang LG, Gibbs SL. Improving precision surgery: A review of current intraoperative nerve tissue fluorescence imaging. Curr Opin Chem Biol 2023; 76:102361. [PMID: 37454623 PMCID: PMC10965355 DOI: 10.1016/j.cbpa.2023.102361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Iatrogenic nerve injury represents one of the most feared surgical complications and remains a major morbidity across many surgical specialties. Currently, no clinically approved technique can directly enhance intraoperative nerve visualization, where intraoperative nerve identification continues to challenge even experienced surgeons. Fluorescence-guided surgery (FGS) has been successfully integrated into clinical medicine to improve safety and efficacy in the surgical arena. A number of tissue- and disease-specific contrast agents are in the clinical translation pipeline for future FGS integration. Within this context, a diverse repertoire of fluorescent tracers have been developed to improve surgeons' intraoperative vision. This review aims to convey the recent developments for nerve-specific FGS and its potential for clinical translation.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR 97201, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR 97201, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave, Portland, OR 97201, USA.
| |
Collapse
|
5
|
Wei J, Liu C, Liang W, Yang X, Han S. Advances in optical molecular imaging for neural visualization. Front Bioeng Biotechnol 2023; 11:1250594. [PMID: 37671191 PMCID: PMC10475611 DOI: 10.3389/fbioe.2023.1250594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Iatrogenic nerve injury is a significant complication in surgery, which can negatively impact patients' quality of life. Currently, the main clinical neuroimaging methods, such as computed tomography, magnetic resonance imaging, and high-resolution ultrasonography, do not offer precise real-time positioning images for doctors during surgery. The clinical application of optical molecular imaging technology has led to the emergence of new concepts such as optical molecular imaging surgery, targeted surgery, and molecular-guided surgery. These advancements have made it possible to directly visualize surgical target areas, thereby providing a novel method for real-time identification of nerves during surgery planning. Unlike traditional white light imaging, optical molecular imaging technology enables precise positioning and identifies the cation of intraoperative nerves through the presentation of color images. Although a large number of experiments and data support its development, there are few reports on its actual clinical application. This paper summarizes the research results of optical molecular imaging technology and its ability to realize neural visualization. Additionally, it discusses the challenges neural visualization recognition faces and future development opportunities.
Collapse
Affiliation(s)
- Jinzheng Wei
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Liang
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufeng Han
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Wei B, Weng N, Fu L, Li Y, Wang X, Yin R, Jiang T. Synthesis and bioactivity evaluation of a myelin-specific contrast agent for magnetic resonance imaging of myelination in central nervous system. Bioorg Med Chem 2023; 84:117257. [PMID: 37001243 DOI: 10.1016/j.bmc.2023.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Demyelination exists in many neurological diseases of nervous system, such as stroke. Currently, magnetic resonance imaging (MRI) has been the main tool for diagnosing and monitoring the myelin related diseases. However, the conventional MRI unable to distinguish demyelinating lesions from other inflammatory lesions. To address this problem, we have designed and prepared a myelin specific magnetic resonance contrast agent, Gd-DTDAS, which was based myelin specific moiety MeDASg and Gd-DTPAh. In this work, we verified the specificity and sensitivity of Gd-DTDAS to myelin. Moreover, we investigated the specific binding ability of Gd-DTDAS to myelin sheath in the MCAO micei models. The in vivo imaging results showed that Gd-DTDAS can bind to the undamaged myelin sheath in the BBB disruption areas, and in turn reduce the relaxation time. The fluorescence images also showed significant fluorescence in the brain right infarct area of the MCAO model mice with administration of Gd-DTDAS. The above results confirmed that Gd-DTDAS could be preferentially distributed in areas with high myelination and can detect focally induced demyelination.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Na Weng
- Department of Nuclear Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lei Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuxuan Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xu Wang
- Department of Nuclear Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qiangdao, Ocean University of China, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
7
|
Barth CW, Shah VM, Wang LG, Masillati AM, Al-Fatease A, Husain Rizvi SZ, Antaris AL, Sorger J, Rao DA, Alani AWG, Gibbs SL. A clinically relevant formulation for direct administration of nerve specific fluorophores to mitigate iatrogenic nerve injury. Biomaterials 2022; 284:121490. [PMID: 35395454 PMCID: PMC9064958 DOI: 10.1016/j.biomaterials.2022.121490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Iatrogenic nerve injury significantly affects surgical outcomes. Although intraoperative neuromonitoring is utilized, nerve identification remains challenging and the success of nerve sparing is strongly correlated with surgeon experience levels. Fluorescence guided surgery (FGS) offers a potential solution for improved nerve sparing by providing direct visualization of nerve tissue intraoperatively. However, novel probes for FGS face a long regulatory pathway to achieve clinical translation. Herein, we report on the development of a clinically-viable, gel-based formulation that enables direct administration of nerve-specific probes for nerve sparing FGS applications, facilitating clinical translation via the exploratory investigational new drug (eIND) guidance. The developed formulation possesses unique gelling characteristics, allowing it to be easily spread as a liquid followed by rapid gelling for subsequent tissue hold. Optimization of the direct administration protocol with our gel-based formulation enabled a total staining time of 1-2 min for compatibility with surgical procedures and successful clinical translation.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Anas M Masillati
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Adel Al-Fatease
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA; Department of Phamaceutics, College of Pharmacy, 62529, King Khalid University, Abha, Saudi Arabia
| | - Syed Zaki Husain Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | | | - Jonathan Sorger
- Intuitive Surgical, 1020 Kifer Road, Sunnyvale, CA, 94086, USA
| | - Deepa A Rao
- School of Pharmacy, Pacific University, Hillsboro, OR, 97123, USA
| | - Adam W G Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA.
| |
Collapse
|
8
|
Barth CW, Shah VM, Wang LG, Antaris AL, Klaassen A, Sorger J, Rao DA, Kerr DA, Henderson ER, Alani AW, Gibbs SL. Clinically translatable formulation strategies for systemic administration of nerve-specific probes. ADVANCED THERAPEUTICS 2021; 4:2100002. [PMID: 34423111 PMCID: PMC8372234 DOI: 10.1002/adtp.202100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerves are extremely difficult to identify and are often accidently damaged during surgery, leaving patients with lasting pain and numbness. Herein, a novel near-infrared (NIR) nerve-specific fluorophore, LGW01-08, was utilized for enhanced nerve identification using fluorescence guided surgery (FGS), formulated using clinical translatable strategies. Formulated LGW01-08 was examined for toxicology, pharmacokinetics (PK), and pharmacodynamics (PD) parameters in preparation for future clinical translation. Optimal LGW01-08 imaging doses were identified in each formulation resulting in a 10x difference between the toxicity to imaging dose window. Laparoscopic swine surgery completed using the da Vinci surgical robot (Intuitive Surgical) demonstrated the efficacy of formulated LGW01-08 for enhanced nerve identification. NIR fluorescence imaging enabled clear identification of nerves buried beneath ~3 mm of tissue that were unidentifiable by white light imaging. These studies provide a strong basis for future clinical translation of NIR nerve-specific fluorophores for utility during FGS to improve patient outcomes.
Collapse
Affiliation(s)
- Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Vidhi M. Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, 97201
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | | | | | | | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123
| | - Darcy A. Kerr
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756.,Geisel School of Mdicine at Dartmouth College, Hanover, NH 03755
| | - Eric R. Henderson
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Adam W.G. Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University/OHSU, Portland, OR, 97201
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,Corresponding Author: Summer L. Gibbs, Ph.D., Oregon Health & Science University, Collaborative Life Sciences Building, 2730 S Moody Ave, Mail Code: CL3SG, Portland, OR 97201, , Phone: 503-494-8940
| |
Collapse
|
9
|
Barth CW, Wang LG, Montano A, Antaris AL, Klaassen A, Sorger J, Kerr DA, Henderson ER, Alani AW, Gibbs SL. Lead Optimization of Nerve-Specific Fluorophores for Image-Guided Nerve Sparing Surgical Procedures. OPTICAL MOLECULAR PROBES, IMAGING AND DRUG DELIVERY 2021; 2021:OW3E.3. [PMID: 36053248 PMCID: PMC9431774 DOI: 10.1364/omp.2021.ow3e.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nerve damage is a major complication of surgery, causing pain and loss of function. We have identified novel near-infrared nerve-specific fluorophores that provide excellent nerve contrast with the ability to identify buried nerve tissue.
Collapse
Affiliation(s)
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Antonio Montano
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | | | | | | | - Darcy A. Kerr
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756.,Geisel School of Medicine at Dartmouth College, Hanover, NH 03755
| | - Eric R. Henderson
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Adam W.G. Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
10
|
Watanabe H, Sakai S, Iikuni S, Shimizu Y, Shirakawa H, Kaneko S, Ono M. Synthesis and biological evaluation of radioiodinated 3-phenylcoumarin derivatives targeting myelin in multiple sclerosis. Bioorg Med Chem Lett 2020; 30:127562. [PMID: 32971260 DOI: 10.1016/j.bmcl.2020.127562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Myelin is a lipid multilayer involved in the rate of nerve transmission, and its loss is a pathological feature of multiple sclerosis in brains. Since in vivo imaging of myelin may be useful for drug development, early diagnosis, and monitoring the disease stage, we designed, synthesized, and evaluated eight novel radioiodinated 3-phenylcoumarin derivatives as imaging probes targeting myelin. In the biodistribution study using normal mice, all compounds displayed sufficient brain uptake, ranging from 2.5 to 5.0% ID/g, at 2 min postinjection. On ex vivo autoradiography, [125I]18 and [125I]21, which have a dimethylamino group, showed high binding affinity for myelin in the normal mouse brain. In addition, the radioactivity accumulation of [125I]21 in the white matter of the spinal cord in the experimental autoimmune encephalomyelitis mice was lower than that in naive mice. These results suggest that [123I]21 shows potential as a single photon emission computed tomography probe targeting myelin.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shiori Sakai
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Wang LG, Barth CW, Kitts CH, Mebrat MD, Montaño AR, House BJ, McCoy ME, Antaris AL, Galvis SN, McDowall I, Sorger JM, Gibbs SL. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med 2020; 12:12/542/eaay0712. [DOI: 10.1126/scitranslmed.aay0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
Nerve-binding fluorophores with near-infrared (NIR; 650 to 900 nm) emission could reduce iatrogenic nerve injury rates by providing surgeons precise, real-time visualization of the peripheral nervous system. Unfortunately, current systemically administered nerve contrast agents predominantly emit at visible wavelengths and show nonspecific uptake in surrounding tissues such as adipose, muscle, and facia, thus limiting detection to surgically exposed surface-level nerves. Here, a focused NIR fluorophore library was synthesized and screened through multi-tiered optical and pharmacological assays to identify nerve-binding fluorophore candidates for clinical translation. NIR nerve probes enabled micrometer-scale nerve visualization at the greatest reported tissue depths (~2 to 3 mm), a feat unachievable with previous visibly emissive contrast agents. Laparoscopic fluorescent surgical navigation delineated deep lumbar and iliac nerves in swine, most of which were invisible in conventional white-light endoscopy. Critically, NIR oxazines generated contrast against all key surgical tissue classes (muscle, adipose, vasculature, and fascia) with nerve signal-to-background ratios ranging from ~2 (2- to 3-mm depth) to 25 (exposed nerve). Clinical translation of NIR nerve-specific agents will substantially reduce comorbidities associated with surgical nerve damage.
Collapse
Affiliation(s)
- Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Catherine H. Kitts
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Mubark D. Mebrat
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Antonio R. Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Broderick J. House
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Meaghan E. McCoy
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | | | | | | | | | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
12
|
Barth CW, Gibbs SL. Fluorescence Image-Guided Surgery - a Perspective on Contrast Agent Development. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222:112220J. [PMID: 32255887 PMCID: PMC7115043 DOI: 10.1117/12.2545292] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past several decades, a number of novel fluorescence image-guided surgery (FGS) contrast agents have been under development, with many in clinical translation and undergoing clinical trials. In this review, we have identified and summarized the contrast agents currently undergoing clinical translation. In total, 39 novel FGS contrast agents are being studied in 85 clinical trials. Four FGS contrast agents are currently being studied in phase III clinical trials and are poised to reach FDA approval within the next two to three years. Among all novel FGS contrast agents, a wide variety of probe types, targeting mechanisms, and fluorescence properties exists. Clinically available FGS imaging systems have been developed for FDA approved FGS contrast agents, and thus further clinical development is required to yield FGS imaging systems tuned for the variety of contrast agents in the clinical pipeline. Additionally, study of current FGS contrast agents for additional disease types and development of anatomy specific contrast agents is required to provide surgeons FGS tools for all surgical specialties and associated comorbidities. The work reviewed here represents a significant effort from many groups and further development of this promising technology will have an enormous impact on surgical outcomes across all specialties.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
13
|
Abstract
OBJECTIVE This review details the agents for fluorescence-guided nerve imaging in both preclinical and clinical use to identify factors important in selecting nerve-specific fluorescent agents for surgical procedures. BACKGROUND Iatrogenic nerve injury remains a significant cause of morbidity in patients undergoing surgical procedures. Current real-time identification of nerves during surgery involves neurophysiologic nerve stimulation, which has practical limitations. Intraoperative fluorescence-guided imaging provides a complimentary means of differentiating tissue types and pathology. Recent advances in fluorescence-guided nerve imaging have shown promise, but the ideal agent remains elusive. METHODS In February 2018, PubMed was searched for articles investigating peripheral nerve fluorescence. Key terms used in this search include: "intraoperative, nerve, fluorescence, peripheral nerve, visualization, near infrared, and myelin." Limits were set to exclude articles exclusively dealing with central nervous system targets or written in languages other than English. References were cross-checked for articles not otherwise identified. RESULTS Of the nonspecific agents, tracers that rely on axonal transport showed the greatest tissue specificity; however, neurovascular dyes already enjoy wide clinical use. Fluorophores specific to nerve moieties result in excellent nerve to background ratios. Although noteworthy findings on tissue specificity, toxicity, and route of administration specific to each fluorescent agent were reported, significant data objectively quantifying nerve-specific fluorescence and toxicity are lacking. CONCLUSIONS Fluorescence-based nerve enhancement has advanced rapidly over the past 10 years with potential for continued utilization and progression in translational research. An ideal agent would be easily administered perioperatively, would not cross the blood-brain barrier, and would fluoresce in the near-infrared spectrum. Agents administered systemically that target nerve-specific moieties have shown the greatest promise. Based on the heterogeneity of published studies and methods for reporting outcomes, it appears that the development of an optimal nerve imaging agent remains challenging.
Collapse
|
14
|
Tiwari AD, Zhu J, You J, Eck B, Zhu J, Wang X, Wang X, Wang B, Silver J, Wilson D, Wu C, Wang Y. Novel 18F-Labeled Radioligands for Positron Emission Tomography Imaging of Myelination in the Central Nervous System. J Med Chem 2019; 62:4902-4914. [PMID: 31042384 DOI: 10.1021/acs.jmedchem.8b01354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myelin is the protective sheath that surrounds nerves in vertebrates to protect axons, which thereby facilitates impulse conduction. Damage to myelin is associated with many neurodegenerative diseases such as multiple sclerosis and also includes spinal cord injury (SCI). The small size of the spinal cord poses formidable challenges to in vivo monitoring of myelination, which we investigated via conducting a structure-activity relationship study to determine the optimum positron-emitting agent to use for imaging myelin using positron emission tomography (PET). From these studies, [18F]PENDAS was identified as the lead agent to use in conjunction with PET imaging to delineate the integrity of spinal cord myelin. A subsequent in vivo PET imaging study of [18F]PENDAS in rats with SCI showed promising pharmacokinetic results that justify further development of imaging markers for diagnosing myelin-related diseases. Additionally, [18F]PENDAS could be valuable in determining the efficacy of therapies that are currently under development.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Wang
- Department of Radiology , Binzhou Medical University , Binzhou , Shandong 256603 , China
| | - Xizhen Wang
- Department of Radiology , Weifang Medical University , Weifang , Shandong 261053 , China
| | - Bin Wang
- Department of Radiology , Binzhou Medical University , Binzhou , Shandong 256603 , China
| | | | | | | | - Yanming Wang
- Department of Radiology , Binzhou Medical University , Binzhou , Shandong 256603 , China
| |
Collapse
|
15
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 905] [Impact Index Per Article: 150.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Korber JR, Barth CW, Gibbs SL. Nile Red derivatives enable improved ratiometric imaging for nerve-specific contrast. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-13. [PMID: 29981230 PMCID: PMC8357333 DOI: 10.1117/1.jbo.23.7.076002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 06/02/2023]
Abstract
Surgical nerve damage due to difficulty with identification remains a major risk for postsurgical complications and decreased quality of life. Fluorescence-guided surgery offers a means to specifically highlight tissues of interest such as nerves and a number of fluorescence-guided surgical systems are in clinical trial or are approved for clinical use. However, no clinically approved nerve-specific fluorophores exist. In addition, many preclinical nerve-specific fluorophores tend to accumulate in adipose tissue due to the molecular composition similarities between the two tissues, making it challenging to generate a specific nerve signal. To alleviate this difficulty, we have synthesized a library of oxazine fluorophores based on the Nile Red scaffold, with the goal of strong adipose specificity without nerve uptake to facilitate ratiometric imaging. The library was screened for tissue specificity ex vivo and in vivo, enabling quantification of adipose-, nerve- and muscle-specific uptake as well as selection of the best candidate for adipose selectivity without nerve signal. We showed our selected Nile Red fluorophore improved nerve contrast using ratiometric imaging, especially nerve-to-adipose contrast as compared to the parent Nile Red compound or nerve-specific imaging alone. This adipose-specific Nile Red derivative could be used in future fluorescence-guided surgery applications where adipose- or nerve-specific contrast is required.
Collapse
Affiliation(s)
- Jesse R. Korber
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Connor W. Barth
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Summer L. Gibbs
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
- Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, United States
- Oregon Health and Science University, OHSU Center for Spatial Systems Biomedicine, Portland, Oregon, United States
| |
Collapse
|
17
|
Doyle S, Hansen DB, Vella J, Bond P, Harper G, Zammit C, Valentino M, Fern R. Vesicular glutamate release from central axons contributes to myelin damage. Nat Commun 2018. [PMID: 29531223 PMCID: PMC5847599 DOI: 10.1038/s41467-018-03427-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The axon myelin sheath is prone to injury associated with N-methyl-d-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury. Neuronal activity can lead to vesicular release of glutamate. Here the authors demonstrate that vesicular release of glutamate occurs in axons during ischemic conditions, and that an allosteric modulator of GluN2C/D is protective in models of ischemic injury.
Collapse
Affiliation(s)
- Sean Doyle
- University of Plymouth, Plymouth, PL6 8BY, UK
| | | | | | - Peter Bond
- University of Plymouth, Plymouth, PL6 8BY, UK
| | | | | | | | - Robert Fern
- University of Plymouth, Plymouth, PL6 8BY, UK.
| |
Collapse
|
18
|
Saliani A, Perraud B, Duval T, Stikov N, Rossignol S, Cohen-Adad J. Axon and Myelin Morphology in Animal and Human Spinal Cord. Front Neuroanat 2017; 11:129. [PMID: 29311857 PMCID: PMC5743665 DOI: 10.3389/fnana.2017.00129] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Characterizing precisely the microstructure of axons, their density, size and myelination is of interest for the neuroscientific community, for example to help maximize the outcome of studies on white matter (WM) pathologies of the spinal cord (SC). The existence of a comprehensive and structured database of axonal measurements in healthy and disease models could help the validation of results obtained by different researchers. The purpose of this article is to provide such a database of healthy SC WM, to discuss the potential sources of variability and to suggest avenues for robust and accurate quantification of axon morphometry based on novel acquisition and processing techniques. The article is organized in three sections. The first section reviews morphometric results across species according to range of densities and counts of myelinated axons, axon diameter and myelin thickness, and characteristics of unmyelinated axons in different regions. The second section discusses the sources of variability across studies, such as age, sex, spinal pathways, spinal levels, statistical power and terminology in regard to tracts and protocols. The third section presents new techniques and perspectives that could benefit histology studies. For example, coherent anti-stokes Raman spectroscopy (CARS) imaging can provide sub-micrometric resolution without the need for fixation and staining, while slide scanners and stitching algorithms can provide full cross-sectional area of SC. In combination with these acquisition techniques, automatic segmentation algorithms for delineating axons and myelin sheath can help provide large-scale statistics on axon morphometry.
Collapse
Affiliation(s)
- Ariane Saliani
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Blanche Perraud
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Tanguy Duval
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functionnal Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Schmitz K, Tegeder I. Bioluminescence and Near-infrared Imaging of Optic Neuritis and Brain Inflammation in the EAE Model of Multiple Sclerosis in Mice. J Vis Exp 2017. [PMID: 28287595 DOI: 10.3791/55321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) in SJL/J mice is a model for relapsing-remitting multiple sclerosis (RRMS). Clinical EAE scores describing motor function deficits are basic readouts of the immune-mediated inflammation of the spinal cord. However, scores and body weight do not allow for an in vivo assessment of brain inflammation and optic neuritis. The latter is an early and frequent manifestation in about 2/3 of MS patients. Here, we show methods for bioluminescence and near-infrared live imaging to assess EAE evoked optic neuritis, brain inflammation, and blood-brain barrier (BBB) disruption in living mice using an in vivo imaging system. A bioluminescent substrate activated by oxidases primarily showed optic neuritis. The signal was specific and allowed the visualization of medication effects and disease time courses, which paralleled the clinical scores. Pegylated fluorescent nanoparticles that remained within the vasculature for extended periods of time were used to assess the BBB integrity. Near-infrared imaging revealed a BBB leak at the peak of the disease. The signal was the strongest around the eyes. A near-infrared substrate for matrix metalloproteinases was used to assess EAE-evoked inflammation. Auto-fluorescence interfered with the signal, requiring spectral unmixing for quantification. Overall, bioluminescence imaging was a reliable method to assess EAE-associated optic neuritis and medication effects and was superior to the near-infrared techniques in terms of signal specificity, robustness, ease of quantification, and cost.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology, University Hospital Frankfurt
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, University Hospital Frankfurt;
| |
Collapse
|
20
|
Wu C, Eck B, Zhang S, Zhu J, Tiwari AD, Zhang Y, Zhu Y, Zhang J, Wang B, Wang X, Wang X, You J, Wang J, Guan Y, Liu X, Yu X, Trapp BD, Miller R, Silver J, Wilson D, Wang Y. Discovery of 1,2,3-Triazole Derivatives for Multimodality PET/CT/Cryoimaging of Myelination in the Central Nervous System. J Med Chem 2017; 60:987-999. [DOI: 10.1021/acs.jmedchem.6b01328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Jinming Zhang
- Department
of Nuclear Medicine, PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department
of Radiology, Bingzhou Medical University, Binzhou, Shandong 256603, China
| | - Xizhen Wang
- Department
of Radiology, Bingzhou Medical University, Binzhou, Shandong 256603, China
| | - Xu Wang
- Department
of Radiology, Bingzhou Medical University, Binzhou, Shandong 256603, China
| | | | | | | | | | | | - Bruce D. Trapp
- Department
of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Robert Miller
- Department
of Anatomy and Regenerative Biology, George Washington University, Washington, D.C. 20037, United States
| | | | | | - Yanming Wang
- Department
of Radiology, Bingzhou Medical University, Binzhou, Shandong 256603, China
| |
Collapse
|
21
|
Barth CW, Gibbs SL. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy. Am J Cancer Res 2017; 7:573-593. [PMID: 28255352 PMCID: PMC5327635 DOI: 10.7150/thno.17433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.
Collapse
|
22
|
Abstract
Myelination by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system is essential for nervous system function and health. Despite its importance, we have a relatively poor understanding of the molecular and cellular mechanisms that regulate myelination in the living animal, particularly in the CNS. This is partly due to the fact that myelination commences around birth in mammals, by which time the CNS is complex and largely inaccessible, and thus very difficult to image live in its intact form. As a consequence, in recent years much effort has been invested in the use of smaller, simpler, transparent model organisms to investigate mechanisms of myelination in vivo. Although the majority of such studies have employed zebrafish, the Xenopus tadpole also represents an important complementary system with advantages for investigating myelin biology in vivo. Here we review how the natural features of zebrafish embryos and larvae and Xenopus tadpoles make them ideal systems for experimentally interrogating myelination by live imaging. We outline common transgenic technologies used to generate zebrafish and Xenopus that express fluorescent reporters, which can be used to image myelination. We also provide an extensive overview of the imaging modalities most commonly employed to date to image the nervous system in these transparent systems, and also emerging technologies that we anticipate will become widely used in studies of zebrafish and Xenopus myelination in the near future.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Tiwari AD, Wu C, Zhu J, Zhang S, Zhu J, Wang WR, Zhang J, Tatsuoka C, Matthews PM, Miller RH, Wang Y. Design, Synthesis, and Evaluation of Fluorinated Radioligands for Myelin Imaging. J Med Chem 2016; 59:3705-18. [PMID: 27070324 DOI: 10.1021/acs.jmedchem.5b01858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myelination is one of the fundamental processes in vertebrates. A major challenge is to quantitatively image myelin distribution in the central nervous system. For this reason, we designed and synthesized a series of fluorinated radioligands that can be radiolabeled as radiotracers for positron emission tomography (PET) imaging of myelin. These newly developed radioligands readily penetrate the blood-brain barrier and selectively bind to myelin membranes in the white matter region. Structure-activity relationship studies of such ligands suggested that optimal permeability could be achieved with calculated lipophilicty in the range of 3-4. After radiolabeling with fluorine-18, the brain uptake and retention of each radioligand were determined by microPET/CT imaging studies. These pharmacokinetic studies led us to identify a lead compound ([(18)F]FMeDAS, 32) with promising in vivo binding properties, which was subsequently validated by ex vivo autoradiography.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinming Zhang
- Department of Nuclear Medicine, People's Liberation Army (PLA) General Hospital , Beijing 100853, China
| | | | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London , London SW12 0NN, United Kingdom
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University , Washington, DC 20037, United States
| | | |
Collapse
|
24
|
Barth CW, Gibbs SL. Visualizing Oxazine 4 nerve-specific fluorescence ex vivo in frozen tissue sections. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9696. [PMID: 32255889 DOI: 10.1117/12.2214204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Nerve damage plagues surgical outcomes and remains a major burden for patients, surgeons, and the healthcare system. Fluorescence image-guided surgery using nerve specific small molecule fluorophores offers a solution to diminish surgical nerve damage through improved intraoperative nerve identification and visualization. Oxazine 4 has shown superior nerve specificity in initial testing in vivo, while exhibiting a red shifted excitation and emission spectra compared to other nerve-specific fluorophores. However, Oxazine 4 does not exhibit near-infrared (NIR) excitation and emission, which would be ideal to improve penetration depth and nerve signal to background ratios for in vivo imaging. Successful development of a NIR nerve-specific fluorophore will require understanding of the molecular target of fluorophore nerve specificity. While previous small molecule nerve-specific fluorophores have demonstrated excellent ex vivo nerve specificity, Oxazine 4 ex vivo nerve specific fluorescence has been difficult to visualize. In the present study, we examined each step of the ex vivo fluorescence microscopy sample preparation procedure to discover how in vivo nerve-specific fluorescence is changed during ex vivo tissue sample preparation. Through step-by-step examination we found that Oxazine 4 fluorescence was significantly diminished by washing and mounting tissue sections for microscopy. A method to preserve Oxazine 4 nerve specific fluorescence ex vivo was determined, which can be utilized for visualization by fluorescence microscopy.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
25
|
Hackman KM, Doddapaneni BS, Barth CW, Wierzbicki IH, Alani AWG, Gibbs SL. Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery. Mol Pharm 2015; 12:4386-94. [PMID: 26485440 PMCID: PMC4674818 DOI: 10.1021/acs.molpharmaceut.5b00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Nerve
damage during surgery is a common morbidity experienced by patients
that leaves them with chronic pain and/or loss of function. Currently,
no clinically approved imaging technique exists to enhance nerve visualization
in the operating room. Fluorescence image-guided surgery has gained
in popularity and clinical acceptance over the past decade with a
handful of imaging systems approved for clinical use. However, contrast
agent development to complement these fluorescence-imaging systems
has lagged behind with all currently approved fluorescent agents providing
untargeted blood pool information. Nerve-specific fluorophores are
known, however translations of these agents to the clinic has been
complicated by their lipophilic nature, which necessitates specialized
formulation strategies for successful systemic administration. To
date the known nerve-specific fluorophores have only been demonstrated
preclinically due to the necessity of a dimethyl sulfoxide containing
formulation for solubilization. In the current study, a polymeric
micellar (PM) formulation strategy was developed for a representative
nerve-specific fluorophore from the distyrylbenzene family, BMB. The
PM formulation strategy was able to solubilize BMB and demonstrated
improved nerve-specific accumulation and fluorescence intensity when
the same fluorophore dose was administered to mice utilizing the previous
formulation strategy. The success of the PM formulation strategy will
be important for moving toward clinical translation of these novel
nerve-specific probes as it is nontoxic and biodegradable and has
the potential to decrease the necessary dose for imaging while also
improving the safety profile.
Collapse
Affiliation(s)
| | - Bhuvana Shyam Doddapaneni
- Pharmaceutical Sciences Division, College of Pharmacy, Oregon State University , 2730 SW Moody Avenue, CL5CP Portland, Oregon 97201, United States
| | | | - Igor H Wierzbicki
- Pharmaceutical Sciences Division, College of Pharmacy, Oregon State University , 2730 SW Moody Avenue, CL5CP Portland, Oregon 97201, United States
| | - Adam W G Alani
- Pharmaceutical Sciences Division, College of Pharmacy, Oregon State University , 2730 SW Moody Avenue, CL5CP Portland, Oregon 97201, United States
| | | |
Collapse
|
26
|
Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. J Biol Chem 2015; 291:2422-34. [PMID: 26553872 DOI: 10.1074/jbc.m115.666909] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nM) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.
Collapse
Affiliation(s)
- Natalia Realini
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Palese
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Daniela Pizzirani
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Silvia Pontis
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Abdul Basit
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Anders Bach
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, the Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen 2100, Denmark, and
| | | | - Daniele Piomelli
- From the Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy, Anatomy and Neurobiology, University of California, Irvine, California 92617
| |
Collapse
|
27
|
Synthesis, and Fluorescence Properties of Coumarin and Benzocoumarin Derivatives Conjugated Pyrimidine Scaffolds for Biological Imaging Applications. J Fluoresc 2015; 25:1847-54. [DOI: 10.1007/s10895-015-1677-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
28
|
Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One 2014; 9:e87605. [PMID: 24498342 PMCID: PMC3912020 DOI: 10.1371/journal.pone.0087605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/21/2013] [Indexed: 02/04/2023] Open
Abstract
The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer's disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer's disease.
Collapse
|
29
|
Wu C, Zhu J, Baeslack J, Zaremba A, Hecker J, Kraso J, Matthews PM, Miller RH, Wang Y. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann Neurol 2013; 74:688-98. [DOI: 10.1002/ana.23965] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Chunying Wu
- Division of Radiopharmaceutical Science; Case Center for Imaging Research Department of Radiology; Case Western Reserve University; Cleveland OH
| | - Junqing Zhu
- Division of Radiopharmaceutical Science; Case Center for Imaging Research Department of Radiology; Case Western Reserve University; Cleveland OH
| | - Jonathan Baeslack
- Division of Radiopharmaceutical Science; Case Center for Imaging Research Department of Radiology; Case Western Reserve University; Cleveland OH
| | - Anita Zaremba
- Department of Neurosciences; Case Western Reserve University; Cleveland OH
| | - Jordan Hecker
- Department of Neurosciences; Case Western Reserve University; Cleveland OH
| | - Janet Kraso
- Department of Neurosciences; Case Western Reserve University; Cleveland OH
| | - Paul M. Matthews
- Division of Brain Sciences; Imperial College; London United Kingdom
- GlaxoSmithKline Research and Development; Brentford United Kingdom
| | - Robert H. Miller
- Department of Neurosciences; Case Western Reserve University; Cleveland OH
| | - Yanming Wang
- Division of Radiopharmaceutical Science; Case Center for Imaging Research Department of Radiology; Case Western Reserve University; Cleveland OH
| |
Collapse
|
30
|
Frullano L, Zhu J, Miller RH, Wang Y. Synthesis and characterization of a novel gadolinium-based contrast agent for magnetic resonance imaging of myelination. J Med Chem 2013; 56:1629-40. [PMID: 23311333 DOI: 10.1021/jm301435z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myelin is a membrane system that fosters nervous impulse conduction in the vertebrate nervous system. Myelin sheath disruption is a common characteristic of several neurodegenerative diseases such as multiple sclerosis (MS) and various leukodystrophies. To date, the diagnosis of MS is obtained using a set of criteria in which MRI observations play a central role. However, because of the lack of specificity for myelin integrity, the use of MRI as the primary diagnostic tool has not yet been accepted. In order to improve MR specificity, we began developing MR probes targeted toward myelin. In this work we describe a new myelin-targeted MR contrast agent, Gd-DODAS, based on a stilbene binding moiety and demonstrate its ability to specifically bind to myelin in vitro and in vivo. We also present evidence that Gd-DODAS generates MR contrast in vivo in T1-weighed images and in T1 maps that correlates to the myelin content.
Collapse
Affiliation(s)
- Luca Frullano
- Department of Radiology, Case Center for Imaging Research, Division of Radiopharmaceutical Science, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | |
Collapse
|
31
|
Condie AG, Gerson SL, Miller RH, Wang Y. Two-photon fluorescent imaging of myelination in the spinal cord. ChemMedChem 2012; 7:2194-203. [PMID: 23136014 DOI: 10.1002/cmdc.201200343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 11/11/2022]
Abstract
Myelination is a fundamental biological process in the vertebrate nervous system. Damage to or malformation of myelin can lead to various neurological diseases; for example, demyelination in the spinal cord is a major cause of paralysis of patients suffering from multiple sclerosis and related diseases. The ability to directly track myelin levels in the spinal cord is needed in order to assess the efficacy of therapeutics in promoting myelin repair. To address this unmet need, 4-((E)-4-((E)-4-aminostyryl)-2,5-dimethoxystyryl)-N-methylaniline, known as Case Imaging Compound (CIC), has been developed as a myelin-targeted fluorescent imaging agent that selectively binds to myelin. CIC was synthesized via an improved route and evaluated as a fluorescent probe for two-photon fluorescent imaging of myelin in the spinal cord in both demyelinated and dysmyelinated models. In vitro and ex vivo tissue staining both suggest that CIC selectively binds to in animal models. Further evaluation in animal models indicated that CIC is sensitive to differences in myelin content in healthy versus pathological myelin. CIC could potentially be useful in the development and evaluation of novel therapies for multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Allison G Condie
- Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
32
|
Monsma PC, Brown A. FluoroMyelin™ Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin. J Neurosci Methods 2012; 209:344-50. [PMID: 22743799 PMCID: PMC3429707 DOI: 10.1016/j.jneumeth.2012.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/08/2012] [Accepted: 06/18/2012] [Indexed: 01/17/2023]
Abstract
FluoroMyelin™ Red is a commercially available water-soluble fluorescent dye that has selectivity for myelin. This dye is marketed for the visualization of myelin in brain cryosections, though it is also used widely to stain myelin in chemically fixed tissue. Here we have investigated the suitability of FluoroMyelin™ Red as a vital stain for live imaging of myelin in myelinating co-cultures of Schwann cells and dorsal root ganglion neurons. We show that addition of FluoroMyelin™ Red to the culture medium results in selective staining of myelin sheaths, with an optimal staining time of 2h, and has no apparent adverse effect on the neurons, their axons, or the myelinating cells at the light microscopic level. The fluorescence is bright and photostable, permitting long-term time-lapse imaging. After rinsing the cultures with medium lacking FluoroMyelin™ Red, the dye diffuses out of the myelin with a half life of about 130 min resulting in negligible fluorescence remaining after 18-24h. In addition, the large Stokes shift exhibited by FluoroMyelin™ Red makes it possible to readily distinguish it from popular and widely used green and red fluorescent probes such as GFP and mCherry. Thus FluoroMyelin™ Red is a useful reagent for live fluorescence imaging studies on myelinated axons.
Collapse
Affiliation(s)
- Paula C. Monsma
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
Frullano L, Zhu J, Wang C, Wu C, Miller RH, Wang Y. Myelin imaging compound (MIC) enhanced magnetic resonance imaging of myelination. J Med Chem 2011; 55:94-105. [PMID: 22098543 DOI: 10.1021/jm201010e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vertebrate nervous system is characterized by myelination, a fundamental biological process that protects the axons and facilitates electric pulse transduction. Damage to myelin is considered a major effect of autoimmune diseases such as multiple sclerosis (MS). Currently, therapeutic interventions are focused on protecting myelin integrity and promoting myelin repair. These efforts need to be accompanied by an effective imaging tool that correlates the disease progression with the extent of myelination. To date, magnetic resonance imaging (MRI) is the primary imaging technique to detect brain lesions in MS. However, conventional MRI cannot differentiate demyelinated lesions from other inflammatory lesions and therefore cannot predict disease progression in MS. To address this problem, we have prepared a Gd-based contrast agent, termed MIC (myelin imaging compound), which binds to myelin with high specificity. In this work, we demonstrate that MIC exhibits a high kinetic stability toward transmetalation with promising relaxometric properties. MIC was used for in vivo imaging of myelination following intracerebroventricular infusion in the rat brain. MIC was found to distribute preferentially in highly myelinated regions and was able to detect regions of focally induced demyelination.
Collapse
Affiliation(s)
- Luca Frullano
- Department of Radiology, Case Center for Imaging Research, Division of Radiopharmaceutical Science, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
34
|
Wang C, Wu C, Zhu J, Miller RH, Wang Y. Design, synthesis, and evaluation of coumarin-based molecular probes for imaging of myelination. J Med Chem 2011; 54:2331-40. [PMID: 21391687 DOI: 10.1021/jm101489w] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myelination represents one of the most fundamental biological processes in the vertebrate nervous system. Abnormalities and changes in myelination in the central nervous system (CNS) are seen in many neurodegenerative disorders, such as multiple sclerosis (MS). A long-standing goal has been to directly detect and quantify myelin content in order to facilitate diagnosis and therapeutic treatments of myelin-related diseases. In the course of our studies, we have developed a series of small-molecule probes (SMP) as myelin-imaging agents. Among them are coumarin derivatives, which exhibit promising brain permeability and myelin-binding properties. Herein we report a full account of the design and synthesis of coumarin-based SMPs as myelin-imaging agents. Systematic evaluation of these SMPs in both the CNS and peripheral nervous system (PNS) allowed us to identify some lead agents for potential use as fluorescent dyes for intraoperative nerve mapping in surgical operations or as radiotracers for positron emission tomography (PET) imaging of myelination.
Collapse
Affiliation(s)
- Changning Wang
- Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
35
|
Frullano L, Wang C, Miller RH, Wang Y. A myelin-specific contrast agent for magnetic resonance imaging of myelination. J Am Chem Soc 2011; 133:1611-3. [PMID: 21265506 DOI: 10.1021/ja1040896] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myelination is one of the most fundamental biological processes in the development of vertebrate nervous systems. Abnormal or disrupted myelination occurs in many acquired or inherited neurodegenerative diseases, including multiple sclerosis (MS) and various leukodystrophies. To date, magnetic resonance imaging (MRI) has been the primary tool for diagnosing and monitoring the progression of MS and related diseases; however, any change in signal intensity of conventional MRI reflects a change only in tissue water content, which is a nonspecific measure of the overall changes in macroscopic tissue injury. Thus, the use of MRI as a primary measure of disease activity was shown to be disassociated from the clinical outcome due to the lack of specificity for myelination. In order to increase the MRI specificity for myelin pathologies, we designed and synthesized the first Gd-based T(1) MR contrast agent (MIC) that binds to myelin with high specificity. In this Communication, we demonstrate that MIC localizes in brain regions in proportion to the extent of myelination. In addition, MIC possesses promising MR contrast properties, which allow for direct detection of myelin distribution through T(1) mapping in the mouse brain.
Collapse
Affiliation(s)
- Luca Frullano
- Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | | | | | |
Collapse
|
36
|
Markiewicz I, Sypecka J, Domanska-Janik K, Wyszomirski T, Lukomska B. Cellular environment directs differentiation of human umbilical cord blood-derived neural stem cells in vitro. J Histochem Cytochem 2011; 59:289-301. [PMID: 21378283 DOI: 10.1369/0022155410397997] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cord blood-derived neural stem cells (NSCs) are proposed as an alternative cell source to repair brain damage upon transplantation. However, there is a lack of data showing how these cells are driven to generate desired phenotypes by recipient nervous tissue. Previous research indicates that local environment provides signals driving the fate of stem cells. To investigate the impact of these local cues interaction, the authors used a model of cord blood-derived NSCs co-cultured with different rat brain-specific primary cultures, creating the neural-like microenvironment conditions in vitro. Neuronal and astro-, oligo-, and microglia cell cultures were obtained by the previously described methods. The CMFDA-labeled neural stem cells originated from, non-transformed human umbilical cord blood cell line (HUCB-NSCs) established in a laboratory. The authors show that the close vicinity of astrocytes and oligodendrocytes promotes neuronal differentiation of HUCB-NSCs, whereas postmitotic neurons induce oligodendrogliogenesis of these cells. In turn, microglia or endothelial cells do not favor any phenotypes of their neural commitment. Studies have confirmed that HUCB-NSCs can read cues from the neurogenic microenvironment, attaining features of neurons, astrocytes, or oligodendrocytes. The specific responses of neurally committed cord blood-derived cells, reported in this work, are very much similar to those described previously for NSCs derived from other "more typical" sources. This further proves their genuine neural nature. Apart from having a better insight into the neurogenesis in the adult brain, these findings might be important when predicting cord blood cell derivative behavior after their transplantation for neurological disorders.
Collapse
Affiliation(s)
- Inga Markiewicz
- Neurorepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
37
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|