1
|
Terada H, Saitoh Y, Kametani K, Sakaguchi M, Sakamoto T, Kamijo A, Terada N. Electron microscopic observation of photoreceptor cells in directly inserted anesthetized Drosophila into a high-pressure freezing unit. Microsc Res Tech 2018; 82:244-249. [PMID: 30582253 DOI: 10.1002/jemt.23166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022]
Abstract
The high-pressure freezing (HPF) technique is known to cryofix water-containing materials with little ice-crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy. The ultrastructures of ommatidia composed of photoreceptor cells were well preserved. The location of the cytoplasmic organelles inside the photoreceptor cells was observed. In some photoreceptor cells in ommatidia of the light-exposed Drosphila, the cytoplasmic small granules were localized nearer the base of rhabdomeres, compared with those of the nonlight-exposed Drosophila. Thus, HPF with the direct insertion of living Drosophila under light exposure into the HPF machine enabled us to examine changes to functional structures of photoreceptor cells that occur within seconds.
Collapse
Affiliation(s)
- Hitomi Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan.,Division of Sciences, Shinshu University School of Education, Nagano City, Nagano, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan.,Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Kiyokazu Kametani
- Department of Instrumental Analysis, Research Center for Human and Environmental Science, Shinshu University, Matsumoto City, Nagano, Japan
| | - Masahiko Sakaguchi
- Division of Sciences, Shinshu University School of Education, Nagano City, Nagano, Japan
| | - Takeharu Sakamoto
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
| |
Collapse
|
2
|
Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res 2015; 48:181-202. [PMID: 25892361 PMCID: PMC4543575 DOI: 10.1016/j.preteyeres.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA; Department of Ophthalmology and Vision Science, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Fukasawa Y, Ohno N, Saitoh Y, Saigusa T, Arita J, Ohno S. Immunohistochemical and morphofunctional studies of skeletal muscle tissues with electric nerve stimulation by in vivo cryotechnique. Acta Histochem Cytochem 2015; 48:27-36. [PMID: 26019372 PMCID: PMC4427562 DOI: 10.1267/ahc.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/03/2015] [Indexed: 11/22/2022] Open
Abstract
In this study, morphological and immunohistochemical alterations of skeletal muscle tissues during persistent contraction were examined by in vivo cryotechnique (IVCT). Contraction of gastrocnemius muscles was induced by sciatic nerve stimulation. The IVCT was performed immediately, 3 min or 10 min after the stimulation start. Prominent ripples of muscle fibers or wavy deformation of sarcolemma were detected immediately after the stimulation, but they gradually diminished to normal levels during the stimulation. The relative ratio of sarcomere and A band lengths was the highest in the control group, but it immediately decreased to the lowest level and then gradually recovered at 3 min or 10 min. Although histochemical intensity of PAS reaction was almost homogeneous in muscle tissues of the control group or immediately after the stimulation, it decreased at 3 min or 10 min. Serum albumin was immunolocalized as dot-like patterns within some muscle fibers at 3 min stimulation. These patterns became more prominent at 10 min, and the dots got larger and saccular in some sarcoplasmic regions. However, IgG1 and IgM were immunolocalized in blood vessels under nerve stimulation conditions. Therefore, IVCT was useful to capture the morphofunctional and metabolic changes of heterogeneous muscle fibers during the persistent contraction.
Collapse
Affiliation(s)
- Yuki Fukasawa
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Takeshi Saigusa
- First Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Jun Arita
- First Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
4
|
Chen J, Terada N, Saitoh Y, Huang Z, Ohno N, Ohno S. Detection of MAPK signal transduction proteins in an ischemia/reperfusion model of mouse intestine using in vivo cryotechnique. Histochem Cell Biol 2013; 140:491-505. [DOI: 10.1007/s00418-013-1113-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2013] [Indexed: 12/24/2022]
|
5
|
Immunohistochemical detection of angiotensin II receptors in mouse cerebellum and adrenal gland using "in vivo cryotechnique". Histochem Cell Biol 2013; 140:477-90. [PMID: 23515786 DOI: 10.1007/s00418-013-1084-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Angiotensin II (AT) receptors, including AT receptor type 1 (AT1R) and type 2 (AT2R), are expressed in the rodent central nervous system, but their distributions and activation states are still unclear. In this study, we have performed immunohistochemical analyses of AT receptors in mouse cerebellum and adrenal gland using our "in vivo cryotechnique" (IVCT). We used antibodies against amino-terminal domains of AT receptors, which are considered to undergo conformational changes upon the binding of AT. Immunoreactivity of AT1R was detected in mouse cerebellum, and was highest in the outer tissue areas of molecular layers using IVCT. The AT1R immunostaining largely overlapped with glial fibrillary acidic protein (GFAP), a marker of Bergmann glia. Surprisingly, the AT1R immunoreactivity in the cerebellar cortex was remarkably reduced following 5 and 10 min of hypoxia or direct administration of an AT1R antagonist, losartan. By contrast, in the adrenal cortex, such AT1R immunoreactivity detected at the zona glomerulosa did not change even after 15 min of hypoxia. The correlation of localization with GFAP and also hypoxia-induced decrease of its immunoreactivity were similarly observed by immunostaining of AT2R in the cerebellar specimens. These findings demonstrated that IVCT is useful to reveal dynamically changing immunoreactivities usually affected by receptor-ligand binding as well as hypoxia, and also suggested that functional activities of AT receptors are time-dependently modulated under hypoxia in the central nervous system in comparison with the adrenal glands.
Collapse
|
6
|
Application of "in vivo cryotechnique" to morphological and immunohistochemical analyses of living mouse subepicardial microcirculation under various pathological conditions. Appl Immunohistochem Mol Morphol 2011; 20:304-17. [PMID: 22024992 DOI: 10.1097/pai.0b013e318225a2a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
"In vivo cryotechnique" (IVCT), which involves immediately cryofixing cells and tissues of living animals in situ, can display more native morphology in vivo and eliminate artificial changes in conventional preparations. However, the technical characteristics of IVCT are not known for the practical examination of subepicardial microcirculation of beating heart tissue. Histological sections of subepicardial area were prepared using IVCT and conventional fixation methods: quick freezing, immersion fixation, or perfusion fixation followed by alcohol dehydration, respectively from healthy mice. In addition, changes of erythrocyte shape, T-tubule, and microvasculature in mouse heart from a variety of models (acute increase of left ventricular afterload, myocardial ischemia, and cardiac arrest) were examined by IVCT. With IVCT, flowing erythrocytes, blood flow, microvasculature, and myocyte structure could be well preserved without artificial change of erythrocyte shape and translocation of serum proteins as displayed in conventional preparation samples. Furthermore, in various pathological models prepared by IVCT, T-tubules with albumin immuno-positive staining were arranged in a disorderly way and were decreased in volume in samples of acute increase of left ventricular afterload (IVCT-LAA). This was more evident in acute regional myocardial ischemia (IVCT-IC) and less evident in heart arrest (IVCT-HA). In addition, the leakage of serum proteins from microvasculature into myocyte was found only in IVCT-IC but not in IVCT-LAA and in IVCT-HA. In conclusion, IVCT is a new technique for examining morphology of subepicardial microcirculation without artifacts compared with conventional methods and is a more sensitive fixation technique in detecting pathological changes of the heart.
Collapse
|
7
|
Shi L, Terada N, Saitoh Y, Saitoh S, Ohno S. Immunohistochemical distribution of serum proteins in living mouse heart with In vivo cryotechnique. Acta Histochem Cytochem 2011; 44:61-72. [PMID: 21614167 PMCID: PMC3096083 DOI: 10.1267/ahc.11007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/17/2011] [Indexed: 12/12/2022] Open
Abstract
In vivo cryotechnique (IVCT), which immediately cryofixes target organs in situ, was used to clarify the morphological features of beating heart tissue of living mice. IVCT was performed for diastolic heart tissue under the condition of monitoring with electrocardiogram (ECG). Other mouse hearts were prepared with conventional perfusion-fixation (PF-DH) or immersion-fixation followed by dehydration (IM-DH), and quick-freezing of resected heart tissues (FQF). Immunolocalizations of albumin, immunoglobulin G1 (IgG1), intravenously injected bovine serum albumin (BSA), and connexin 43 were examined after different intervals of BSA injection. In the case of IVCT, the exact stop time of beating mouse hearts was recorded by ECG, and open blood vessels with flowing erythrocytes were observed with less artificial tissue shrinkage than with conventional preparation methods. Both albumin and BSA were well preserved in intercalated discs and t-tubules of cardiomyocytes in addition to blood vessels and interstitial matrices. IgG1 was immunolocalized in interstitial matrices of heart tissues in addition to their blood vessels. At 4 hr after BSA injection, it was immunolocalized in the intercalated discs of cardiomyocytes and lost later at 8 hr. IVCT should prove to be more useful for the morphofunctional examination of dynamically changing heart tissue than conventional preparation methods.
Collapse
Affiliation(s)
- Liye Shi
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
- Department of Cardiovascular Medicine, The First Hospital of China Medical University
| | - Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
8
|
Chen J, Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S. Immunolocalization of membrane skeletal protein, 4.1G, in enteric glial cells in the mouse large intestine. Neurosci Lett 2010; 488:193-8. [PMID: 21093541 DOI: 10.1016/j.neulet.2010.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/20/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
4.1 family proteins are membrane skeletal proteins that interact with spectrin-actin networks and intramembraneous proteins. We reported that one of them, 4.1G, was immunolocalized in myelinated nerve fibers of the mouse peripheral nervous system, especially along cell membranes of paranodes and Schmidt-Lanterman incisures in Schwann cells. In this study, to examine 4.1G's appearance in unmyelinated peripheral nerve fibers, we focused on the enteric nervous system in mouse large intestines. In intestinal tissues prepared by an "in vivo cryotechnique" followed by freeze-substitution fixation, 4.1G was immunolocalized in Auerbach's myenteric plexus and connecting nerve fiber networks. Its immunostaining was mostly colocalized with glial fibrillar acidic protein, a marker of enteric glial cells, but not with c-Kit, a marker of interstitial cells of Cajal. Using whole-mount preparation after splitting inner and outer muscle layers, the nerve fiber networks including the plexus were clearly detected by the 4.1G immunostaining. By conventional pre-embedding immunoelectron microscopy, 4.1G was detected along cell membranes of enteric glial cells and their processes surrounding axons. These indicate that 4.1G may have some roles in adhesion and/or signal transduction in unmylinated PNS nerve fibers.
Collapse
Affiliation(s)
- Jiaorong Chen
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi 409-3898, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Saitoh Y, Terada N, Saitoh S, Ohno N, Fujii Y, Ohno S. Three-dimensional reconstruction of living mouse liver tissues using cryotechniques with confocal laser scanning microscopy. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:513-525. [PMID: 20709827 DOI: 10.1093/jmicro/dfq065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Soluble proteins and glycogen particles are well preserved in paraffin-embedded sections prepared by in vivo cryotechnique (IVCT) and cryobiopsy followed by freeze substitution fixation. We performed confocal laser scanning microscopic analyses on the distributions of glycogen with periodic acid-Schiff (PAS) staining and serum proteins with immunostaining for mouse liver tissues. Livers of fully fed mice showed a strong fluorescence signal of PAS staining in all hepatocytes and immunofluorescence of immunoglobulin kappa light chain (Igκ) in blood vessels and bile canaliculi. However, some hepatocytes in mechanically damaged livers were PAS-negative and Igκ-immunopositive, showing extraction of glycogen particles and infiltration of serum proteins in hepatocytes. By three-dimensional (3D) reconstruction of serial optical sections, interconnecting hepatic sinusoids and bile canaliculi were detected with Igκ immunostaining between trabecular hepatocytes that were PAS stained. In PAS-stained samples under fasting conditions, interstitial structures along sinusoids were clarified in vivo by 3D reconstruction because of the lower PAS staining intensity of hepatocytes. In addition, 100-μm-thick eosin-stained slices provided 3D structural images more than 30 μm in thickness away from tissue surfaces, showing blood vessels with flowing erythrocytes and networks of bile ducts and canaliculi. IVCT and cryobiopsy with histochemical analyses enabled us to visualize native hepatocytic glycogen and 3D structures, such as vascular networks, reflecting their living states by confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi 409-3898, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Shimo S, Saitoh S, Terada N, Ohno N, Saitoh Y, Ohno S. Immunohistochemical detection of soluble immunoglobulins in living mouse small intestines using an in vivo cryotechnique. J Immunol Methods 2010; 361:64-74. [PMID: 20691695 DOI: 10.1016/j.jim.2010.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 01/19/2023]
Abstract
Some morphological changes are inevitable during immersion- or perfusion-fixation and following alcohol-dehydration for tissue preparations. Common immunostaining techniques for these specimens have some limitations to capture accurate localizations of soluble proteins in cells and tissues. In this study, to examine in situ distributions of immunoglobulins (Igs), small intestinal tissues of living mice were prepared with our "in vivo cryotechnique" (IVCT). Thin sections were first stained with hematoxylin-eosin for morphology, and then some immunostainings were performed on serial sections for IgA, Ig kappa light chain, IgG1 heavy chain (IgG1), and IgM. Living morphological states of small intestinal tissues, including flowing erythrocytes and opening blood vessels, were observed on paraffin sections prepared with IVCT. IgA was immunolocalized in many plasma cells of the lamina mucosa propria, intestinal matrices, and also in epithelial cells of the intestinal villi and crypts. Both IgG1 and IgM immunoreactivities were mainly detected in blood vessels, whereas only IgG1 was also immunolocalized in interstitial matrices of mucous membranes. By perfusion-fixation and alcohol-dehydration, however, IgA immunoreactivity was observed in plasma cells, but not in epithelial cells or the lamina mucosa propria. Thus, IVCT was more useful to examine in vivo immunolocalizations of soluble Igs in small intestines.
Collapse
Affiliation(s)
- Satoshi Shimo
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-city, Yamanashi 409-3898, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Ohno S, Terada N, Ohno N, Saitoh S, Saitoh Y, Fujii Y. Significance of 'in vivo cryotechnique' for morphofunctional analyses of living animal organs. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:395-408. [PMID: 20667816 DOI: 10.1093/jmicro/dfq058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our final goal of morphological and immunohistochemical studies is that all findings examined in animal experiments should reflect the physiologically functional background. Therefore, the preservation of original components in cells and tissues of animals is necessary for describing the functional morphology of living animal organs. It is generally accepted that morphological findings of various organs were easily modified by stopping their blood supply. There had been a need to develop a new preparation technique for freezing the living animal organs in vivo and then obtaining acceptable morphology and also immunolocalization of original components in functioning cells and tissues. We already developed the 'in vivo cryotechnique' (IVCT) not only for their morphology, but also for immunohistochemistry of many soluble components in various living animal organs. All physiological processes of cells and tissues were immediately immobilized by IVCT, and every component in the cells and tissues was maintained in situ at the time of freezing. Thus, the ischaemic or anoxic effects on them could be minimized by IVCT. Our specially designed cryoknife with liquid cryogen has solved the morphological and immunohistochemical problems which are inevitable with the conventional preparation methods at a light or electron microscopic level. The IVCT will be extremely useful for arresting transient physiological processes and for maintaining any intracellular components in situ, such as rapidly changing signal molecules, membrane channels and receptors.
Collapse
Affiliation(s)
- Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi 409-3898, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Saitoh Y, Terada N, Saitoh S, Ohno N, Fujii Y, Ohno S. Histochemical approach of cryobiopsy for glycogen distribution in living mouse livers under fasting and local circulation loss conditions. Histochem Cell Biol 2009; 133:229-39. [PMID: 19949818 DOI: 10.1007/s00418-009-0663-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2009] [Indexed: 11/24/2022]
Abstract
Soluble proteins and glycogen particles, which are easily lost upon conventional chemical fixation, have been reported to be better preserved in paraffin-embedded sections by 'cryobiopsy' combined with freeze-substitution fixation (FS). In this study, we examined the distribution of glycogen in living mouse livers under physiologic and pathologic conditions with periodic acid-Schiff (PAS) staining by cryobiopsy. The livers of the fully fed mice showed high PAS-staining intensity in the cytoplasm of all hepatocytes. The PAS-staining intensity gradually decreased away from hepatocytes around portal tracts, depending on treatments with different alpha-amylase concentrations. At 6 or 12 h after fasting, PAS-staining intensity markedly decreased in restricted areas of zone I near the portal tracts. The cryobiopsy was repeatedly performed not only on different mice, but also on individuals. Next, glycogen distributions were evaluated by temporarily clipping of liver tissues of anesthetized mice, followed by recovery of blood circulation. In the liver tissues in which blood was recirculated for 1 h after the 30 min anoxia, PAS staining was still observed in zone II and also in restricted areas of zone I far from the portal tracts. In PAS-unstained hepatocytes, the immunoglobulin-kappa light chain was not detected in the cytoplasm, indicating that cell membrane permeability was retained and that glycogen metabolism was related to the functional state of blood circulation. We propose that the level of consumption or production of glycogen particles could vary in zone I, depending on the distance from the portal tracts. Thus, cryobiopsy combined with FS enabled us to examine time-dependent changes in glycogen distribution in the liver tissues of living mice. This combination might be applicable to the clinical evaluation of human liver tissues.
Collapse
Affiliation(s)
- Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-city, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S. Immunoreactivity of glutamate in mouse retina inner segment of photoreceptors with in vivo cryotechnique. J Histochem Cytochem 2009; 57:883-8. [PMID: 19471014 DOI: 10.1369/jhc.2009.953851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to clarify a previously controversial issue concerning glutamate (Glu) immunoreactivity (IR) in the inner segment (IS) of photoreceptors by using in vivo cryotechnique (IVCT) followed by freeze substitution (FS), which enabled us to analyze the cells and tissues reflecting living states. Eyeballs from anesthetized mice were directly frozen using IVCT. The frozen tissues were processed for FS fixation in acetone containing chemical fixatives, and embedded in paraffin. Deparaffinized sections were immunostained with an anti-Glu antibody. The strongest Glu-IR was obtained in the specimens prepared by FS with paraformaldehyde or a low concentration of glutaraldehyde, whereas no Glu-IR was obtained without the chemical fixatives. The Glu was immunolocalized in the IS, outer and inner plexiform and ganglion cell layers. Thus, the immunolocalization of Glu in the IS was clearly demonstrated using IVCT.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi 409-3898, Japan.
| | | | | | | | | |
Collapse
|
14
|
Immunolocalization of phospho-Arg-directed protein kinase-substrate in hypoxic kidneys using in vivo cryotechnique. Med Mol Morphol 2009; 42:24-31. [DOI: 10.1007/s00795-008-0430-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/28/2008] [Indexed: 01/15/2023]
|
15
|
McKay JS, Steele SJ, Ahmed G, Johnson E, Ratcliffe K. An antibody panel for immunohistochemical analysis of the retina in Davidson's-fixed, paraffin-embedded eyes of rats. ACTA ACUST UNITED AC 2009; 61:91-100. [DOI: 10.1016/j.etp.2008.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Ohno N, Terada N, Bai Y, Saitoh S, Nakazawa T, Nakamura N, Naito I, Fujii Y, Katoh R, Ohno S. Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels. Cancer 2008; 113:1068-79. [PMID: 18623380 DOI: 10.1002/cncr.23701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Assessment of tissue specimens obtained with common immersion-fixation followed by dehydration (IMDH) is affected by artifacts, which hinder precise evaluation of the histology and microenvironment of tumor tissues. The technical characteristics of cryobiopsy and in vivo cryotechnique (IVCT) where target organs are directly cryofixed in vivo are still unknown in practical examinations of tumor histopathology and microenvironment. METHODS Three lines of human lung cancer cells were subcutaneously injected to the dorsal flank of nude mice, and paraffin sections and cryosections of produced tumors were prepared with cryobiopsy, IVCT, the quick-freezing of the fresh resected tumor tissues, or IMDH. Histological comparison among different methods was conducted, and immunolocalization of immunoglobulin M (IgM), intravenously injected bovine serum albumin (BSA), and vascular endothelial growth factor (VEGF) were examined. RESULTS With both the cryobiopsy and IVCT, cellular morphology and open blood vessels with flowing erythrocytes could be observed without artificial shrinkage, and the volume of blood vessels was not affected by a vascular collapse, which was observed after tissue-resection. In addition, with cryobiopsy and IVCT, IgM was well preserved in functional vessels with blood flow, which could be observed with injected BSA, and the volume of IgM-immunopositive blood vessels was significantly associated with the expression of VEGF. CONCLUSIONS Cryobiopsy could be useful for histological examination of human tumors without morphological artifacts associated with IMDH. Furthermore, it allows direct examination of functional blood vessels and related signaling molecules, thereby providing a better evaluation of the human tumor microenvironment for clinical application.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Terada N, Ohno N, Saitoh S, Ohno S. Application of “in vivo cryotechnique” to detect erythrocyte oxygen saturation in frozen mouse tissues with confocal Raman cryomicroscopy. J Struct Biol 2008; 163:147-54. [DOI: 10.1016/j.jsb.2008.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/19/2023]
|
18
|
Distribution of immunoglobulin-producing cells in immunized mouse spleens revealed with "in vivo cryotechnique". J Immunol Methods 2008; 331:114-26. [PMID: 18201715 DOI: 10.1016/j.jim.2007.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 01/19/2023]
Abstract
To identify immunoglobulin (Ig)-producing cells with immunohistochemistry, conventional methods of preparation using chemical fixatives have problems such as the artificial diffusion of components and antigen masking. The "diffusion artifact" is caused by the translocation of soluble proteins like Ig from the serum to cytoplasm or vice versa. We have examined the immunolocalization of serum proteins, such as Ig kappa light chain (Igkappa), IgG1 heavy chain (IgG1), and albumin, in immunized mouse spleens after a peritoneal injection of human hemoglobin. Better preservation of morphology and immunoreactivity was obtained with the "in vivo cryotechnique" (IVCT) followed by freeze-substitution, than with conventional preparative methods. Although Ig-producing cells were not clearly detected in red pulp of 2-day-immunized spleens with the conventional methods, Igkappa-immunopositive cells with rich cytoplasm were detected in the red pulp with IVCT, especially in the subcapsular and peritrabecular areas, where IgG1-immunopositive cells were rarely observed. In 7-day-immunized spleens prepared with IVCT, Igkappa- or IgG1-immunopositive cells were mostly located in peritrabeculae. The development of Ig-producing cells was clarified in the specimens prepared with IVCT, which proved to be useful for analyzing the native morphology and distribution of Ig-producing cells.
Collapse
|
19
|
Ohno N, Terada N, Saitoh S, Ohno S. Extracellular space in mouse cerebellar cortex revealed by in vivo cryotechnique. J Comp Neurol 2007; 505:292-301. [PMID: 17879272 DOI: 10.1002/cne.21498] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Conventional methods of preparing tissue specimens for morphological investigation of the central nervous system suffer from inevitable artifacts caused by anoxia during the processing. In the present study we performed ultrastructural analyses of mouse cerebellar cortex using the in vivo cryotechnique (IVCr), which minimizes ischemic artifacts of target organs through direct cryofixation in vivo. In molecular and Purkinje cell layers of the mouse cerebellum prepared with IVCr, considerably large extracellular spaces (ECS) were detected among cellular profiles and synaptic clefts. The ECS obtained with IVCr without ischemia were larger than those obtained with IVCr after 8-minute ischemia or a conventional quick-freezing method with fresh resected tissues (FQF), but did not decrease with IVCr after 30-second ischemia. By contrast, the parallel fibers observed with IVCr without ischemia were slightly smaller than those after 30-second ischemia, and significantly smaller than those prepared with IVCr after 8-minute ischemia or FQF. ECS were frequently preserved around synaptic clefts, although the rest were totally or partially enclosed with closely apposed glial processes. The estimated sizes of the ECS around synaptic clefts did not differ between the opened and enclosed synapses, suggesting that the opened synapses might be temporarily surrounded by glial sheaths dynamically extending or retracting throughout the perisynaptic ECS. These findings indicate IVCr to be useful for some morphological analyses of ECS in the central nervous system. The appreciable ECS around synapses would allow morphological and functional changes of neuronal and glial cells dynamically involved in synaptic remodeling or signal transduction.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-city, Yamanashi, 409-3898, Japan
| | | | | | | |
Collapse
|
20
|
Terada N, Ohno N, Saitoh S, Ohno S. Immunohistochemical detection of hypoxia in mouse liver tissues treated with pimonidazole using "in vivo cryotechnique". Histochem Cell Biol 2007; 128:253-61. [PMID: 17680263 DOI: 10.1007/s00418-007-0324-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2007] [Indexed: 12/25/2022]
Abstract
To evaluate hypoxic cells in live mouse liver tissues, immunohistochemistry for protein adducts of reductively activated pimonidazole (PARaPi) was performed using the "in vivo cryotechnique (IVCT)" followed by freeze-substitution fixation. This method was used because cryotechniques have some merits for examining biological events in living animal organs with improved time-resolution compared to conventional perfusion and/or immersion chemical fixation. Pimonidazole was intraperitoneally injected into living mice, and then after various times of hypoxia, their livers were quickly frozen by IVCT. The frozen liver tissues were freeze-substituted in acetone containing 2% paraformaldehyde, and routinely embedded in paraffin wax. De-paraffinized sections were immunostained for PARaPi. In liver tissues of mice without hypoxia, almost no immunostained cells were detected. However, in liver tissues with 30 s of hypoxia, some hepatocytes in the pericentral zones were strongly immunostained. After 60 s of hypoxia, many hepatocytes were immunostained with various degrees of staining intensity in all lobular zones, indicating different reactivities of pimonidazole in the hepatocytes to hypoxia. At this time, the general immunoreactivity also appeared to be stronger around the central veins than other portal areas. Although many hepatocytes were immunostained for PARaPi in the liver tissues with perfusion fixation via heart, those with perfusion via portal vein were not immunostained. Thus, IVCT is useful to detect time-dependent hypoxic states with pimonidazole treatment in living animal organs.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi, 409-3898, Japan.
| | | | | | | |
Collapse
|
21
|
Terada N, Ohno N, Saitoh S, Fujii Y, Ohguro H, Ohno S. Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the "in vivo cryotechnique". Microsc Res Tech 2007; 70:634-9. [PMID: 17393480 DOI: 10.1002/jemt.20449] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The wavelength of Raman-scattered light depends on the molecular composition of the substance. This is the first attempt to acquire Raman spectra of a mouse eyeball removed from a living mouse, in which the eyeball was preserved using the "in vivo cryotechnique" followed by freeze-drying. Eyeballs were cryofixed using a rapid freezing cryotechnique, and then sliced in the cryostat machine. The slices were sandwiched between glass slides, freeze-dried, and analyzed with confocal Raman microscopy. Important areas including various eyeball tissue layers were selected using bright-field microscopy, and then the Raman spectra were obtained at 240 locations. Four typical patterns of Raman spectra were electronically mapped on the specimen images obtained by the bright-field microscopy. Tissue organization was confirmed by embedding the same eyeball slice used for Raman spectra into epoxy resin and the thick sections were prepared with the inverted capsule method. Each Raman spectral pattern represents a different histological layer in the eyeball which was mapped by comparing the images of toluidine blue staining and Raman mapping with different colors. In the choroid and pigment cell layer, the Raman spectrum had two peaks, corresponding to melanin. Some of the peaks of the Raman spectra obtained from the blood vessels in sclera and the photoreceptor layer were similar to those obtained from the purified hemoglobin and rhodopsin proteins, respectively. Our experimental protocol can distinguish different tissue components with Raman microscopy; therefore, this method can be very useful for examining the distribution of a biological structures and/or chemical components in rapidly frozen freeze-dried tissue.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-city, Yamanashi 409-3898, Japan.
| | | | | | | | | | | |
Collapse
|