1
|
Fairbanks EL, Daly JM, Tildesley MJ. Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission. Viruses 2024; 16:1221. [PMID: 39205195 PMCID: PMC11359451 DOI: 10.3390/v16081221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Most mathematical models that assess the vectorial capacity of disease-transmitting insects typically focus on the influence of climatic factors to predict variations across different times and locations, or examine the impact of vector control interventions to forecast their potential effectiveness. We combine features of existing models to develop a novel model for vectorial capacity that considers both climate and vector control. This model considers how vector control tools affect vectors at each stage of their feeding cycle, and incorporates host availability and preference. Applying this model to arboviruses of veterinary importance in Europe, we show that African horse sickness virus (AHSV) has a higher peak predicted vectorial capacity than bluetongue virus (BTV), Schmallenberg virus (SBV), and epizootic haemorrhagic disease virus (EHDV). However, AHSV has a shorter average infectious period due to high mortality; therefore, the overall basic reproduction number of AHSV is similar to BTV. A comparable relationship exists between SBV and EHDV, with both viruses showing similar basic reproduction numbers. Focusing on AHSV transmission in the UK, insecticide-treated stable netting is shown to significantly reduce vectorial capacity of Culicoides, even at low coverage levels. However, untreated stable netting is likely to have limited impact. Overall, this model can be used to consider both climate and vector control interventions either currently utilised or for potential use in an outbreak, and could help guide policy makers seeking to mitigate the impact of climate change on disease control.
Collapse
Affiliation(s)
- Emma L. Fairbanks
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Mathematics Institute and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Janet M. Daly
- One Virology—Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Mathematics Institute and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
2
|
Viennet E, Frentiu FD, McKenna E, Torres Vasconcelos F, Flower RLP, Faddy HM. Arbovirus Transmission in Australia from 2002 to 2017. BIOLOGY 2024; 13:524. [PMID: 39056717 PMCID: PMC11273437 DOI: 10.3390/biology13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause transfusion-transmitted infections. This study examined the spatiotemporal variation of these arboviruses and their potential impact on blood donation numbers across Australia. Using data from the Australian Department of Health on eight arboviruses from 2002 to 2017, we retrospectively assessed the distribution and clustering of incidence rates in space and time using Geographic Information System mapping and space-time scan statistics. Regression models were used to investigate how weather variables, their lag months, space, and time affect case and blood donation counts. The predictors' importance varied with the spatial scale of analysis. Key predictors were average rainfall, minimum temperature, daily temperature variation, and relative humidity. Blood donation number was significantly associated with the incidence rate of all viruses and its interaction with local transmission of DENV, overall. This study, the first to cover eight clinically relevant arboviruses at a fine geographical level in Australia, identifies regions at risk for transmission and provides valuable insights for public health intervention.
Collapse
Affiliation(s)
- Elvina Viennet
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Francesca D. Frentiu
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Emilie McKenna
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Flavia Torres Vasconcelos
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Health, University of the Sunshine Coast, Petrie, QLD 4052, Australia
| | - Robert L. P. Flower
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD 4001, Australia;
| | - Helen M. Faddy
- Research and Development, Strategy and Growth, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; (E.M.); (F.T.V.); (R.L.P.F.); (H.M.F.)
- School of Health, University of the Sunshine Coast, Petrie, QLD 4052, Australia
| |
Collapse
|
3
|
Kain MP, Skinner EB, Athni TS, Ramirez AL, Mordecai EA, van den Hurk AF. Not all mosquitoes are created equal: A synthesis of vector competence experiments reinforces virus associations of Australian mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010768. [PMID: 36194577 PMCID: PMC9565724 DOI: 10.1371/journal.pntd.0010768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/14/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022] Open
Abstract
The globalization of mosquito-borne arboviral diseases has placed more than half of the human population at risk. Understanding arbovirus ecology, including the role individual mosquito species play in virus transmission cycles, is critical for limiting disease. Canonical virus-vector groupings, such as Aedes- or Culex-associated flaviviruses, have historically been defined using virus detection in field-collected mosquitoes, mosquito feeding patterns, and vector competence, which quantifies the intrinsic ability of a mosquito to become infected with and transmit a virus during a subsequent blood feed. Herein, we quantitatively synthesize data from 68 laboratory-based vector competence studies of 111 mosquito-virus pairings of Australian mosquito species and viruses of public health concern to further substantiate existing canonical vector-virus groupings and quantify variation within these groupings. Our synthesis reinforces current canonical vector-virus groupings but reveals substantial variation within them. While Aedes species were generally the most competent vectors of canonical “Aedes-associated flaviviruses” (such as dengue, Zika, and yellow fever viruses), there are some notable exceptions; for example, Aedes notoscriptus is an incompetent vector of dengue viruses. Culex spp. were the most competent vectors of many traditionally Culex-associated flaviviruses including West Nile, Japanese encephalitis and Murray Valley encephalitis viruses, although some Aedes spp. are also moderately competent vectors of these viruses. Conversely, many different mosquito genera were associated with the transmission of the arthritogenic alphaviruses, Ross River, Barmah Forest, and chikungunya viruses. We also confirm that vector competence is impacted by multiple barriers to infection and transmission within the mesenteron and salivary glands of the mosquito. Although these barriers represent important bottlenecks, species that were susceptible to infection with a virus were often likely to transmit it. Importantly, this synthesis provides essential information on what species need to be targeted in mosquito control programs. There are over 3,500 species of mosquitoes in the world, but only a small proportion are considered important vectors of arboviruses. Vector competence, the physiological ability of a mosquito to become infected with and transmit arboviruses, is used in combination with virus detection in field populations and analysis of vertebrate host feeding patterns to incriminate mosquito species in virus transmission cycles. Here, we quantified the vector competence of Australian mosquitoes for endemic and exotic viruses of public health concern by analyzing 68 laboratory studies of 111 mosquito-virus pairings. We found that Australia has species that could serve as efficient vectors for each virus tested and it is these species that should be targeted in control programs. We also corroborate previously identified virus-mosquito associations at the mosquito genus level but show that there is considerable variation in vector competence between species within a genus. We also confirmed that vector competence is influenced by infection barriers within the mosquito and the experimental protocols employed. The framework we developed could be used to synthesize vector competence experiments in other regions or expanded to a world-wide overview.
Collapse
Affiliation(s)
- Morgan P. Kain
- Department of Biology, Stanford University, Stanford, California, United States of America
- Natural Capital Project, Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- * E-mail: , (MPK); (AFvdH)
| | - Eloise B. Skinner
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centre for Planetary Health and Food Security, Griffith University, Gold Coast, Queensland, Australia
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Ana L. Ramirez
- Department of Pathology, Microbiology, and Immunology, University of California - Davis, Davis, California, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia
- * E-mail: , (MPK); (AFvdH)
| |
Collapse
|
4
|
Viennet E, Frentiu FD, Williams CR, Mincham G, Jansen CC, Montgomery BL, Flower RLP, Faddy HM. Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety. PLoS Negl Trop Dis 2020; 14:e0008438. [PMID: 32663213 PMCID: PMC7380650 DOI: 10.1371/journal.pntd.0008438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/24/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Since 2015, Zika virus (ZIKV) outbreaks have occurred in the Americas and the Pacific involving mosquito-borne and sexual transmission. ZIKV has also emerged as a risk to global blood transfusion safety. Aedes aegypti, a mosquito well established in north and some parts of central and southern Queensland, Australia, transmits ZIKV. Aedes albopictus, another potential ZIKV vector, is a threat to mainland Australia. Since these conditions create the potential for local transmission in Australia and a possible uncertainty in the effectiveness of blood donor risk-mitigation programs, we investigated the possible impact of mosquito-borne and sexual transmission of ZIKV in Australia on local blood transfusion safety. METHODOLOGY/PRINCIPAL FINDINGS We estimated 'best-' and 'worst-' case scenarios of monthly reproduction number (R0) for both transmission pathways of ZIKV from 1996-2015 in 11 urban or regional population centres, by varying epidemiological and entomological estimates. We then estimated the attack rate and subsequent number of infectious people to quantify the ZIKV transfusion-transmission risk using the European Up-Front Risk Assessment Tool. For all scenarios and with both vector species R0 was lower than one for ZIKV transmission. However, a higher risk of a sustained outbreak was estimated for Cairns, Rockhampton, Thursday Island, and theoretically in Darwin during the warmest months of the year. The yearly estimation of the risk of transmitting ZIKV infection by blood transfusion remained low through the study period for all locations, with the highest potential risk estimated in Darwin. CONCLUSIONS/SIGNIFICANCE Given the increasing demand for plasma products in Australia, the current strategy of restricting donors returning from infectious disease outbreak regions to source plasma collection provides a simple and effective risk management approach. However, if local transmission was suspected in the main urban centres of Australia, potentially facilitated by the geographic range expansion of Ae. aegypti or Ae. albopictus, this mitigation strategy would need urgent review.
Collapse
Affiliation(s)
- Elvina Viennet
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- * E-mail:
| | - Francesca D. Frentiu
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Craig R. Williams
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Gina Mincham
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Cassie C. Jansen
- Communicable Diseases Branch, Queensland Department of Health, Herston, Queensland, Australia
| | - Brian L. Montgomery
- Metro South Public Health Unit, Metro South Hospital and Health Service, Brisbane, Queensland, Australia
| | - Robert L. P. Flower
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Helen M. Faddy
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
5
|
Kobres PY, Chretien JP, Johansson MA, Morgan JJ, Whung PY, Mukundan H, Del Valle SY, Forshey BM, Quandelacy TM, Biggerstaff M, Viboud C, Pollett S. A systematic review and evaluation of Zika virus forecasting and prediction research during a public health emergency of international concern. PLoS Negl Trop Dis 2019; 13:e0007451. [PMID: 31584946 PMCID: PMC6805005 DOI: 10.1371/journal.pntd.0007451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/22/2019] [Accepted: 08/27/2019] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Epidemic forecasting and prediction tools have the potential to provide actionable information in the midst of emerging epidemics. While numerous predictive studies were published during the 2016-2017 Zika Virus (ZIKV) pandemic, it remains unknown how timely, reproducible, and actionable the information produced by these studies was. METHODS To improve the functional use of mathematical modeling in support of future infectious disease outbreaks, we conducted a systematic review of all ZIKV prediction studies published during the recent ZIKV pandemic using the PRISMA guidelines. Using MEDLINE, EMBASE, and grey literature review, we identified studies that forecasted, predicted, or simulated ecological or epidemiological phenomena related to the Zika pandemic that were published as of March 01, 2017. Eligible studies underwent evaluation of objectives, data sources, methods, timeliness, reproducibility, accessibility, and clarity by independent reviewers. RESULTS 2034 studies were identified, of which n = 73 met the eligibility criteria. Spatial spread, R0 (basic reproductive number), and epidemic dynamics were most commonly predicted, with few studies predicting Guillain-Barré Syndrome burden (4%), sexual transmission risk (4%), and intervention impact (4%). Most studies specifically examined populations in the Americas (52%), with few African-specific studies (4%). Case count (67%), vector (41%), and demographic data (37%) were the most common data sources. Real-time internet data and pathogen genomic information were used in 7% and 0% of studies, respectively, and social science and behavioral data were typically absent in modeling efforts. Deterministic models were favored over stochastic approaches. Forty percent of studies made model data entirely available, 29% provided all relevant model code, 43% presented uncertainty in all predictions, and 54% provided sufficient methodological detail to allow complete reproducibility. Fifty-one percent of predictions were published after the epidemic peak in the Americas. While the use of preprints improved the accessibility of ZIKV predictions by a median of 119 days sooner than journal publication dates, they were used in only 30% of studies. CONCLUSIONS Many ZIKV predictions were published during the 2016-2017 pandemic. The accessibility, reproducibility, timeliness, and incorporation of uncertainty in these published predictions varied and indicates there is substantial room for improvement. To enhance the utility of analytical tools for outbreak response it is essential to improve the sharing of model data, code, and preprints for future outbreaks, epidemics, and pandemics.
Collapse
Affiliation(s)
- Pei-Ying Kobres
- School of Public Health, George Washington University, Washington, DC, United States of America
| | | | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, Atlanta, Georgia, United States of America
| | - Jeffrey J. Morgan
- Joint Research and Development Inc, Stafford, Virginia, United States of America
| | - Pai-Yei Whung
- Office of Research & Development, US Environmental Protection Agency, Washington, DC, United States of America
| | - Harshini Mukundan
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sara Y. Del Valle
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brett M. Forshey
- Armed Forces Health Surveillance Branch, Silver Spring, Maryland, United States of America
| | - Talia M. Quandelacy
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, Atlanta, Georgia, United States of America
- Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Matthew Biggerstaff
- Influenza Division, Centers for Disease Control & Prevention, Atlanta, Georgia, United States of America
| | - Cecile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Marie Bashir Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Hugo LE, Stassen L, La J, Gosden E, Ekwudu O, Winterford C, Viennet E, Faddy HM, Devine GJ, Frentiu FD. Vector competence of Australian Aedes aegypti and Aedes albopictus for an epidemic strain of Zika virus. PLoS Negl Trop Dis 2019; 13:e0007281. [PMID: 30946747 PMCID: PMC6467424 DOI: 10.1371/journal.pntd.0007281] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/16/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent epidemics of Zika virus (ZIKV) in the Pacific and the Americas have highlighted its potential as an emerging pathogen of global importance. Both Aedes (Ae.) aegypti and Ae. albopictus are known to transmit ZIKV but variable vector competence has been observed between mosquito populations from different geographical regions and different virus strains. Since Australia remains at risk of ZIKV introduction, we evaluated the vector competence of local Ae. aegypti and Ae. albopictus for a Brazilian epidemic ZIKV strain. In addition, we evaluated the impact of daily temperature fluctuations around a mean of 28°C on ZIKV transmission and extrinsic incubation period. METHODOLOGY/PRINCIPAL FINDINGS Mosquitoes were orally challenged with a Brazilian ZIKV strain (8.8 log CCID50/ml) and maintained at either 28°C constant or fluctuating temperature conditions. At 3, 7 and 14 days post-infection (dpi), ZIKV RNA copies were quantified in mosquito bodies, as well as wings and legs, using qRT-PCR, while virus antigen in saliva (a proxy for transmission) was detected using a cell culture ELISA. Despite high body and disseminated infection rates in both vectors, the transmission rates of ZIKV in saliva of Ae. aegypti (50-60%) were significantly higher than in Ae. albopictus (10%) at 14 dpi. Both species supported a high viral load in bodies, with no significant differences between constant and fluctuating temperature conditions. However, a significant difference in viral load in wings and legs between species was observed, with higher titres in Ae. aegypti maintained at constant temperature conditions. For ZIKV transmission to occur in Ae. aegypti, a disseminated virus load threshold of 7.59 log10 copies had to be reached. CONCLUSIONS/SIGNIFICANCE Australian Ae. aegypti are better able to transmit a Brazilian ZIKV strain than Ae. albopictus. The results are in agreement with the global consensus that Ae. aegypti is the major vector of ZIKV.
Collapse
Affiliation(s)
- Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Liesel Stassen
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jessica La
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences Queensland University of Technology, Brisbane, Queensland, Australia
| | - Edward Gosden
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences Queensland University of Technology, Brisbane, Queensland, Australia
| | - O’mezie Ekwudu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences Queensland University of Technology, Brisbane, Queensland, Australia
| | - Clay Winterford
- QIMR Berghofer Histotechnology Facility, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Elvina Viennet
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Helen M. Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
7
|
Allard A, Althouse BM, Hébert-Dufresne L, Scarpino SV. The risk of sustained sexual transmission of Zika is underestimated. PLoS Pathog 2017; 13:e1006633. [PMID: 28934370 PMCID: PMC5626499 DOI: 10.1371/journal.ppat.1006633] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/03/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022] Open
Abstract
Pathogens often follow more than one transmission route during outbreaks-from needle sharing plus sexual transmission of HIV to small droplet aerosol plus fomite transmission of influenza. Thus, controlling an infectious disease outbreak often requires characterizing the risk associated with multiple mechanisms of transmission. For example, during the Ebola virus outbreak in West Africa, weighing the relative importance of funeral versus health care worker transmission was essential to stopping disease spread. As a result, strategic policy decisions regarding interventions must rely on accurately characterizing risks associated with multiple transmission routes. The ongoing Zika virus (ZIKV) outbreak challenges our conventional methodologies for translating case-counts into route-specific transmission risk. Critically, most approaches will fail to accurately estimate the risk of sustained sexual transmission of a pathogen that is primarily vectored by a mosquito-such as the risk of sustained sexual transmission of ZIKV. By computationally investigating a novel mathematical approach for multi-route pathogens, our results suggest that previous epidemic threshold estimates could under-estimate the risk of sustained sexual transmission by at least an order of magnitude. This result, coupled with emerging clinical, epidemiological, and experimental evidence for an increased risk of sexual transmission, would strongly support recent calls to classify ZIKV as a sexually transmitted infection.
Collapse
Affiliation(s)
- Antoine Allard
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, Bellaterra, Barcelona, Spain
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Bellevue, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
- New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Laurent Hébert-Dufresne
- Institute for Disease Modeling, Bellevue, Washington, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- University of Vermont, Burlington, Vermont, United States of America
| | - Samuel V. Scarpino
- Northeastern University, Boston, Massasschusetts, United States of America
| |
Collapse
|