1
|
Jönsson J, Zhai Q, Schwartz S, Kajitani N. hnRNP H controls alternative splicing of human papillomavirus type 16 E1, E6, E7, and E6^E7 mRNAs via GGG motifs. J Virol 2024; 98:e0095124. [PMID: 39287390 PMCID: PMC11494879 DOI: 10.1128/jvi.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
The mRNAs encoding the human papillomavirus type 16 (HPV16) E6 and E7 oncogene mRNAs are subjected to extensive alternative RNA splicing at multiple regulated splice sites. One of the most extensively used 5'-splice sites in the HPV16 genome is named SD880 and is located immediately downstream of the E7 open reading frame. Here, we show that a cluster of three GGG-motifs adjacent to HPV16 SD880 interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) H that cooperates with SD880 to stimulate splicing to the upstream HPV16 3'-splice site SA742. This splice site is located in the E7 coding region and is required for the production of the HPV16 226^742 mRNA that encodes the E6^E7 fusion protein. Enhancement of HPV16 E6^E7 mRNA production by hnRNP H occurred at the expense of the intron-retained E6 mRNAs and the spliced E7 mRNAs, demonstrating that hnRNP H controls the relative levels of E6, E7, and E6^E7 proteins. Unexpectedly, overexpression of hnRNP H also promoted retention of the downstream E1 encoding intron and enhanced E1 protein production. We concluded that hnRNP H plays an important role in the HPV16 gene expression program.IMPORTANCEHere, we show that hnRNP H binds to multiple GGG-motifs downstream of human papillomavirus type 16 (HPV16) splice site SD880 and acts in concert with SD880 to promote expression of the HPV16 E6^E7 mRNA. The E6^E7 protein has been shown previously to stabilize the HPV16 E6 and E7 oncoproteins and may as such contribute to the carcinogenic properties of HPV16. In its capacity of major regulator of HPV16 oncogene expression, hnRNP H may be exploited as a target for antiviral drugs to HPV16.
Collapse
Affiliation(s)
- Johanna Jönsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Qiaoli Zhai
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center of Translational Medicine, Zibo Central Hospital, Shan Dong Sheng, China
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Peyda P, Lin CH, Onwuzurike K, Black DL. The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multi-part RNA regulatory modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603345. [PMID: 39071271 PMCID: PMC11275806 DOI: 10.1101/2024.07.12.603345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to LASR, a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing. We used a nuclease-protection assay to map the transcriptome-wide footprints of Rbfox1/LASR on nascent cellular RNA. In addition to GCAUG, Rbfox1/LASR binds RNA containing motifs for LASR subunits hnRNPs M, H/F, C, and Matrin3. These elements are often arranged in tandem, forming multi-part modules of RNA motifs. To distinguish contact sites of Rbfox1 from the LASR subunits, we analyzed a mutant Rbfox1(F125A) that has lost RNA binding but remains associated with LASR. Rbfox1(F125A)/LASR complexes no longer interact with GCAUG but retain binding to RNA elements for LASR. Splicing analyses reveal that in addition to activating exons through adjacent GCAUG elements, Rbfox can also stimulate exons near binding sites for LASR subunits. Mini-gene experiments demonstrate that these diverse elements produce a combined regulatory effect on a target exon. These findings illuminate how a complex of RNA-binding proteins can decode combinatorial splicing regulatory signals by recognizing groups of tandem RNA elements.
Collapse
|
3
|
Duman ET, Sitte M, Conrads K, Mackay A, Ludewig F, Ströbel P, Ellenrieder V, Hessmann E, Papantonis A, Salinas G. A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer. NAR Genom Bioinform 2024; 6:lqae057. [PMID: 38800828 PMCID: PMC11127633 DOI: 10.1093/nargab/lqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Emre Taylan Duman
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Maren Sitte
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Karly Conrads
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Adi Mackay
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Fabian Ludewig
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Volker Ellenrieder
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Elisabeth Hessmann
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Argyris Papantonis
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Gabriela Salinas
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
| |
Collapse
|
4
|
Tse V, Chacaltana G, Gutierrez M, Forino N, Jimenez A, Tao H, Do P, Oh C, Chary P, Quesada I, Hamrick A, Lee S, Stone M, Sanford J. An intronic RNA element modulates Factor VIII exon-16 splicing. Nucleic Acids Res 2024; 52:300-315. [PMID: 37962303 PMCID: PMC10783525 DOI: 10.1093/nar/gkad1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure-function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3'-end of intron-15 (TWJ-3-15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3-15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3-15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.
Collapse
Affiliation(s)
- Victor Tse
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Guillermo Chacaltana
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Martin Gutierrez
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Arcelia G Jimenez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hanzhang Tao
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Phong H Do
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Catherine Oh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Priyanka Chary
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Isabel Quesada
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Antonia Hamrick
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Sophie Lee
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
5
|
Farshadyeganeh P, Nazim M, Zhang R, Ohkawara B, Nakajima K, Rahman MA, Nasrin F, Ito M, Takeda JI, Ohe K, Miyasaka Y, Ohno T, Masuda A, Ohno K. Splicing regulation of GFPT1 muscle-specific isoform and its roles in glucose metabolisms and neuromuscular junction. iScience 2023; 26:107746. [PMID: 37744035 PMCID: PMC10514471 DOI: 10.1016/j.isci.2023.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.
Collapse
Affiliation(s)
- Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Farhana Nasrin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Ohe
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
6
|
Ji XH, Liu TT, Wei AH, Lei HP, Chen Y, Wu LN, Liu J, Zhang Y, Yan F, Chen MX, Jin H, Shi JS, Zhou SY, Jin F. Suppression of hnRNP A1 binding to HK1 RNA leads to glycolytic dysfunction in Alzheimer's disease models. Front Aging Neurosci 2023; 15:1218267. [PMID: 37744386 PMCID: PMC10516183 DOI: 10.3389/fnagi.2023.1218267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Objective To investigate the mechanism of RNA-binding protein hnRNP A1 in mouse hippocampal neurons (HT22) on glycolysis. Methods RIP and CLIP-qPCR were performed by HT22 in vitro to observe the mechanism of hnRNP A1 regulating the expression of key proteins in glycolysis. The RNA binding domain of hnRNP A1 protein in HT22 was inhibited by VPC-80051, and the effect of hnRNP A1 on glycolysis of HT22 was observed. Lentivirus overexpression of hnRNP A1 was used to observe the effect of overexpression of hnRNP A1 on glycolysis of Aβ25-35-injured HT22. The expression of hnRNP A1 in brain tissues of wild-type mice and triple-transgenic (APP/PS1/Tau) AD mice at different ages was studied by Western blot assay. Results The results of RIP experiment showed that hnRNP A1 and HK1 mRNA were significantly bound. The results of CLIP-qPCR showed that hnRNP A1 directly bound to the 2605-2821 region of HK1 mRNA. hnRNP A1 inhibitor can down-regulate the expression of HK1 mRNA and HK1 protein in HT22 cells. Overexpression of hnRNP A1 can significantly reduce the toxic effect of Aβ25-35 on neurons via the hnRNP A1/HK1/ pyruvate pathway. In addition, inhibition of hnRNP A1 binding to amyloid precursor protein (APP) RNA was found to increase Aβ expression, while Aβ25-35 also down-regulated hnRNP A1 expression by enhancing phosphorylation of p38 MAPK in HT22. They interact to form bidirectional regulation, further down-regulating the expression of hnRNP A1, and ultimately aggravating glycolytic dysfunction. Protein immunoblotting showed that hnRNP A1 decreased with age in mouse brain tissue, and the decrease was greater in AD mice, suggesting that the decrease of hnRNP A1 may be a predisposed factor in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xin-Hao Ji
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting-Ting Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ai-Hong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui-Ping Lei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ling-Nan Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ju Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fei Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mei-Xiang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shao-Yu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Tse V, Chacaltana G, Gutierrez M, Forino NM, Jimenez AG, Tao H, Do PH, Oh C, Chary P, Quesada I, Hamrick A, Lee S, Stone MD, Sanford JR. Rescue of blood coagulation Factor VIII exon-16 mis-splicing by antisense oligonucleotides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535160. [PMID: 37034721 PMCID: PMC10081312 DOI: 10.1101/2023.03.31.535160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The human Factor VIII ( F8 ) protein is essential for the blood coagulation cascade and specific F8 mutations cause the rare bleeding disorder Hemophilia A (HA). Here, we investigated the impact of HA-causing single-nucleotide mutations on F8 pre-mRNA splicing. We found that 14/97 (∼14.4%) coding sequence mutations tested in our study induced exon skipping. Splicing patterns of 4/11 (∼36.4%) F8 exons tested were especially sensitive to the presence of common disease-causing mutations. RNA-chemical probing analyses revealed a three-way junction structure at the 3' end of intron 15 (TWJ-3-15). TWJ-3-15 sequesters the polypyrimidine tract, a key determinant of 3' splice site strength. Using exon-16 of the F8 gene as a model, we designed specific antisense oligonucleotides (ASOs) that target TWJ-3-15 and identified three that promote the splicing of F8 exon-16. Interaction of TWJ-3-15 with ASOs increases accessibility of the polypyrimidine tract and inhibits the binding of hnRNPA1-dependent splicing silencing factors. Moreover, ASOs targeting TWJ-3-15 rescue diverse splicing-sensitive HA-causing mutations, most of which are distal to the 3' splice site being impacted. The TWJ-3-15 structure and its effect on mRNA splicing provide a model for HA etiology in patients harboring specific F8 mutations and provide a framework for precision RNA-based HA therapies.
Collapse
|
8
|
Wang L, Ji Y, Chen Y, Bai J, Gao P, Feng P. A splicing silencer in SMN2 intron 6 is critical in spinal muscular atrophy. Hum Mol Genet 2023; 32:971-983. [PMID: 36255739 DOI: 10.1093/hmg/ddac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a fatal neuromuscular disease caused by homozygous deletions or mutations of the SMN1 gene. SMN2 is a paralogous gene of SMN1 and a modifying gene of SMA. A better understanding of how SMN2 exon 7 splicing is regulated helps discover new therapeutic targets for SMA therapy. Based on an antisense walk method to map exonic and intronic splicing silencers (ESSs and ISSs) in SMN2 exon 7 and the proximal regions of its flanking introns, we identified one ISS (ISS6-KH) at upstream of the branch point site in intron 6. By using mutagenesis-coupled RT-PCR with SMN1/2 minigenes, immunochromatography, overexpression and siRNA-knockdown, we found this ISS consists of a bipartite hnRNP A1 binding cis-element and a poly-U sequence located between the proximal hnRNP A1 binding site (UAGCUA) and the branch site. Both HuR and hnRNP C1 proteins promote exon 7 skipping through the poly-U stretch. Mutations or deletions of these motifs lead to efficient SMN2 exon 7 inclusion comparable to SMN1 gene. Furthermore, we identified an optimal antisense oligonucleotide that binds the intron six ISS and causes striking exon 7 inclusion in the SMN2 gene in patient fibroblasts and SMA mouse model. Our findings demonstrate that this novel ISS plays an important role in SMN2 exon 7 skipping and highlight a new therapeutic target for SMA therapy.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yinfeng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yuqing Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jialin Bai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pengchao Feng
- Nanjing Antisense Biopharmaceutical Co., Ltd, Nanjing 210046, China
| |
Collapse
|
9
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3′-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3′-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
|
10
|
Han P, Cao P, Yue J, Kong K, Hu S, Deng Y, Li L, Li F, Zhao B. Knockdown of hnRNPA1 Promotes NSCLC Metastasis and EMT by Regulating Alternative Splicing of LAS1L exon 9. Front Oncol 2022; 12:837248. [PMID: 35814393 PMCID: PMC9260696 DOI: 10.3389/fonc.2022.837248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor metastasis is still an insurmountable obstacle in tumor treatment. Lung cancer represents one of the most common malignancies with high morbidity worldwide. hnRNPA1 has been reported to be involved in the regulation of tumor metastasis, while its specific role in tumor metastasis seems to be controversial and its molecular mechanism in lung cancer metastasis remains to be further elucidated. In this study, we confirmed that knockdown of the hnRNPA1 led to enhanced migration, invasion and EMT transition in lung cancer cells. Bioinformatics analysis of the GSE34992 dataset revealed that hnRNPA1 may regulate the alternative splicing (AS) of LAS1L exon 9. Further AGE assays and RIP assays revealed that hnRNPA1 can directly bind to the LAS1L pre-mRNA to inhibit the splicing of LAS1L exon 9. The RNA pull-down assays showed that hnRNPA1 can specifically bind to the two sites (UAGGGU(WT1) and UGGGGU(WT3)) of LAS1L Intron 9. Further Transwell assays indicated that the expression ratio of LAS1L-L/LAS1L-S regulated by hnRNPA1 can further promote the migration, invasion and EMT transition in lung cancer cells. Moreover, hnRNPA1 expression showed significant heterogeneity in lung cancer tissues, which may contain new research directions and potential therapeutic targets. Our results indicate that hnRNPA1 can affect the metastasis of lung cancer cells by modulating the AS of LAS1L exon 9, highlighting the potential significance of hnRNPA1 in lung cancer metastasis.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Yue
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| |
Collapse
|
11
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
12
|
Schorr AL, Mangone M. miRNA-Based Regulation of Alternative RNA Splicing in Metazoans. Int J Mol Sci 2021; 22:ijms222111618. [PMID: 34769047 PMCID: PMC8584187 DOI: 10.3390/ijms222111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.
Collapse
Affiliation(s)
- Anna L. Schorr
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287, USA;
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-7957
| |
Collapse
|
13
|
Clarke JP, Thibault PA, Salapa HE, Levin MC. A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Front Mol Biosci 2021; 8:659610. [PMID: 33912591 PMCID: PMC8072284 DOI: 10.3389/fmolb.2021.659610] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP family of conserved proteins that is involved in RNA transcription, pre-mRNA splicing, mRNA transport, protein translation, microRNA processing, telomere maintenance and the regulation of transcription factor activity. HnRNP A1 is ubiquitously, yet differentially, expressed in many cell types, and due to post-translational modifications, can vary in its molecular function. While a plethora of knowledge is known about the function and dysfunction of hnRNP A1 in diseases other than neurodegenerative disease (e.g., cancer), numerous studies in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, multiple sclerosis, spinal muscular atrophy, Alzheimer’s disease, and Huntington’s disease have found that the dysregulation of hnRNP A1 may contribute to disease pathogenesis. How hnRNP A1 mechanistically contributes to these diseases, and whether mutations and/or altered post-translational modifications contribute to pathogenesis, however, is currently under investigation. The aim of this comprehensive review is to first describe the background of hnRNP A1, including its structure, biological functions in RNA metabolism and the post-translational modifications known to modify its function. With this knowledge, the review then describes the influence of hnRNP A1 in neurodegenerative disease, and how its dysfunction may contribute the pathogenesis.
Collapse
Affiliation(s)
- Joseph P Clarke
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation. Int J Mol Sci 2021; 22:ijms22062909. [PMID: 33809384 PMCID: PMC7998649 DOI: 10.3390/ijms22062909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.
Collapse
|
15
|
Neckles C, Boer RE, Aboreden N, Cross AM, Walker RL, Kim BH, Kim S, Schneekloth JS, Caplen NJ. HNRNPH1-dependent splicing of a fusion oncogene reveals a targetable RNA G-quadruplex interaction. RNA (NEW YORK, N.Y.) 2019; 25:1731-1750. [PMID: 31511320 PMCID: PMC6859848 DOI: 10.1261/rna.072454.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 05/05/2023]
Abstract
The primary oncogenic event in ∼85% of Ewing sarcomas is a chromosomal translocation that generates a fusion oncogene encoding an aberrant transcription factor. The exact genomic breakpoints within the translocated genes, EWSR1 and FLI1, vary; however, in EWSR1, breakpoints typically occur within introns 7 or 8. We previously found that in Ewing sarcoma cells harboring EWSR1 intron 8 breakpoints, the RNA-binding protein HNRNPH1 facilitates a splicing event that excludes EWSR1 exon 8 from the EWS-FLI1 pre-mRNA to generate an in-frame mRNA. Here, we show that the processing of distinct EWS-FLI1 pre-mRNAs by HNRNPH1, but not other homologous family members, resembles alternative splicing of transcript variants of EWSR1 We demonstrate that HNRNPH1 recruitment is driven by guanine-rich sequences within EWSR1 exon 8 that have the potential to fold into RNA G-quadruplex structures. Critically, we demonstrate that an RNA mimetic of one of these G-quadruplexes modulates HNRNPH1 binding and induces a decrease in the growth of an EWSR1 exon 8 fusion-positive Ewing sarcoma cell line. Finally, we show that EWSR1 exon 8 fusion-positive cell lines are more sensitive to treatment with the pan-quadruplex binding molecule, pyridostatin (PDS), than EWSR1 exon 8 fusion-negative lines. Also, the treatment of EWSR1 exon 8 fusion-positive cells with PDS decreases EWS-FLI1 transcriptional activity, reversing the transcriptional deregulation driven by EWS-FLI1. Our findings illustrate that modulation of the alternative splicing of EWS-FLI1 pre-mRNA is a novel strategy for future therapeutics against the EWSR1 exon 8 containing fusion oncogenes present in a third of Ewing sarcoma.
Collapse
Affiliation(s)
- Carla Neckles
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Robert E Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Nicholas Aboreden
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Allison M Cross
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Robert L Walker
- Molecular Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Bong-Hyun Kim
- CCR Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA
| | - Suntae Kim
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Lages A, Proud CG, Holloway JW, Vorechovsky I. Thioflavin T Monitoring of Guanine Quadruplex Formation in the rs689-Dependent INS Intron 1. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:770-777. [PMID: 31150930 PMCID: PMC6539410 DOI: 10.1016/j.omtn.2019.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022]
Abstract
The human proinsulin gene (INS) contains a thymine-to-adenine variant (rs689) located in the 3′ splice site (3′ ss) recognition motif of the first intron. The adenine at rs689 is strongly associated with type 1 diabetes. By weakening the polypyrimidine tract, the adenine allele reduces the efficiency of intron 1 splicing, which can be ameliorated by antisense oligonucleotides blocking a splicing silencer located upstream of the 3′ ss. The silencer is surrounded by guanine-rich tracts that may form guanine quadruplexes (G4s) and modulate the accessibility of the silencer. Here, we employed thioflavin T (ThT) to monitor G4 formation in synthetic DNAs and RNAs derived from INS intron 1. We show that the antisense target is surrounded by ThT-positive segments in each direction, with oligoribonucleotides exhibiting consistently higher fluorescence than their DNA counterparts. The signal was reduced for ThT-positive oligonucleotides that were extended into the silencer, indicating that flanking G4s have a potential to mask target accessibility. Real-time monitoring of ThT fluorescence during INS transcription in vitro revealed a negative correlation with ex vivo splicing activities of corresponding INS constructs. Together, these results provide a better characterization of antisense targets in INS primary transcripts for restorative strategies designed to improve the INS splicing defect associated with type 1 diabetes.
Collapse
Affiliation(s)
- Ana Lages
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Christopher G Proud
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK; Lifelong Health and Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John W Holloway
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK.
| |
Collapse
|
17
|
Cheng J, Nguyen TYD, Cygan KJ, Çelik MH, Fairbrother WG, Avsec Ž, Gagneur J. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol 2019; 20:48. [PMID: 30823901 PMCID: PMC6396468 DOI: 10.1186/s13059-019-1653-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon skipping prediction challenge. The MMSplice modules are neural networks scoring exon, intron, and splice sites, trained on distinct large-scale genomics datasets. These modules are combined to predict effects of variants on exon skipping, splice site choice, splicing efficiency, and pathogenicity, with matched or higher performance than state-of-the-art. Our models, available in the repository Kipoi, apply to variants including indels directly from VCF files.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Informatics, Technical University of Munich, Boltzmannstraße, Garching, 85748 Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, München, Germany
| | - Thi Yen Duong Nguyen
- Department of Informatics, Technical University of Munich, Boltzmannstraße, Garching, 85748 Germany
| | - Kamil J. Cygan
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island USA
| | - Muhammed Hasan Çelik
- Department of Informatics, Technical University of Munich, Boltzmannstraße, Garching, 85748 Germany
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island USA
| | - žiga Avsec
- Department of Informatics, Technical University of Munich, Boltzmannstraße, Garching, 85748 Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, München, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Boltzmannstraße, Garching, 85748 Germany
| |
Collapse
|
18
|
De Franco S, Vandenameele J, Brans A, Verlaine O, Bendak K, Damblon C, Matagne A, Segal DJ, Galleni M, Mackay JP, Vandevenne M. Exploring the suitability of RanBP2-type Zinc Fingers for RNA-binding protein design. Sci Rep 2019; 9:2484. [PMID: 30792407 PMCID: PMC6384913 DOI: 10.1038/s41598-019-38655-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Transcriptomes consist of several classes of RNA that have wide-ranging but often poorly described functions and the deregulation of which leads to numerous diseases. Engineering of functionalized RNA-binding proteins (RBPs) could therefore have many applications. Our previous studies suggested that the RanBP2-type Zinc Finger (ZF) domain is a suitable scaffold to investigate the design of single-stranded RBPs. In the present work, we have analyzed the natural sequence specificity of various members of the RanBP2-type ZF family and characterized the interaction with their target RNA. Surprisingly, our data showed that natural RanBP2-type ZFs with different RNA-binding residues exhibit a similar sequence specificity and therefore no simple recognition code can be established. Despite this finding, different discriminative abilities were observed within the family. In addition, in order to target a long RNA sequence and therefore gain in specificity, we generated a 6-ZF array by combining ZFs from the RanBP2-type family but also from different families, in an effort to achieve a wider target sequence repertoire. We showed that this chimeric protein recognizes its target sequence (20 nucleotides), both in vitro and in living cells. Altogether, our results indicate that the use of ZFs in RBP design remains attractive even though engineering of specificity changes is challenging.
Collapse
Affiliation(s)
- Simona De Franco
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Julie Vandenameele
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Alain Brans
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Olivier Verlaine
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - Katerina Bendak
- Children's Cancer Institute Lowy Cancer Research, Kensington, 2033, Australia
| | - Christian Damblon
- Laboratoire de Chimie Biologique Structurale (CBS), Département de Chimie, Université de Liège, Liège, 4000, Belgium
| | - André Matagne
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616, USA
| | - Moreno Galleni
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, N.S.W, 2006, Australia
| | - Marylène Vandevenne
- InBioS-Centre d'Ingénierie des Protéines (CIP), Université de Liège, Liège, 4000, Belgium.
| |
Collapse
|
19
|
Yamazaki T, Liu L, Lazarev D, Al-Zain A, Fomin V, Yeung PL, Chambers SM, Lu CW, Studer L, Manley JL. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev 2018; 32:1161-1174. [PMID: 30115631 PMCID: PMC6120717 DOI: 10.1101/gad.316984.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Yamazaki et al. show that alternative splicing creates two TCF3 isoforms (E12 and E47) and identified two related splicing factors, hnRNPs H1 and F (hnRNP H/F), that regulate TCF3 splicing. Expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12. Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Amr Al-Zain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Percy Luk Yeung
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stuart M Chambers
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chi-Wei Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
20
|
Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A 2018; 115:E4584-E4593. [PMID: 29712835 DOI: 10.1073/pnas.1802415115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.
Collapse
|
21
|
Maffioli E, Schulte C, Nonnis S, Grassi Scalvini F, Piazzoni C, Lenardi C, Negri A, Milani P, Tedeschi G. Proteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells. Front Cell Neurosci 2018; 11:417. [PMID: 29354032 PMCID: PMC5758595 DOI: 10.3389/fncel.2017.00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be “interpreted” by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD) allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography-sensitive mechanotransductive signaling hubs participating in neuronal differentiation were dissected.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Carsten Schulte
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| |
Collapse
|
22
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
23
|
Baralle M, Baralle FE. The splicing code. Biosystems 2017; 164:39-48. [PMID: 29122587 DOI: 10.1016/j.biosystems.2017.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
Abstract
This issue dedicated to the code of life tackles very challenging and open questions in Biology. The genetic code, brilliantly uncovered over 50 years ago is an example of a univocal biological code. In fact, except for very few and marginal variations, it is the same from bacteria to man, the RNA stretch: 5' GUGUUC 3' reads as the dipeptide: Val-Phe in bacteria, in yeast, in Arabidopsis, in zebra fish, in mouse and in human. A degree of ambiguity is possible if mutations are introduced in the tRNAs in a way that the anticodon reads one amino acid but the aminoacyl-transferase attaches a different one onto the tRNA. These were the very useful suppressor genes that aided greatly the study of bacterial genetics. Other biological codes however, are more akin to social codes and are less amenable to an unambiguous deciphering. Legal and ethical codes, weather we like it or not, are flexible and depend on the structure and history of the society that has produced them, as well as a specific point in time. The codes that govern RNA splicing have similar characteristics. In fact, the splicing code depends on a myriad of different factors that in part are influenced by the background in which they are read such as different cells, tissues or developmental stages. Given the complexity of the splicing process, the construction of an algorithm that can define exons or their fate with certainty has not yet been achieved. However a substantial amount of information towards the deciphering of the splicing code has been gathered and in this manuscript we summarize the point reached.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Italy.
| | | |
Collapse
|
24
|
Babenko VN, Bragin AO, Chadaeva IV, Markel AL, Orlov YL. Differential alternative splicing in brain regions of rats selected for aggressive behavior. Mol Biol 2017. [DOI: 10.1134/s002689331705003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res 2017; 45:7870-7885. [PMID: 28575281 PMCID: PMC5569705 DOI: 10.1093/nar/gkx483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
26
|
Kapeli K, Martinez FJ, Yeo GW. Genetic mutations in RNA-binding proteins and their roles in ALS. Hum Genet 2017; 136:1193-1214. [PMID: 28762175 PMCID: PMC5602095 DOI: 10.1007/s00439-017-1830-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Mutations in genes that encode RNA-binding proteins (RBPs) have emerged as critical determinants of neurological diseases, especially motor neuron disorders such as amyotrophic lateral sclerosis (ALS). RBPs are involved in all aspects of RNA processing, controlling the life cycle of RNAs from synthesis to degradation. Hallmark features of RBPs in neuron dysfunction include misregulation of RNA processing, mislocalization of RBPs to the cytoplasm, and abnormal aggregation of RBPs. Much progress has been made in understanding how ALS-associated mutations in RBPs drive pathogenesis. Here, we focus on several key RBPs involved in ALS—TDP-43, HNRNP A2/B1, HNRNP A1, FUS, EWSR1, and TAF15—and review our current understanding of how mutations in these proteins cause disease.
Collapse
Affiliation(s)
- Katannya Kapeli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Fernando J Martinez
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Molecular Engineering Laboratory, A*STAR, Singapore, 138673, Singapore.
| |
Collapse
|
27
|
Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nat Immunol 2016; 18:236-245. [PMID: 28024152 PMCID: PMC5423405 DOI: 10.1038/ni.3654] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 12/24/2022]
Abstract
Toll-like receptor (TLR) activation contributes to premalignant hematologic conditions, such as myelodysplastic syndromes (MDS). TRAF6, a TLR-effector with ubiquitin (Ub) ligase activity, is overexpressed in MDS hematopoietic stem/progenitor cells (HSPC). Here we show that TRAF6 overexpression in mouse HSPC resulted in impaired hematopoiesis and bone marrow failure. Through the use of a global Ub screen, we identified hnRNPA1, an RNA-binding protein and auxiliary splicing factor, as a substrate of TRAF6. TRAF6 ubiquitination of hnRNPA1 regulated alternative splicing of Arhgap1, which resulted in Cdc42 activation and accounted for hematopoietic defects in TRAF6-expressing HSPC. These results implicate Ub signaling in coordinating RNA processing by TLR pathways during an immune response and in premalignant hematologic diseases, such as MDS.
Collapse
|
28
|
Grammatikakis I, Zhang P, Panda AC, Kim J, Maudsley S, Abdelmohsen K, Yang X, Martindale JL, Motiño O, Hutchison ER, Mattson MP, Gorospe M. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2. Cell Rep 2016; 15:926-934. [PMID: 27117401 DOI: 10.1016/j.celrep.2016.03.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 10/21/2022] Open
Abstract
During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Peisu Zhang
- Laboratory of Neurosciences, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, 2610 Antwerpen, Belgium
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Omar Motiño
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
G Hendrickson D, Kelley DR, Tenen D, Bernstein B, Rinn JL. Widespread RNA binding by chromatin-associated proteins. Genome Biol 2016; 17:28. [PMID: 26883116 PMCID: PMC4756407 DOI: 10.1186/s13059-016-0878-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Background Recent evidence suggests that RNA interaction can regulate the activity and localization of chromatin-associated proteins. However, it is unknown if these observations are specialized instances for a few key RNAs and chromatin factors in specific contexts, or a general mechanism underlying the establishment of chromatin state and regulation of gene expression. Results Here, we perform formaldehyde RNA immunoprecipitation (fRIP-Seq) to survey the RNA associated with a panel of 24 chromatin regulators and traditional RNA binding proteins. For each protein that reproducibly bound measurable quantities of bulk RNA (90 % of the panel), we detect enrichment for hundreds to thousands of both noncoding and mRNA transcripts. Conclusion For each protein, we find that the enriched sets of RNAs share distinct biochemical, functional, and chromatin properties. Thus, these data provide evidence for widespread specific and relevant RNA association across diverse classes of chromatin-modifying complexes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0878-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David G Hendrickson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - David R Kelley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Danielle Tenen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | | | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. .,Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
30
|
Morgan CE, Meagher JL, Levengood JD, Delproposto J, Rollins C, Stuckey JA, Tolbert BS. The First Crystal Structure of the UP1 Domain of hnRNP A1 Bound to RNA Reveals a New Look for an Old RNA Binding Protein. J Mol Biol 2015; 427:3241-3257. [PMID: 26003924 PMCID: PMC4586317 DOI: 10.1016/j.jmb.2015.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/29/2015] [Accepted: 05/15/2015] [Indexed: 01/01/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein is a multifunctional RNA binding protein implicated in a wide range of biological functions. Mechanisms and putative hnRNP A1-RNA interactions have been inferred primarily from the crystal structure of its UP1 domain bound to ssDNA. RNA stem loops represent an important class of known hnRNP A1 targets, yet little is known about the structural basis of hnRNP A1-RNA recognition. Here, we report the first high-resolution structure (1.92Å) of UP1 bound to a 5'-AGU-3' trinucleotide that resembles sequence elements of several native hnRNP A1-RNA stem loop targets. UP1 interacts specifically with the AG dinucleotide sequence via a "nucleobase pocket" formed by the β-sheet surface of RRM1 and the inter-RRM linker; RRM2 does not contact the RNA. The inter-RRM linker forms the lid of the nucleobase pocket and we show using structure-guided mutagenesis that the conserved salt-bridge interactions (R75:D155 and R88:D157) on the α-helical side of the RNA binding surface stabilize the linker in a geometry poised to bind RNA. We further investigated the structural basis of UP1 binding HIViSL3(ESS3) by determining a structural model of the complex scored by small-angle X-ray scattering. UP1 docks on the apical loop of SL3(ESS3) using its RRM1 domain and inter-RRM linker only. The biophysical implications of the structural model were tested by measuring kinetic binding parameters, where mutations introduced within the apical loop reduce binding affinities by slowing down the rate of complex formation. Collectively, the data presented here provide the first insights into hnRNP A1-RNA interactions.
Collapse
Affiliation(s)
- Christopher E Morgan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Delproposto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carrie Rollins
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
31
|
Munroe SH, Morales CH, Duyck TH, Waters PD. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA. PLoS One 2015; 10:e0137893. [PMID: 26368571 PMCID: PMC4569393 DOI: 10.1371/journal.pone.0137893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.
Collapse
Affiliation(s)
- Stephen H. Munroe
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Christopher H. Morales
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Tessa H. Duyck
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Australia, Sydney, Australia
| |
Collapse
|
32
|
SRSF1 and hnRNP H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome. Sci Rep 2015; 5:13208. [PMID: 26282582 PMCID: PMC4539547 DOI: 10.1038/srep13208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
The catalytic subunits of acetylcholinesterase (AChE) are anchored in the basal lamina of the neuromuscular junction using a collagen-like tail subunit (ColQ) encoded by COLQ. Mutations in COLQ cause endplate AChE deficiency. An A-to-G mutation predicting p.E415G in COLQ exon 16 identified in a patient with endplate AChE deficiency causes exclusive skipping of exon 16. RNA affinity purification, mass spectrometry, and siRNA-mediated gene knocking down disclosed that the mutation disrupts binding of a splicing-enhancing RNA-binding protein, SRSF1, and de novo gains binding of a splicing-suppressing RNA-binding protein, hnRNP H. MS2-mediated artificial tethering of each factor demonstrated that SRSF1 and hnRNP H antagonistically modulate splicing by binding exclusively to the target in exon 16. Further analyses with artificial mutants revealed that SRSF1 is able to bind to degenerative binding motifs, whereas hnRNP H strictly requires an uninterrupted stretch of poly(G). The mutation compromised splicing of the downstream intron. Isolation of early spliceosome complex revealed that the mutation impairs binding of U1-70K (snRNP70) to the downstream 5′ splice site. Global splicing analysis with RNA-seq revealed that exons carrying the hnRNP H-binding GGGGG motif are predisposed to be skipped compared to those carrying the SRSF1-binding GGAGG motif in both human and mouse brains.
Collapse
|
33
|
Qu XH, Liu JL, Zhong XW, Li XI, Zhang QG. Insights into the roles of hnRNP A2/B1 and AXL in non-small cell lung cancer. Oncol Lett 2015; 10:1677-1685. [PMID: 26622731 DOI: 10.3892/ol.2015.3457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022] Open
Abstract
Lung cancer has long been one of the most serious types of malignant tumor, and is associated with high incidence and mortality rates. Despite advancements in the comprehensive treatment of the disease, particularly with targeted therapeutic agents, there has been little improvement in the 5-year survival rates of patients. One of the leading causes of mortality in lung cancer is the lack of effective early diagnostic criteria. On this basis, the present study aimed to identify an index with potential in the early diagnosis and prognosis of lung cancer. The current study determined the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 and AXL proteins in non-small cell lung cancer (NSCLC) tumor samples, and performed prognostic analysis of the collected clinical data to identify any association. In addition, RNA interference was performed to silence the expression of hnRNP A2/B1, allowing evaluation of its molecular and cellular functions, and determination of the mechanism of hnRNP A2/B1 in NSCLC by means of AXL mediation. It was identified that the positive expression rate of hnRNP A2/B1 and AXL proteins were significantly higher in NSCLC compared with paracancerous lung tissues (P<0.05). Furthermore, the expression of hnRNP A2/B1 protein was correlated with the expression AXL. Thus, the expression of hnRNP A2/B1 and AXL protein are factors affecting prognosis in patients with NSCLC. Of these, hnRNP A2/B1 appears to be an independent risk factor.
Collapse
Affiliation(s)
- Xiao-Han Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jin-Lu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110034, P.R. China
| | - Xin-Wen Zhong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - X I Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qi-Gang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
34
|
Evolutionary emergence of a novel splice variant with an opposite effect on the cell cycle. Mol Cell Biol 2015; 35:2203-14. [PMID: 25870105 DOI: 10.1128/mcb.00190-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing contributes greatly to the diversification of mammalian proteomes, but the molecular basis for the evolutionary emergence of splice variants remains poorly understood. We have recently found a novel class of splicing regulatory elements between the polypyrimidine tract (Py) and 3' AG (REPA) at intron ends in many human genes, including the multifunctional PRMT5 (for protein arginine methyltransferase 5) gene. The PRMT5 element is comprised of two G tracts that arise in most mammals and accompany significant exon skipping in human transcripts. The G tracts inhibit splicing by recruiting heterogeneous nuclear ribonucleoprotein (hnRNP) H and F (H/F) to reduce U2AF65 binding to the Py, causing exon skipping. The resulting novel shorter variant PRMT5S exhibits a histone H4R3 methylation effect similar to that seen with the original longer PRMT5L isoform but exhibits a distinct localization and preferential control of critical genes for cell cycle arrest at interphase in comparison to PRMT5L. This report thus provides a molecular mechanism for the evolutionary emergence of a novel splice variant with an opposite function in a fundamental cell process. The presence of REPA elements in a large group of genes implies their wider impact on different cellular processes for increased protein diversity in humans.
Collapse
|
35
|
Kelley DR, Hendrickson DG, Tenen D, Rinn JL. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol 2014; 15:537. [PMID: 25572935 PMCID: PMC4272801 DOI: 10.1186/s13059-014-0537-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, we study a collection of 75 CLIP-Seq experiments mapping the RNA binding sites for a diverse set of 51 human proteins to explore the role of TEs in post-transcriptional regulation of human mRNAs and lncRNAs via RNA-protein interactions. RESULTS We detect widespread interactions between RNA binding proteins (RBPs) and many families of TE-derived sequence in the CLIP-Seq data. Further, alignment coverage peaks on specific positions of the TE consensus sequences, illuminating a diversity of TE-specific RBP binding motifs. Evidence of binding and conservation of these motifs in the nonrepetitive transcriptome suggests that TEs have generally appropriated existing sequence preferences of the RBPs. Depletion assays for numerous RBPs show that TE-derived binding sites affect transcript abundance and splicing similarly to nonrepetitive sites. However, in a few cases the effect of RBP binding depends on the specific TE family bound; for example, the ubiquitously expressed RBP HuR confers transcript stability unless bound to an Alu element. CONCLUSIONS Our meta-analysis suggests a widespread role for TEs in shaping RNA-protein regulatory networks in the human genome.
Collapse
|
36
|
A targeted oligonucleotide enhancer of SMN2 exon 7 splicing forms competing quadruplex and protein complexes in functional conditions. Cell Rep 2014; 9:193-205. [PMID: 25263560 PMCID: PMC4536295 DOI: 10.1016/j.celrep.2014.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/17/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023] Open
Abstract
The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5' end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs.
Collapse
|
37
|
Juan WC, Roca X, Ong ST. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing. PLoS One 2014; 9:e95210. [PMID: 24743263 PMCID: PMC3990581 DOI: 10.1371/journal.pone.0095210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Collapse
Affiliation(s)
- Wen Chun Juan
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (XR); (STO)
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Chapel Hill, North Carolina, United States of America
- * E-mail: (XR); (STO)
| |
Collapse
|
38
|
Systematic identification of regulatory elements in conserved 3' UTRs of human transcripts. Cell Rep 2014; 7:281-92. [PMID: 24656821 DOI: 10.1016/j.celrep.2014.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/03/2014] [Accepted: 03/03/2014] [Indexed: 11/21/2022] Open
Abstract
Posttranscriptional regulatory programs governing diverse aspects of RNA biology remain largely uncharacterized. Understanding the functional roles of RNA cis-regulatory elements is essential for decoding complex programs that underlie the dynamic regulation of transcript stability, splicing, localization, and translation. Here, we describe a combined experimental/computational technology to reveal a catalog of functional regulatory elements embedded in 3' UTRs of human transcripts. We used a bidirectional reporter system coupled with flow cytometry and high-throughput sequencing to measure the effect of short, noncoding, vertebrate-conserved RNA sequences on transcript stability and translation. Information-theoretic motif analysis of the resulting sequence-to-gene-expression mapping revealed linear and structural RNA cis-regulatory elements that positively and negatively modulate the posttranscriptional fates of human transcripts. This combined experimental/computational strategy can be used to systematically characterize the vast landscape of posttranscriptional regulatory elements controlling physiological and pathological cellular state transitions.
Collapse
|
39
|
Zaghlool A, Ameur A, Cavelier L, Feuk L. Splicing in the human brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:95-125. [PMID: 25172473 DOI: 10.1016/b978-0-12-801105-8.00005-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear over the past decade that RNA has important functions in human cells beyond its role as an intermediate translator of DNA to protein. It is now known that RNA plays highly specific roles in pathways involved in regulatory, structural, and catalytic functions. The complexity of RNA production and regulation has become evident with the advent of high-throughput methods to study the transcriptome. Deep sequencing has revealed an enormous diversity of RNA types and transcript isoforms in human cells. The transcriptome of the human brain is particularly interesting as it contains more expressed genes than other tissues and also displays an extreme diversity of transcript isoforms, indicating that highly complex regulatory pathways are present in the brain. Several of these regulatory proteins are now identified, including RNA-binding proteins that are neuron specific. RNA-binding proteins also play important roles in regulating the splicing process and the temporal and spatial isoform production. While significant progress has been made in understanding the human transcriptome, many questions still remain regarding the basic mechanisms of splicing and subcellular localization of RNA. A long-standing question is to what extent the splicing of pre-mRNA is cotranscriptional and posttranscriptional, respectively. Recent data, including studies of the human brain, indicate that splicing is primarily cotranscriptional in human cells. This chapter describes the current understanding of splicing and splicing regulation in the human brain and discusses the recent global sequence-based analyses of transcription and splicing.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet 2013; 9:e1003895. [PMID: 24204307 PMCID: PMC3814325 DOI: 10.1371/journal.pgen.1003895] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022] Open
Abstract
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
Collapse
Affiliation(s)
- Yueqin Zhou
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Songyan Liu
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guodong Liu
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arzu Öztürk
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey G. Hicks
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
41
|
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: the Swiss army knife of gene expression. Int J Mol Sci 2013; 14:18999-9024. [PMID: 24065100 PMCID: PMC3794818 DOI: 10.3390/ijms140918999] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells express a large variety of RNA binding proteins (RBPs), with diverse affinities and specificities towards target RNAs. These proteins play a crucial role in almost every aspect of RNA biogenesis, expression and function. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a complex and diverse family of RNA binding proteins. hnRNPs display multiple functions in the processing of heterogeneous nuclear RNAs into mature messenger RNAs. hnRNP A1 is one of the most abundant and ubiquitously expressed members of this protein family. hnRNP A1 plays multiple roles in gene expression by regulating major steps in the processing of nascent RNA transcripts. The transcription, splicing, stability, export through nuclear pores and translation of cellular and viral transcripts are all mechanisms modulated by this protein. The diverse functions played by hnRNP A1 are not limited to mRNA biogenesis, but extend to the processing of microRNAs, telomere maintenance and the regulation of transcription factor activity. Genomic approaches have recently uncovered the extent of hnRNP A1 roles in the development and differentiation of living organisms. The aim of this review is to highlight recent developments in the study of this protein and to describe its functions in cellular and viral gene expression and its role in human pathologies.
Collapse
Affiliation(s)
- Jacques Jean-Philippe
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|
42
|
Schor IE, Kornblihtt AR. Playing inside the genes: Intragenic histone acetylation after membrane depolarization of neural cells opens a path for alternative splicing regulation. Commun Integr Biol 2013; 2:341-3. [PMID: 19721885 DOI: 10.4161/cib.2.4.8550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/13/2023] Open
Abstract
Regulation of alternative splicing is coupled to transcription quality, the polymerase elongation rate being an important factor in modulating splicing choices. In a recently published work, we provide evidence that intragenic histone acetylation patterns can be affected by neural cell excitation in order to regulate alternative splicing of the neural cell adhesion molecule (NCAM) mRNA. This example illustrates how an extracellular stimulus can influence transcription-coupled alternative splicing, strengthening the link between chromatin structure, transcriptional elongation and mRNA processing.
Collapse
Affiliation(s)
- Ignacio E Schor
- Laboratorio de Fisiología y Biología Molecular; Departamento de Fisiología, Biología Molecular y Celular; IFIBYNE-UBA-CONICET; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Ciudad Universitaria; Buenos Aires, Argentina
| | | |
Collapse
|
43
|
Kriangkum J, Warkinton A, Belch AR, Pilarski LM. Alteration of introns in a hyaluronan synthase 1 (HAS1) minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM): MM patients harbor similar changes. PLoS One 2013; 8:e53469. [PMID: 23301075 PMCID: PMC3536762 DOI: 10.1371/journal.pone.0053469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022] Open
Abstract
Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1) have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM) patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3′splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3′ splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.
Collapse
Affiliation(s)
- Jitra Kriangkum
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (JK); (LMP)
| | - Amanda Warkinton
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R. Belch
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Linda M. Pilarski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (JK); (LMP)
| |
Collapse
|
44
|
An intronic G run within HIV-1 intron 2 is critical for splicing regulation of vif mRNA. J Virol 2012; 87:2707-20. [PMID: 23255806 DOI: 10.1128/jvi.02755-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.
Collapse
|
45
|
Dembowski JA, An P, Scoulos-Hanson M, Yeo G, Han J, Fu XD, Grabowski PJ. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain. J Nucleic Acids 2012; 2012:816237. [PMID: 23008758 PMCID: PMC3447378 DOI: 10.1155/2012/816237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022] Open
Abstract
Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5' splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.
Collapse
Affiliation(s)
- Jill A. Dembowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gene Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joonhee Han
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paula J. Grabowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
46
|
Norris AD, Calarco JA. Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function. Front Neurosci 2012; 6:122. [PMID: 22936897 PMCID: PMC3424503 DOI: 10.3389/fnins.2012.00122] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022] Open
Abstract
Alternative pre-mRNA splicing has the potential to greatly diversify the repertoire of transcripts in multicellular organisms. Increasing evidence suggests that this expansive layer of gene regulation plays a particularly important role in the development and function of the nervous system, one of the most complex organ systems found in nature. In this review, we highlight recent studies that continue to emphasize the influence and contribution of alternative splicing regulation to various aspects of neuronal development in addition to its role in the mature nervous system.
Collapse
Affiliation(s)
- Adam D Norris
- FAS Center for Systems Biology, Harvard University Cambridge, MA, USA
| | | |
Collapse
|
47
|
Ortuño-Pineda C, Galindo-Rosales JM, Calderón-Salinas JV, Villegas-Sepúlveda N, Saucedo-Cárdenas O, De Nova-Ocampo M, Valdés J. Binding of hnRNP H and U2AF65 to respective G-codes and a poly-uridine tract collaborate in the N50-5'ss selection of the REST N exon in H69 cells. PLoS One 2012; 7:e40315. [PMID: 22792276 PMCID: PMC3390395 DOI: 10.1371/journal.pone.0040315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
The splicing of the N exon in the pre-mRNA coding for the RE1-silencing transcription factor (REST) results in a truncated protein that modifies the expression pattern of some of its target genes. A weak 3'ss, three alternative 5'ss (N4-, N50-, and N62-5'ss) and a variety of putative target sites for splicing regulatory proteins are found around the N exon; two GGGG codes (G2-G3) and a poly-Uridine tract (N-PU) are found in front of the N50-5'ss. In this work we analyzed some of the regulatory factors and elements involved in the preferred selection of the N50-5'ss (N50 activation) in the small cell lung cancer cell line H69. Wild type and mutant N exon/β-globin minigenes recapitulated N50 exon splicing in H69 cells, and showed that the N-PU and the G2-G3 elements are required for N50 exon splicing. Biochemical and knockdown experiments identified these elements as U2AF65 and hnRNP H targets, respectively, and that they are also required for N50 exon activation. Compared to normal MRC5 cells, and in keeping with N50 exon activation, U2AF65, hnRNP H and other splicing factors were highly expressed in H69 cells. CLIP experiments revealed that hnRNP H RNA-binding occurs first and is a prerequisite for U2AF65 RNA binding, and EMSA and CLIP experiments suggest that U2AF65-RNA recognition displaces hnRNP H and helps to recruit other splicing factors (at least U1 70K) to the N50-5'ss. Our results evidenced novel hnRNP H and U2AF65 functions: respectively, U2AF65-recruiting to a 5'ss in humans and the hnRNP H-displacing function from two juxtaposed GGGG codes.
Collapse
Affiliation(s)
- Carlos Ortuño-Pineda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| | | | | | - Nicolás Villegas-Sepúlveda
- D1epartamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo Léon, Monterrey N.L. México
- División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey N.L., México
| | - Mónica De Nova-Ocampo
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía-IPN, México D.F., México
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
- * E-mail:
| |
Collapse
|
48
|
Asang C, Erkelenz S, Schaal H. The HIV-1 major splice donor D1 is activated by splicing enhancer elements within the leader region and the p17-inhibitory sequence. Virology 2012; 432:133-45. [PMID: 22749061 DOI: 10.1016/j.virol.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/05/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022]
Abstract
Usage of the HIV-1 major 5' splice site D1 is a prerequisite for generation of all spliced viral mRNAs encoding essential regulatory and structural proteins. We set out to determine whether flanking sequences ensure D1-activation. We found that an exonic splicing enhancer function is exerted by the region upstream of D1, which is crucially required for its activation. Additionally, we identified an intronic splicing regulatory element within the p17-instability element of the Gag-ORF enhancing D1-activation. Furthermore, our experimental data demonstrated that sequence motifs displaying high similarity to consensus binding sites for SR protein SC35 (SRSF2) overlapping with D1 fine-tune its activation. Our results reveal that D1-activation is safe-guarded by the interplay of upstream and downstream located splicing enhancer elements ensuring usage of D1 even if its strength is decreased upon mutation. The identification of sequence elements activating D1-usage sheds further light on the balanced expression of alternatively spliced HIV-1 mRNAs.
Collapse
Affiliation(s)
- Corinna Asang
- Institut für Virologie, Universitätsklinikum Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
49
|
Abstract
Identification of splicing regulatory elements (SREs) deserves special attention because these cis-acting short sequences are vital parts of splicing code. The fact that a variety of other biological signals cooperatively govern the splicing pattern indicates the necessity of developing novel tools to incorporate information from multiple sources to improve splicing factor binding sites prediction. Under this context, we proposed a Varying Effect Regression for Splicing Elements (VERSE) to discover intronic SREs in the proximity of exon junctions by integrating other biological features. As a result, 1562 intronic SREs were identified in 16 human tissues, many of which overlapped with experimentally verified binding motifs for several well-known splicing factors, including FOX-1, PTB, hnRNP A/B, hnRNP F/H, and so on. The discovered tissue, region, and conservation preferences of the putative motifs demonstrate that splice site selection is a complicated process that needs subtle and delicate regulation. VERSE may serve as a powerful tool to not only discover SREs by incorporating additional informative signals but also precisely quantify their varying contribution under different biological contexts.
Collapse
Affiliation(s)
- Jing Zhang
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California
| | - C.-C. Jay Kuo
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California
| | - Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
50
|
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:495-507. [PMID: 22488917 DOI: 10.1002/wrna.1113] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.
Collapse
Affiliation(s)
- Stefania Millevoi
- Inserm UMR 1037, University of Toulouse III, Cancer Research Center of Toulouse, Toulouse 31432, Cedex 4, France.
| | | | | |
Collapse
|