1
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
2
|
Li M, Zhang L, Pan L, Zhou P, Yu R, Zhang Z, Lv J, Guo H, Wang Y, Xiao S, Liu X. Nicotinamide Efficiently Suppresses Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus Replication. Viruses 2023; 15:1591. [PMID: 37515276 PMCID: PMC10386100 DOI: 10.3390/v15071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the genus Coronavirus, mainly cause acute diarrhea, vomiting and dehydration in piglets, and thus lead to serious economic losses. In this study, we investigated the effects of nicotinamide (NAM) on PEDV and PDCoV replication and found that NAM treatment significantly inhibited PEDV and PDCoV reproduction. Moreover, NAM plays an important role in replication processes. NAM primarily inhibited PEDV and PDCoV RNA and protein synthesis rather than other processes. Furthermore, we discovered that NAM treatment likely inhibits the replication of PEDV and PDCoV by downregulating the expression of transcription factors through activation of the ERK1/2/MAPK pathway. Overall, this study is the first to suggest that NAM might be not only an important antiviral factor for swine intestinal coronavirus, but also a potential candidate to be evaluated in the context of other human and animal coronaviruses.
Collapse
Affiliation(s)
- Mingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jianliang Lv
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
3
|
Rana MA, Ijaz B, Daud M, Tariq S, Nadeem T, Husnain T. Interplay of Wnt β-catenin pathway and miRNAs in HBV pathogenesis leading to HCC. Clin Res Hepatol Gastroenterol 2019; 43:373-386. [PMID: 30377095 DOI: 10.1016/j.clinre.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
The prevalence of Hepatocellular carcinoma (HCC) has been identified world-wide. Plethora of factors including chronic infection of HBV/HCV has been characterized for the development of HCC. Although the onset and progression of HCC has been linked with awry of various signaling pathways but precise mechanism, still lies under the multitude layers of curiosity. HBV is spreading with insane speed throughout the world and has been found a main culprit in HCC development after regulating the several cellular pathways including Wnt/β-catenin, Raf/MAPK, Akt and affecting cell multiplication to genomic instability. The role of Wnt/FZD/β-catenin signaling pathway is centralized in liver functions and its anomalous activation leads to HCC development. β-catenin mainly plays a pivotal role in canonical pathway of the system. Altered mainly overexpression of β-catenin along its nuclear localization tunes the aberrations in liver functions and set disease progression. In the development of HCC, modulation of Wnt/FZD/β-catenin signaling pathway by HBV has been established. As HBV infects the cell it affects the miRNAs, the master regulators of cell. Previous studies showed the connection between HBV and cellular miRNAs. In the present review, we unveiled how HBV is deciphering the cellular miRNAs like miR-26a, miR-15a, miR-16-1, miR-148a, miR-132, miR-122, miR-34a, miR-21, miR-29a, miR-222 and miR-199a/b-3p to modulate the Wnt/FZD/β-catenin signaling pathway and develop HCC. These HBV mediated miRNAs may prove future therapeutic options to treat HBV-Wnt/FZD/β-catenin associated HCC.
Collapse
Affiliation(s)
- Muhammad Adeel Rana
- Department of microbiology, Quaid-i-Azam University, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan.
| | - Muhammad Daud
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Sommyya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
4
|
Mizuguchi Y, Takizawa T, Uchida E. Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication. World J Hepatol 2015; 7:696-702. [PMID: 25866606 PMCID: PMC4388997 DOI: 10.4254/wjh.v7.i4.696] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
A large number of studies have demonstrated that the synergistic collaboration of a number of microRNAs (miRNAs), their growth factors and their downstream agents is required for the initiation and completion of pathogenesis in the liver. miRNAs are thought to exert a profound effect on almost every aspect of liver biology and pathology. Accumulating evidence indicates that several miRNAs are involved in the hepatitis B virus (HBV) life cycle and infectivity, in addition to HBV-associated liver diseases including fibrosis, cirrhosis and hepatocellular carcinoma (HCC). In turn, HBV can modulate the expression of several cellular miRNAs, thus promoting a favorable environment for its replication and survival. In this review, we focused on the involvement of host cellular miRNAs that are directly and indirectly associated with HBV RNA or HBV associated transcription factors. Exploring different facets of the interactions among miRNA, HBV and HCV infections, and the carcinogenesis and progress of HCC, could facilitate the development of novel and effective treatment approaches for liver disease.
Collapse
|