1
|
Hamida OB, Kim MK, Sung YK, Kim MK, Kwack MH. Hair Regeneration Methods Using Cells Derived from Human Hair Follicles and Challenges to Overcome. Cells 2024; 14:7. [PMID: 39791708 PMCID: PMC11720663 DOI: 10.3390/cells14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI). Many studies have developed and focused on various methods to optimize the EMI through in vivo and in vitro approaches for hair regeneration. The culturing of human hair mesenchymal cells resulted in the loss of trichogenicity and inductive properties of DP cells, limiting their potential application in de novo hair follicle generation in vivo. Epithelial stem cells derived from human hair follicles are challenging to isolate and culture, making it difficult to obtain enough cells for hair regeneration purposes. Mesenchymal stem cells and epithelial stem cells derived from human hair follicles lose their ability to form hair follicles during culture, limiting the study of hair follicle formation in vivo. Therefore, many attempts and methods have been developed to overcome these limitations. Here, we review the possible and necessary cell methods and techniques used for human hair follicle regeneration and the restoration of hair follicle cell inductivity in culture.
Collapse
Affiliation(s)
- Ons Ben Hamida
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| |
Collapse
|
2
|
Song Y, Li Y, Lu Z, Yue L, Xiao T, Yang B, Liu J, Yuan C, Guo T. FGF20 Secreted From Dermal Papilla Cells Regulate the Proliferation and Differentiation of Hair Follicle Stem Cells in Fine-Wool Sheep. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39704013 DOI: 10.1111/jpn.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Wool traits determine the market value of fine-wool sheep, and wool fibre-breaking elongation (fibres can be stretched or elongated before they break) is one of the important wool traits. The interaction between hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs) determines hair follicle development in fine wool sheep, thereby directly influencing wool traits. A genome-wide association study based on pre-sequencing data identified FGF20, which was significantly associated with wool fibre-breaking elongation. The study reveals that the regulatory mechanism of FGF20 secreted from DPCs affects the proliferation and differentiation of HFSCs through a co-culture system, to provide a new perspective for fine-wool sheep breeding. After knocking down FGF20 expression in DPCs, the results showed that the expression of fibroblast growth factor receptor 2 (FGFR2) and fibroblast growth factor receptor 3 (FGFR3) in DPCs and HFSCs was significantly decreased (p < 0.05), the number of EdU-positive cells and cell viability was significantly decreased (p < 0.01), and the apoptosis rate was significantly increased (p < 0.05). Meanwhile, the differentiation markers of SOX9, NOTCH1 and β-Catenin in HFSCs were also significantly reduced (p < 0.05). These findings indicate that FGF20-knockdown in DPCs of fine-wool sheep inhibits the proliferation and differentiation of HFSCs in the co-culture system, providing a theoretical basis for elucidating the regulatory mechanism of hair follicle self-renewal and differentiation of fine-wool sheep and providing a co-culture system for regenerative medicine.
Collapse
Affiliation(s)
- Yali Song
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tong Xiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
3
|
Leybova L, Biswas A, Sharan R, Trejo BM, Kim K, Soto-Muniz Y, Jones RA, Phillips BK, Devenport D. Radially patterned morphogenesis of murine hair follicle placodes ensures robust epithelial budding. Dev Cell 2024; 59:3272-3289.e5. [PMID: 39413781 DOI: 10.1016/j.devcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/21/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
The bending of simple cellular sheets into complex three-dimensional (3D) forms requires developmental patterning cues to specify where deformations occur, but how positional information directs morphological change is poorly understood. Here, we investigate how morphogen signaling and cell fate diversification contribute to the morphogenesis of murine hair placodes, in which collective cell movements transform radially symmetric primordia into bilaterally symmetric tubes. Through live imaging and 3D volumetric reconstructions, we demonstrate that Wnt and Shh establish radial patterns of cell fate, cell morphology, and movement within developing placodes. Cell fate diversity at different radial positions provides unique and essential contributions to placode morphogenesis. Further, we show that downstream of radial patterning, gradients of classical cadherin expression are required for efficient epithelial rearrangements. Given that the transformation of epithelial discs into 3D tubes is a common morphological motif used to shape diverse organ primordia, mechanisms of radially patterned morphogenesis are likely highly conserved across evolution.
Collapse
Affiliation(s)
- Liliya Leybova
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Research Computing, Princeton University, Princeton, NJ, USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brandon M Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Keunho Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yanilka Soto-Muniz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brooke K Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Zhao B, Yu Y, Sun S, Cai J, Bao Z, Chen Y, Wu X. Integration Analysis of Transcriptome Sequencing and Whole-Genome Resequencing Reveal Wool Quality-Associated Key Genes in Zhexi Angora Rabbits. Vet Sci 2024; 11:651. [PMID: 39728991 DOI: 10.3390/vetsci11120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits. According to the results, the diameters of fine and coarse fibers, and the percentage of coarse fibers, were significantly lower in the fine-wool group than in the coarse-wool group. Additionally, the HF density was higher in the fine-wool group than in the coarse-wool group, and the diameters of both primary hair follicles and second hair follicles were finer in this fine-wool group. Moreover, RNA sequencing (RNA-seq) and whole-genome resequencing (WGRS) were performed to identify key candidate genes and potential genetic variations between fine- and coarse-wool groups. RNA-seq analysis revealed 182 differentially expressed genes (DEGs), with 138 upregulated and 44 downregulated genes in the fine-wool group. The WGRS analysis identified numerous genetic variants including 15,705 InDels and 83,055 SNPs between the two groups. Additionally, the joint analysis of RNA-seq and WGRS showed enrichment of the Wnt, JAK-STAT, and TGF-β signaling pathways. The key overlapping candidate genes such as DKK4, FRZB, CSNK1A1, TLR2, STAT4, and BMP6 were identified as potential crucial regulators of wool growth. In summary, this study provides valuable theoretical insights into wool quality and offers the potential for improving the molecular breeding of Angora rabbits.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongqi Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shaoning Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Park S, Park HW, Seo DB, Yoo DS, Bae S. In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells. Front Pharmacol 2024; 15:1482898. [PMID: 39691387 PMCID: PMC11649413 DOI: 10.3389/fphar.2024.1482898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background Scalp hair plays a crucial role in social communication by expressing personal appearance and self-identity. Consequently, hair loss often leads to a perception of unattractiveness, negatively impacting an individual's life and mental health. Currently, the use of Food and Drug Administration (FDA)-approved drugs for hair loss is associated with several side effects, highlighting the need for identifying new drug candidates, such as plant-derived phytochemicals, to overcome these issues. Objective This study investigated the hair growth-promoting effects of araliadiol, a polyacetylene compound found in plants such as Centella asiatica. Methods We employed an in vitro model comprising human hair follicle stem cells (HHFSCs) and human dermal papilla cells (HDPCs) to evaluate the hair growth-promoting effects of araliadiol. The proliferation-stimulating effects of araliadiol were assessed using water-soluble tetrazolium salt assay, adenosine triphosphate content assay, and crystal violet staining assay. In addition, we performed luciferase reporter assay, polymerase chain reaction analysis, cell fractionation, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to elucidate the mechanism underlying the hair growth-inductive effects of araliadiol. Results Araliadiol exhibited both proliferation- and hair growth-promoting effects in HHFSCs and HDPCs. Specifically, it increased the protein expression of cyclin B1 and Ki67. In HHFSCs, it elevated the expression of hair growth-promoting factors, including CD34, vascular endothelial growth factor (VEGF), and angiopoietin-like 4. Similarly, araliadiol increased the expression of hair growth-inductive proteins such as fibroblast growth factor 7, VEGF, noggin, and insulin-like growth factor 1 in HDPCs. Subsequent Western blot analysis and ELISA using inhibitors such as GW9662 and SB202190 confirmed that these hair growth-promoting effects were dependent on the p38/PPAR-γ signaling in both HHFSCs and HDPCs. Conclusion Araliadiol promotes hair growth through the p38/PPAR-γ signaling pathway in human hair follicle cells. Therefore, araliadiol can be considered a novel drug candidate for the treatment of alopecia.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | | | | | | | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Sarangi AK, Salem MA, Younus MD, El-Haroun H, Mahal A, Tripathy L, Mishra R, Shabil M, Alhumaydhi FA, Khatib MN, Bushi G, Rustagi S, Dey D, Satapathy P, Ballal S, Bansal P, Bhopte K, Tomar BS, Mishra S, Alissa M, Mohapatra RK, El-Bahy ZM. Advanced biomaterials for regenerative medicine and their possible therapeutic significance in treating COVID-19: a critical overview. Int J Surg 2024; 110:7508-7527. [PMID: 39411890 PMCID: PMC11634172 DOI: 10.1097/js9.0000000000002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
The potential of biomaterials in medical sciences has attracted much interest, especially in promoting tissue regeneration and controlling immune responses. As the COVID-19 pandemic broke out, there was an increased interest in understanding more about how biomaterials could be employed to fight this dreaded disease, especially in the context of regenerative medicine. Out of the numerous regenerative medicine possibilities, stem cells and scaffolding (grafting) technology are two major areas in modern medicine and surgery. Mesenchymal stem cells are useful in tissue repair, tailored therapy and the treatment of COVID-19. Using biomaterials in COVID-19 treatment is intricate and needs multidisciplinary and cross-disciplinary research. Cell-based therapy and organ transplants pose immunological rejection challenges. Immunomodulation enhanced, tumorigenicity decreased, inflammation addressed and tissue damage restricted; bioengineered stem cells need clinical insights and validation. Advanced stem cell-based therapies should ideally be effective, safe and scalable. Cost and scalability shall dictate the dawn of techno-economically feasible regenerative medicine. A globally standard and uniform approval process could accelerate translational regenerative medicine. Researchers, patient advocacy organisations, regulators and biopharmaceutical stakeholders need to join hands for easy navigation of regulatory measures and expeditious market entry of regenerative medicine. This article summarises advances in biomaterials for regenerative medicine and their possible therapeutic benefits in managing infectious diseases like COVID-19. It highlights the significant recent developments in biomaterial design, scaffold construction, and stem cell-based therapies to treat tissue damage and COVID-19-linked immunological dysregulation. It also highlights the potential contribution of biomaterials towards creating novel treatment strategies to manage COVID-19.
Collapse
Affiliation(s)
- Ashish K. Sarangi
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Mohamed A. Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Mustafa D. Younus
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Hala El-Haroun
- Basic Medical Science Department, Faculty of Dentistry, Al Ryada University for Science and Technology, Sadat City, Egypt
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Lizaranee Tripathy
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Rajashree Mishra
- Department of Chemistry, Centurion University of Technology and Management, Balangir, Odisha, India
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mahalaqua N. Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Debankur Dey
- Medical College and Hospital Kolkata, Kolkata, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Medical Laboratories Techniques Department, Al-Mustaqbal University, Hillah, Babil, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Kiran Bhopte
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Balvir S. Tomar
- Institute of Pediatric Gastroenterology and Hepatology, NIMS University, Jaipur, India
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Jiang Y, Harberts J, Assadi A, Chen Y, Spatz JP, Duan W, Nisbet DR, Voelcker NH, Elnathan R. The Roles of Micro- and Nanoscale Materials in Cell-Engineering Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410908. [PMID: 39401098 DOI: 10.1002/adma.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Indexed: 11/29/2024]
Abstract
Customizable manufacturing of ex vivo cell engineering is driven by the need for innovations in the biomedical field and holds substantial potential for addressing current therapeutic challenges; but it is still only in its infancy. Micro- and nanoscale-engineered materials are increasingly used to control core cell-level functions in cellular engineering. By reprogramming or redirecting targeted cells for extremely precise functions, these advanced materials offer new possibilities. This influences the modularity of cell reprogramming and reengineering, making these materials part of versatile and emerging technologies. Here, the roles of micro- and nanoscale materials in cell engineering are highlighted, demonstrating how they can be adaptively controlled to regulate cellular reprogramming and core cell-level functions, including differentiation, proliferation, adhesion, user-defined gene expression, and epigenetic changes. The current reprogramming routes used to achieve pluripotency from somatic cells and the significant potential of induced pluripotent stem cell technology for translational biomedical research are covered. Recent advances in nonviral intracellular delivery modalities for cell reprogramming and their constraints are evaluated. This paper focuses on emerging physical and combinatorial approaches of intracellular delivery for cell engineering, revealing the capabilities and limitations of these routes. It is showcased how these programmable materials are continually being explored as customizable tools for inducing biophysical stimulation. Harnessing the power of micro- and nanoscale-engineered materials will be a step change in the design of cell engineering, producing a suite of powerful tools for addressing potential future challenges in therapeutic cell engineering.
Collapse
Affiliation(s)
- Yuan Jiang
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jann Harberts
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Artin Assadi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Zhejiang, 325000, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Max Planck Schools, 69120, Heidelberg, Germany
| | - Wei Duan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David R Nisbet
- The Graeme Clark Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Parkville, VIC, 3010, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Roey Elnathan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
8
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
9
|
Ghotbi E, Tchegnon E, Chen Z, Li S, Shipman T, Wang Y, Raman J, Zhang Y, McKay RM, Liao CP, Le LQ. Transcription factor KROX20 marks epithelial stem cells for hair follicle formation. J Clin Invest 2024; 134:e180160. [PMID: 39361422 PMCID: PMC11601947 DOI: 10.1172/jci180160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.
Collapse
Affiliation(s)
| | - Edem Tchegnon
- Department of Dermatology
- Genetics, Development and Disease Graduate Program, and
| | | | - Stephen Li
- Department of Dermatology
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | - Chung-Ping Liao
- Department of Dermatology
- Graduate Institute of Medical Sciences and
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lu Q. Le
- Department of Dermatology
- Genetics, Development and Disease Graduate Program, and
- Hamon Center for Regenerative Science and Medicine and
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Dermatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Hussain Z, Hu T, Gou Y, He M, Lv X, Wang S, Sun W. CRABP1 Enhances the Proliferation of the Dermal Papilla Cells of Hu Sheep through the Wnt/β-catenin Pathway. Genes (Basel) 2024; 15:1291. [PMID: 39457415 PMCID: PMC11507202 DOI: 10.3390/genes15101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The homologous proteins identified as cellular retinoic acid-binding proteins I and II (CRABP-I and CRABP-II) belong to a subset of intracellular proteins characterized by their robust affinity for retinoic acid, which plays an indispensable role in the development of hair follicle, including differentiation, proliferation, and apoptosis in keratinocytes. Previous research on Hu sheep hair follicles revealed the specific expression CRABP1 in dermal papilla cells (DPCs), suggesting that CRABP1 has a potential role in regulating the DPC population. Therefore, the main purpose of this study is to expose the performance of the CRABP1 genes in the development and proliferation of DPCs. METHODS Initially, overexpression and inhibition of CRABP1 in the DPCs were conducted through overexpression vector and siRNA. CCK-8, EDU, and RT-PCR cell cycle assays and immunostaining were performed to evaluate the proliferation and cell cycle of dermal papilla cells (DPCs). Although, the influence of CRABP1 upon β-catenin in dermal papilla cells (DPCs) was found using immunofluorescence labeling. Finally, RT-PCR was conducted to assess the impact of CRABP1 on the expression levels of CTNNB1, TCF4, and LEF1 in DPCs involved in the Wnt/β-catenin signaling pathway. RESULTS The results showed that CRABP1 overexpression promotes the growth rates of DPCs and significantly enhances the proportion of S-phase cells compared with the control group (p < 0.05). The results were the opposite when CRABP1 was a knockdown. In contrast, there was a significant decline in the mRNA expression levels of CTNNβ1, LEF1 (p < 0.05), and TCF4 (p < 0.01) by CRABP1 knockdown. CONCLUSIONS This study found that CRABP1 influences the expression of important genes within the Wnt/β-catenin signaling pathway and promotes DPC proliferation. This investigation provides a theoretical framework to explain the mechanisms that control hair follicle morphogenesis and development.
Collapse
Affiliation(s)
- Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Yuan Gou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (T.H.); (Y.G.); (M.H.); (X.L.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Makkar J, Flores J, Matich M, Duong TT, Thompson SM, Du Y, Busch I, Phan QM, Wang Q, Delevich K, Broughton-Neiswanger L, Driskell IM, Driskell RR. Deep Hair Phenomics: Implications in Endocrinology, Development, and Aging. J Invest Dermatol 2024:S0022-202X(24)02079-7. [PMID: 39236901 DOI: 10.1016/j.jid.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Hair quality is an important indicator of health in humans and other animals. Current approaches to assess hair quality are generally nonquantitative or are low throughput owing to technical limitations of splitting hairs. We developed a deep learning-based computer vision approach for the high-throughput quantification of individual hair fibers at a high resolution. Our innovative computer vision tool can distinguish and extract overlapping fibers for quantification of multivariate features, including length, width, and color, to generate single-hair phenomes of diverse conditions across the lifespan of mice. Using our tool, we explored the effects of hormone signaling, genetic modifications, and aging on hair follicle output. Our analyses revealed hair phenotypes resultant of endocrinological, developmental, and aging-related alterations in the fur coats of mice. These results demonstrate the efficacy of our deep hair phenomics tool for characterizing factors that modulate the hair follicle and developing, to our knowledge, previously unreported diagnostic methods for detecting disease through the hair fiber. Finally, we have generated a searchable, interactive web tool for the exploration of our hair fiber data at skinregeneration.org.
Collapse
Affiliation(s)
- Jasson Makkar
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Jorge Flores
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Mason Matich
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Tommy T Duong
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Yiqing Du
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Isabelle Busch
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Quan M Phan
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Kristen Delevich
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA; Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Liam Broughton-Neiswanger
- Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA; Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
12
|
McMullan P, Maye P, Root SH, Yang Q, Edie S, Rowe D, Kalajzic I, Germain-Lee EL. Hair follicle-resident progenitor cells are a major cellular contributor to heterotopic subcutaneous ossifications in a mouse model of Albright hereditary osteodystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599506. [PMID: 38948860 PMCID: PMC11213030 DOI: 10.1101/2024.06.18.599506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO). AHO is caused by heterozygous inactivation of GNAS, the gene that encodes the α-stimulatory subunit (Gαs) of G proteins. Previously, we had shown using our laboratory's AHO mouse model that SCOs develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and mice that Secreted Frizzled Related Protein 2 (SFRP2) expression is upregulated in regions of SCO formation and that elimination of Sfrp2 in male AHO mice exacerbates SCO development. These studies provide key insights into the cellular and molecular mechanisms contributing to SCO development and have implications for potential therapeutic modalities not only for AHO patients but also for patients suffering from HOs with other etiologies.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Peter Maye
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Sierra H. Root
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Qingfen Yang
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | | | - David Rowe
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Emily L. Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
- Albright Center, Division of Endocrinology & Diabetes, Connecticut Children’s, Farmington, CT
| |
Collapse
|
13
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Biggs LC, Miroshnikova YA. Nuclear mechanotransduction on skin stem cell fate regulation. Curr Opin Cell Biol 2024; 87:102328. [PMID: 38340567 DOI: 10.1016/j.ceb.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Jeong S, Nam HM, Sung GY. Optimization of hair follicle spheroids for hair-on-a-chip. Biomater Sci 2024; 12:1693-1706. [PMID: 38372380 DOI: 10.1039/d3bm02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Currently, most models for hair follicle research have the limitation of not replicating some key features of the hair follicle microenvironment. To complement this, we transfected various factors for hair growth into dermal papilla cells (DPCs) by electroporation and cultured the spheroids with keratinocytes (KCs). We optimized the cell number and culture period for applying spheroids to hair-on-a-chip. Furthermore, we investigated the expression of hair growth factors in spheroids depending on the presence or absence of human umbilical vein endothelial cells (HUVECs) and transfection. In spheroids in which DPCs, KCs, and HUVECs were co-cultured for 21 days, the expression of lymphoid enhancer factor 1 (LEF1), T-cell factor 1 (TCF1), and keratin 25 (K25) in the center of the spheroid, the expression of keratin 17 (K17) on the outer surface of the spheroid, and the shape of hair extending outward from the spheroid surface were observed. From these results, it is expected that a hair-on-a-chip experiment in which short-term cultured TKH spheroids are injected into the dermis and co-cultured with KC will enable the production of full-thickness skin equivalents containing hair in vitro without transplantation into animals.
Collapse
Affiliation(s)
- Subin Jeong
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon-Min Nam
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Republic of Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
16
|
Kim JH, Kim TY, Goo B, Park Y. Bee Venom Stimulates Growth Factor Release from Adipose-Derived Stem Cells to Promote Hair Growth. Toxins (Basel) 2024; 16:84. [PMID: 38393162 PMCID: PMC10892121 DOI: 10.3390/toxins16020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied in mice. The underlying mechanism was investigated using organ cultures of mouse vibrissa hair follicles. When BV-treated ASCs were injected subcutaneously into mice, the telogen-to-anagen transition was accelerated and, by day 14, the hair weight increased. Quantitative polymerase chain reaction (qPCR) revealed that BV influenced the expression of several molecules, including growth factors, chemokines, channels, transcription factors, and enzymes. Western blot analysis was employed to verify the protein expression levels of extracellular-signal-regulated kinase (ERK) and phospho-ERK. Both the Boyden chamber experiment and scratch assay confirmed the upregulation of cell migration by BV. Additionally, ASCs secreted higher levels of growth factors after exposure to BV. Following BV therapy, the gene expression levels of alkaline phosphatase (ALP), fibroblast growth factor (FGF)-1 and 6, endothelial cell growth factor, and platelet-derived growth factor (PDGF)-C were upregulated. The findings of this study suggest that bee venom can potentially be utilized as an ASC-preconditioning agent for hair regeneration.
Collapse
Affiliation(s)
- Jung Hyun Kim
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Tae Yoon Kim
- Department of Traditional Korean Medicine Practice, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Bonhyuk Goo
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Yeoncheol Park
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 26, Kyungheedae-ro 4-gil, Dongdaemun-gu, Seoul 02453, Republic of Korea
| |
Collapse
|
17
|
Villeneuve C, Hashmi A, Ylivinkka I, Lawson-Keister E, Miroshnikova YA, Pérez-González C, Myllymäki SM, Bertillot F, Yadav B, Zhang T, Matic Vignjevic D, Mikkola ML, Manning ML, Wickström SA. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat Cell Biol 2024; 26:207-218. [PMID: 38302719 PMCID: PMC10866703 DOI: 10.1038/s41556-023-01332-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.
Collapse
Affiliation(s)
- Clémentine Villeneuve
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ali Hashmi
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irene Ylivinkka
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Yekaterina A Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Satu-Marja Myllymäki
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Fabien Bertillot
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bhagwan Yadav
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY, USA.
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Liu D, Xu Q, Meng X, Liu X, Liu J. Status of research on the development and regeneration of hair follicles. Int J Med Sci 2024; 21:80-94. [PMID: 38164355 PMCID: PMC10750333 DOI: 10.7150/ijms.88508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
Hair loss, or alopecia, is a prevalent condition in modern society that imposes substantial mental and psychological burden on individuals. The types of hair loss, include androgenetic alopecia, alopecia areata, and telogen effluvium; of them, androgenetic alopecia is the most common condition. Traditional treatment modalities mainly involve medical options, such as minoxidil, finasteride and surgical interventions, such as hair transplantation. However, these treatments still have many limitations. Therefore, exploring the pathogenesis of hair loss, specifically focusing on the development and regeneration of hair follicles (HFs), and developing new strategies for promoting hair regrowth are essential. Some emerging therapies for hair loss have gained prominence; these therapies include low-level laser therapy, micro needling, fractional radio frequency, platelet-rich plasma, and stem cell therapy. The aforementioned therapeutic strategies appear promising for hair loss management. In this review, we investigated the mechanisms underlying HF development and regeneration. For this, we studied the structure, development, cycle, and cellular function of HFs. In addition, we analyzed the symptoms, types, and causes of hair loss as well as its current conventional treatments. Our study provides an overview of the most effective regenerative medicine-based therapies for hair loss.
Collapse
Affiliation(s)
| | | | | | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
19
|
Zheng Q, Ye N, Bao P, Wang T, Ma C, Chu M, Wu X, Kong S, Guo X, Liang C, Pan H, Yan P. Interpretation of the Yak Skin Single-Cell Transcriptome Landscape. Animals (Basel) 2023; 13:3818. [PMID: 38136855 PMCID: PMC10741061 DOI: 10.3390/ani13243818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The morphogenesis of hair follicle structure is accompanied by the differentiation of skin tissue. Mammalian coats are produced by hair follicles. The formation of hair follicles requires signal transmission between the epidermis and dermis. However, knowledge of the transcriptional regulatory mechanism is still lacking. We used single-cell RNA sequencing to obtain 26,573 single cells from the scapular skin of yaks at hair follicle telogen and anagen stages. With the help of known reference marker genes, 11 main cell types were identified. In addition, we further analyzed the DP cell and dermal fibroblast lineages, drew a single-cell map of the DP cell and dermal fibroblast lineages, and elaborated the key genes, signals, and functions involved in cell fate decision making. The results of this study provide a very valuable resource for the analysis of the heterogeneity of DP cells and dermal fibroblasts in the skin and provide a powerful theoretical reference for further exploring the diversity of hair follicle cell types and hair follicle morphogenesis.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Na Ye
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Siyuan Kong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
20
|
Kwack MH, Hamida OB, Kim MK, Kim MK, Sung YK. Establishment and characterization of matched immortalized human frontal and occipital scalp dermal papilla cell lines from androgenetic alopecia. Sci Rep 2023; 13:21421. [PMID: 38049592 PMCID: PMC10696020 DOI: 10.1038/s41598-023-48942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Androgenetic alopecia (AGA), also known as male pattern baldness, is a common hair loss condition influenced by genetic and hormonal factors. Variations in gene expression and androgen responsiveness have been observed between the frontal and occipital regions of AGA patients. However, obtaining and cultivating frontal hair follicles is challenging. Therefore, no matched frontal and occipital dermal papilla (DP) cell lines have been reported yet. This study aimed to establish matched immortalized human frontal and occipital scalp DP cell lines from AGA patients. Simian virus 40 large T antigen (SV40T-Ag) and human telomerase reverse transcriptase (hTERT) were introduced into primary human DP cells. The obtained cell lines were characterized by assessing their gene expression patterns, androgen receptor (AR) levels, and the presence of 5-alpha reductase (5αR). Additionally, we examined their response to dihydrotestosterone (DHT) and evaluated cell viability. The conditioned medium from the frontal DP cell line inhibited human hair follicle growth, leading to reduced keratinocyte proliferation and increased apoptosis. Furthermore, when the cells were cultured in a 3D environment mimicking in vivo conditions, the 3D cultured frontal DP cell line exhibited weaker sphere aggregation than the occipital DP cell line due to the increased expression of matrix metalloproteinase 1 (MMP1), MMP3, and MMP9. Additionally, the expression of DP signature genes was inhibited in the 3D cultured frontal DP cell line. These matched frontal and occipital DP cell lines hold significant potential as valuable resources for research on hair loss. Their establishment allows us to investigate the differences between frontal and occipital DP cells, contributing to a better understanding of the molecular mechanisms underlying AGA. Furthermore, these cell lines may be valuable for developing targeted therapeutic approaches for hair loss conditions.
Collapse
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Korea.
| | - Ons Ben Hamida
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| |
Collapse
|
21
|
Wang YG, Yuan VL, Liao XH. Genetic lineage tracing in skin reveals predominant expression of HEY2 in dermal papilla during telogen and that HEY2 + cells contribute to the regeneration of dermal cells during wound healing. Exp Dermatol 2023; 32:2176-2179. [PMID: 37649203 DOI: 10.1111/exd.14917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Dermal papilla (DP) cells are specialized mesenchymal cells that play a crucial role in regulating hair morphology, colour and growth through the secretion of specific factors. It is still unclear what the source of progenitor cells is for dermal cell regeneration during wound healing, and whether DP cells are involved in this process. We analyzed the gene expression profile of various skin cell populations using existing datasets and found that the Hey2 gene was predominantly expressed in DP cells. We introduced Hey2-CreERT2 knockin mice and crossed them with Rosa26-ZsGreen reporter mice. After induction in the double transgenic mice by administration of tamoxifen, the reporter ZsGreen was found to be predominantly expressed in DP cells both at anagen and telogen phases, and broadly expressed in some other dermal cells at anagen. We also created a wound after tamoxifen induction, and found there were abundant ZsGreen+ cells in the regenerated dermis. We conclude that the HEY2+ DP cells and dermal cells exhibit some stemness properties and can contribute to the dermal cell regeneration during wound healing.
Collapse
Affiliation(s)
- Yan-Ge Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Vicky Lan Yuan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Liao B, Cui Y, Yu S, He J, Yang X, Zou S, Li S, Zhao P, Xu H, Long M, Wang X. Histological characteristics of hair follicles at different hair cycle and in vitro modeling of hair follicle-associated cells of yak ( Bos grunniens). Front Vet Sci 2023; 10:1277586. [PMID: 38046572 PMCID: PMC10691264 DOI: 10.3389/fvets.2023.1277586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
To adapt to the extreme conditions of plateau environments, yaks have evolved thick hair, making them an ideal model for investigating the mechanisms involved in hair growth. We can gain valuable insights into how hair follicles develop and their cyclic growth in challenging environments by studying yaks. However, the lack of essential data on yak hair follicle histology and the absence of in vitro cell models for hair follicles serve as a limitation to such research objectives. In this study, we investigated the structure of skin tissue during different hair follicle cycles using the yak model. Additionally, we successfully established in vitro models of hair follicle-associated cells derived from yak skin, including dermal papilla cells (DPCs), preadipocytes, and fibroblasts. We optimized the microdissection technique for DPCs culture by simplifying the procedure and reducing the time required. Furthermore, we improved the methodology used to differentiate yak preadipocytes into mature adipocytes, thus increasing the differentiation efficiency. The introduction of yak as a natural model provides valuable research resources for exploring the mechanisms of hair growth and contributes to a deeper understanding of hair follicle biology and the development of regenerative medicine strategies.
Collapse
Affiliation(s)
- Bo Liao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shengnan Zou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hongwei Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Hussein RS, Atia T, Bin Dayel S. Impact of Thyroid Dysfunction on Hair Disorders. Cureus 2023; 15:e43266. [PMID: 37692605 PMCID: PMC10492440 DOI: 10.7759/cureus.43266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Hair loss is a problem for everyone, regardless of their age or sex. The three most prevalent types of hair loss, telogen effluvium, alopecia areata, and androgenetic alopecia, have been associated with a variety of risk factors. Strong evidence links thyroid hormones (THs) to hair loss. THs control the growth, differentiation, metabolism, and thermogenesis of body cells. The skin is a significant target organ for THs; however, the cellular and molecular causes of thyroid dysfunction-related skin diseases remain unknown. Hyperthyroidism, hypothyroidism, and drug-induced hypothyroidism can induce widespread hair shedding. Little information is available regarding the incidence and effects of thyroid dysfunction on hair problems. This study aimed to review the impact and prevalence of thyroid disorders on hair loss. The conclusions drawn from this study highlight the underestimated prevalence and impact of thyroid disorders on hair loss. The review of scientific articles, including original research, review articles, and a case report, provides a comprehensive understanding of the topic. This research adds to the existing literature by enhancing our understanding of the relationship between thyroid dysfunction and hair disorders. It contributes to the body of evidence by reviewing relevant studies and summarizing the impact of thyroid disorders on hair loss. The study also highlights the gaps in knowledge and the need for more research in this area to improve the diagnosis and management of hair disorders associated with thyroid dysfunction.
Collapse
Affiliation(s)
- Ramadan S Hussein
- Department of Internal Medicine, Dermatology Unit, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, SAU
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, SAU
| | - Salman Bin Dayel
- Department of Internal Medicine, Dermatology Unit, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, SAU
| |
Collapse
|
24
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
25
|
Wei H, Du S, Parksong J, Pasolli HA, Matte-Martone C, Regot S, Gonzalez LE, Xin T, Greco V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell 2023; 30:962-972.e6. [PMID: 37419106 PMCID: PMC10362479 DOI: 10.1016/j.stem.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
The ability of stem cells to build and replenish tissues depends on support from their niche. Although niche architecture varies across organs, its functional importance is unclear. During hair follicle growth, multipotent epithelial progenitors build hair via crosstalk with their remodeling fibroblast niche, the dermal papilla, providing a powerful model to functionally interrogate niche architecture. Through mouse intravital imaging, we show that dermal papilla fibroblasts remodel individually and collectively to form a morphologically polarized, structurally robust niche. Asymmetric TGF-β signaling precedes morphological niche polarity, and loss of TGF-β signaling in dermal papilla fibroblasts leads them to progressively lose their stereotypic architecture, instead surrounding the epithelium. The reorganized niche induces the redistribution of multipotent progenitors but nevertheless supports their proliferation and differentiation. However, the differentiated lineages and hairs produced by progenitors are shorter. Overall, our results reveal that niche architecture optimizes organ efficiency but is not absolutely essential for organ function.
Collapse
Affiliation(s)
- Haoyang Wei
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shuangshuang Du
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeeun Parksong
- Departments of Cell Biology and Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | | | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lauren E Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
26
|
Ma S, Ji D, Wang X, Yang Y, Shi Y, Chen Y. Transcriptomic Analysis Reveals Candidate Ligand-Receptor Pairs and Signaling Networks Mediating Intercellular Communication between Hair Matrix Cells and Dermal Papilla Cells from Cashmere Goats. Cells 2023; 12:1645. [PMID: 37371115 DOI: 10.3390/cells12121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Hair fiber growth is determined by the spatiotemporally controlled proliferation, differentiation, and apoptosis of hair matrix cells (HMCs) inside the hair follicle (HF); however, dermal papilla cells (DPCs), the cell population surrounded by HMCs, manipulate the above processes via intercellular crosstalk with HMCs. Therefore, exploring how the mutual commutations between the cells are molecularly achieved is vital to understanding the mechanisms underlying hair growth. Here, based on our previous successes in cultivating HMCs and DPCs from cashmere goats, we combined a series of techniques, including in vitro cell coculture, transcriptome sequencing, and bioinformatic analysis, to uncover ligand-receptor pairs and signaling networks mediating intercellular crosstalk. Firstly, we found that direct cellular interaction significantly alters cell cycle distribution patterns and changes the gene expression profiles of both cells at the global level. Next, we constructed the networks of ligand-receptor pairs mediating intercellular autocrine or paracrine crosstalk between the cells. A few pairs, such as LEP-LEPR, IL6-EGFR, RSPO1-LRP6, and ADM-CALCRL, are found to have known or potential roles in hair growth by acting as bridges linking cells. Further, we inferred the signaling axis connecting the cells from transcriptomic data with the advantage of CCCExplorer. Certain pathways, including INHBA-ACVR2A/ACVR2B-ACVR1/ACVR1B-SMAD3, were predicted as the axis mediating the promotive effect of INHBA on hair growth via paracrine crosstalk between DPCs and HMCs. Finally, we verified that LEP-LEPR and IL1A-IL1R1 are pivotal ligand-receptor pairs involved in autocrine and paracrine communication of DPCs and HMCs to DPCs, respectively. Our study provides a comprehensive landscape of intercellular crosstalk between key cell types inside HF at the molecular level, which is helpful for an in-depth understanding of the mechanisms related to hair growth.
Collapse
Affiliation(s)
- Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
Jensen KB, Little MH. Organoids are not organs: Sources of variation and misinformation in organoid biology. Stem Cell Reports 2023; 18:1255-1270. [PMID: 37315519 DOI: 10.1016/j.stemcr.2023.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
In the past decade, the term organoid has moved from obscurity to common use to describe a 3D in vitro cellular model of a tissue that recapitulates structural and functional elements of the in vivo organ it models. The term organoid is now applied to structures formed as a result of two distinct processes: the capacity for adult epithelial stem cells to re-create a tissue niche in vitro and the ability to direct the differentiation of pluripotent stem cells to a 3D self-organizing multicellular model of organogenesis. While these two organoid fields rely upon different stem cell types and recapitulate different processes, both share common challenges around robustness, accuracy, and reproducibility. Critically, organoids are not organs. This commentary serves to discuss these challenges, how they impact genuine utility, and shine a light on the need to improve the standards applied to all organoid approaches.
Collapse
Affiliation(s)
- Kim Bak Jensen
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Melissa Helen Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Centre for Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
28
|
Augustyniak A, McMahon H. Effect of Marine-Derived Saccharides on Human Skin Fibroblasts and Dermal Papilla Cells. Mar Drugs 2023; 21:330. [PMID: 37367655 DOI: 10.3390/md21060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The skin is the largest organ of the human body, composed of a diverse range of cell types, non-cellular components, and an extracellular matrix. With aging, molecules that are part of the extracellular matrix undergo qualitative and quantitative changes and the effects, such as a loss of skin firmness or wrinkles, can be visible. The changes caused by the aging process do not only affect the surface of the skin, but also extend to skin appendages such as hair follicles. In the present study, the ability of marine-derived saccharides, L-fucose and chondroitin sulphate disaccharide, to support skin and hair health and minimize the effects of intrinsic and extrinsic aging was investigated. The potential of the tested samples to prevent adverse changes in the skin and hair through stimulation of natural processes, cellular proliferation, and production of extracellular matrix components collagen, elastin, or glycosaminoglycans was investigated. The tested compounds, L-fucose and chondroitin sulphate disaccharide, supported skin and hair health, especially in terms of anti-aging effects. The obtained results indicate that both ingredients support and promote the proliferation of dermal fibroblasts and dermal papilla cells, provide cells with a supply of sulphated disaccharide GAG building blocks, increase ECM molecule production (collagen and elastin) by HDFa, and support the growth phase of the hair cycle (anagen).
Collapse
Affiliation(s)
- Aleksandra Augustyniak
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| |
Collapse
|
29
|
Banjac I, Maimets M, Jensen KB. Maintenance of high-turnover tissues during and beyond homeostasis. Cell Stem Cell 2023; 30:348-361. [PMID: 37028402 DOI: 10.1016/j.stem.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/23/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023]
Abstract
Tissues with a high turnover rate produce millions of cells daily and have abundant regenerative capacity. At the core of their maintenance are populations of stem cells that balance self-renewal and differentiation to produce the adequate numbers of specialized cells required for carrying out essential tissue functions. Here, we compare and contrast the intricate mechanisms and elements of homeostasis and injury-driven regeneration in the epidermis, hematopoietic system, and intestinal epithelium-the fastest renewing tissues in mammals. We highlight the functional relevance of the main mechanisms and identify open questions in the field of tissue maintenance.
Collapse
Affiliation(s)
- Isidora Banjac
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Martti Maimets
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Kim B Jensen
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
30
|
Shen XR, Zhang HL, Zhao XB, Wang YG, Tan XY, Gao L, Sun R, Liao XH. A Cre knockin mouse reveals specific expression of Agouti gene in mesenchymal lineage cells in multiple organs and provides a unique tool for conditional gene targeting. Transgenic Res 2023; 32:143-152. [PMID: 36637628 DOI: 10.1007/s11248-023-00334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The mouse Agouti gene encodes a paracrine signaling factor which promotes melanocytes to produce yellow instead of black pigment. It has been reported that Agouti mRNA is confined to the dermal papilla after birth in various mammalian species. In this study, we created and characterized a knockin mouse strain in which Cre recombinase was expressed in-frame with endogenous Agouti coding sequence. The Agouti-Cre mice were bred with reporter mice (Rosa26-tdTomato or Rosa26-ZsGreen) to trace the lineage of Agouti-expressing cells during development. In skin, the reporter was detected in some dermal fibroblasts at the embryonic stage and in all dermal fibroblasts postnatally. It was also expressed in all mesenchymal lineage cells in other organs/tissues, including eyes, tongue, muscle, intestine, adipose, prostate and testis. Interestingly, the reporter expression was excluded from epithelial cells in the above organs/tissues. In brain, the reporter was observed in the outermost meningeal fibroblasts. Our work helps to illustrate the Agouti expression pattern during development and provides a valuable mouse strain for conditional gene targeting in mesenchymal lineage cells in multiple organs.
Collapse
Affiliation(s)
- Xing-Ru Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - He-Li Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yang-Ge Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao-Yang Tan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc., Shanghai, 201318, China.
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
31
|
Lim SBH, Wei S, Tan AHM, van Steensel MAM, Lim X. Lrig1-expressing epidermal progenitors require SCD1 to maintain the dermal papilla niche. Sci Rep 2023; 13:4027. [PMID: 36899019 PMCID: PMC10006094 DOI: 10.1038/s41598-023-30411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Niche cells are widely known to regulate stem/progenitor cells in many mammalian tissues. In the hair, dermal papilla niche cells are well accepted to regulate hair stem/progenitor cells. However, how niche cells themselves are maintained is largely unknown. We present evidence implicating hair matrix progenitors and the lipid modifying enzyme, Stearoyl CoA Desaturase 1, in the regulation of the dermal papilla niche during the anagen-catagen transition of the mouse hair cycle. Our data suggest that this takes place via autocrine Wnt signalling and paracrine Hedgehog signalling. To our knowledge, this is the first report demonstrating a potential role for matrix progenitor cells in maintaining the dermal papilla niche.
Collapse
Affiliation(s)
- Sophia Beng Hui Lim
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore
- NUS Graduate School, National University of Singapore, Singapore, 119077, Republic of Singapore
| | - Shang Wei
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - Maurice A M van Steensel
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Xinhong Lim
- Institute of Medical Biology (IMB) / Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building #17-01, Singapore, 308232, Republic of Singapore.
| |
Collapse
|
32
|
Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol 2023; 25:222-234. [PMID: 36717629 PMCID: PMC9931655 DOI: 10.1038/s41556-022-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.
Collapse
|
33
|
Wang S, Hu T, He M, Gu Y, Cao X, Yuan Z, Lv X, Getachew T, Quan K, Sun W. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties. Front Vet Sci 2023; 10:1127501. [PMID: 36923053 PMCID: PMC10009177 DOI: 10.3389/fvets.2023.1127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/β-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/β-catenin agonist and antagonist, we demonstrated that Wnt/β-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China.,"Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
34
|
Song H, Zhao XB, Chu QS, Zhang J, Gao L, Liao XH. Expression dynamics of lymphoid enhancer-binding factor 1 in terminal Schwann cells, dermal papilla, and interfollicular epidermis. Dev Dyn 2022; 252:527-535. [PMID: 36576725 DOI: 10.1002/dvdy.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Transcription factor lymphoid enhancer-binding factor 1 (LEF1) is a downstream mediator of the Wnt/β-catenin signaling pathway. It is expressed in dermal papilla and surrounding cells in the hair follicle, promoting cell proliferation, and differentiation. RESULTS Here, we report that LEF1 is also expressed all through the hair cycle in the terminal Schwann cells (TSCs), a component of the lanceolate complex located at the isthmus. The timing of LEF1 appearance at the isthmus coincides with that of hair follicle innervation. LEF1 is not found at the isthmus in the aberrant hair follicles in nude mice. Instead, LEF1 in TSCs is found in the de novo hair follicles reconstituted on nude mice by stem cells chamber graft assay. Cutaneous denervation experiment demonstrates that the LEF1 expression in TSCs is independent of nerve endings. At last, LEF1 expression in the interfollicular epidermis during the early stage of skin development is significantly suppressed in transgenic mice with T-cell factor 3 (TCF3) overexpression. CONCLUSION We reveal the expression dynamics of LEF1 in skin during development and hair cycle. LEF1 expression in TSCs indicates that the LEF1/Wnt signal might help to establish a niche at the isthmus region for the lanceolate complex, the bulge stem cells and other neighboring cells.
Collapse
Affiliation(s)
- Hongzhi Song
- School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qing-Song Chu
- School of Life Sciences, Shanghai University, Shanghai, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyu Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
35
|
Comparative Analysis of mRNA and miRNA Expression between Dermal Papilla Cells and Hair Matrix Cells of Hair Follicles in Yak. Cells 2022; 11:cells11243985. [PMID: 36552749 PMCID: PMC9776824 DOI: 10.3390/cells11243985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The interaction between the dermal papilla cells (DPCs) and epidermal hair matrix cells (HMCs) of hair follicles (HFs) is crucial for the growth and development of HFs, but the molecular mechanism is complex and remains unclear. MicroRNAs (miRNAs) are the key signaling molecules for cellular communication. In this study, the DPCs and HMCs of yak were isolated and cultured, and the differentially expressed mRNA and miRNA were characterized to analyze the molecular basis of the interaction between DPCs and HMCs during hair follicle (HF) development in yak. The mRNA differential expression and functional enrichment analysis revealed that there were significant differences between DPCs and HMCs, and they showed the molecular functional characteristics of dermal cells and epidermal cells, respectively. Multiple KEGG pathways related to HF development were enriched in the highly expressed genes in DPCs, while the pathways associated with microbiota and immunity were significantly enriched in the highly expressed genes in HMCs. By combining analysis with our previous 10× genomics single-cell transcriptome data, 39 marker genes of DPCs of yak were identified. A total of 123 relatively specifically expressed miRNAs were screened; among these, the miRNAs associated with HF development such as miR-143, miR-214, miR-125b, miR-31, and miR-200 were presented. In conclusion, the large changes in yak DPCs and HMCs for both mRNA and miRNA expression were revealed, and numerous specifically expressed mRNAs and miRNAs in DPCs or HMCs were identified, which may contribute to the interaction and cellular communication between DPCs and HMCs during HF development in yak.
Collapse
|
36
|
Xu K, Yu E, Wu M, Wei P, Yin J. Cells, growth factors and biomaterials used in tissue engineering for hair follicles regeneration. Regen Ther 2022; 21:596-610. [DOI: 10.1016/j.reth.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
|
37
|
Zhao B, Li J, Zhang X, Bao Z, Chen Y, Wu X. Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit. WORLD RABBIT SCIENCE 2022. [DOI: 10.4995/wrs.2022.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Growth and development of hair follicles (HF) is a complex and dynamic process in most mammals. As HF growth and development regulate rabbit wool yield, exploring the role of genes involved in HF growth and development may be relevant. In this study, the coding sequence of the Angora rabbit (Oryctolagus cuniculus) WIF1 gene was cloned. The length of the coding region sequence was found to be 1140 bp, which encodes 379 amino acids. Bioinformatics analysis indicated that the WIF1 protein was unstable, hydrophilic and located in the extracellular region, contained a putative signal peptide and exhibited a high homology in different mammals. Moreover, WIF1 was significantly downregulated in the high wool production in the Angora rabbit group. Overexpression and knockdown studies revealed that WIF1 regulates HF growth and development-related genes and proteins, such as LEF1 and CCND1. WIF1 activated β-catenin/TCF transcriptional activity, promoted cell apoptosis and inhibited cellular proliferation. These results indicate that WIF1 might be important for HF development. This study, therefore, provides a theoretical foundation for investigating WIF1 in HF growth and development.
Collapse
|
38
|
Woo J, Suh W, Sung JH. Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). Int J Mol Sci 2022; 23:ijms23169467. [PMID: 36012732 PMCID: PMC9409131 DOI: 10.3390/ijms23169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.
Collapse
Affiliation(s)
- Jiwon Woo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.S.); (J.-H.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Epi Biotech Co., Ltd., Incheon 21983, Korea
- Correspondence: (W.S.); (J.-H.S.)
| |
Collapse
|
39
|
Wu C, Li J, Xu X, Xu Q, Qin C, Liu G, Wei C, Zhang G, Tian K, Fu X. Effect of the FA2H Gene on cashmere fineness of Jiangnan cashmere goats based on transcriptome sequencing. BMC Genomics 2022; 23:527. [PMID: 35864447 PMCID: PMC9306159 DOI: 10.1186/s12864-022-08763-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cashmere goats are a heterogeneous hairy mammal. The fineness of cashmere can affect its economic value. Therefore, in this study, we used transcriptome sequencing techniques to analyze the gene expression profiles of the skin tissues of cashmere goats with different cashmere fineness. The selected candidate genes were functionally verified with the secondary hair follicle hair papillary cells of cashmere goats. Results We identified 479 DEGs, of which 238 mRNAs were up-regulated in the fine velvet group and 241 mRNA were down-regulated. Based on functional annotation and protein interaction network analysis, we found some genes that may affect the fineness of cashmere, including SOX18, SOX4, WNT5A, IGFBP4, KAP8, KRT36, and FA2H. Using qRT-PCR, Western blot, CCK-8 cell viability detection, EDU cell proliferation detection, and flow cytometry, we found that overexpression of the FA2H gene could promote the proliferation of secondary hair follicle DPCs in cashmere goats. At the same time, we proved that FA2H could regulate the expression levels of the FGF5 and BMP2 genes in DPCs. Conclusion The results of this study provide a useful reference for the genetics and breeding of Jiangnan cashmere goats and goat genome annotation, and provide an experimental basis for improving cashmere quality of the cashmere goat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08763-7.
Collapse
Affiliation(s)
- Cuiling Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Jianying Li
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, 830000, China
| | - Xinming Xu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Xu
- Key Laboratory of Special Environmental Medicine, Xinjiang Military General Hospital, Urumqi, 830000, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Guoping Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
40
|
Sox2 in the dermal papilla regulates hair follicle pigmentation. Cell Rep 2022; 40:111100. [PMID: 35858560 DOI: 10.1016/j.celrep.2022.111100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
Within the hair follicle (HF) niche, dermal papilla (DP) cells are well known for the hair induction capacity; however, DP cell signaling also regulates HF pigmentation. Here we describe how Sox2 in the DP is a key regulator of melanocyte signaling. To study the largely unknown regulatory role the DP has on hair pigmentation, we characterize leptin receptor (Lepr) expression in the skin and as a genetic tool to target the DP. Sox2 ablation in the DP results in a phenotypic switch from eumelanin to pheomelanin. Mechanistically, we describe a temporal upregulation of Agouti and downregulation of Corin, directly by Sox2 in the DP. We also show that bone morphogenic protein (BMP) signaling regulation by Sox2 is responsible for downregulating MC1R, Dct, and Tyr in melanocytes of Sox2 cKO mice. Thus, we demonstrate that Sox2 in the DP regulates not only the choice of hair pigment but also the overall HF pigment production.
Collapse
|
41
|
3D Spheroid Human Dermal Papilla Cell as an Effective Model for the Screening of Hair Growth Promoting Compounds: Examples of Minoxidil and 3,4,5-Tri-O-caffeoylquinic acid (TCQA). Cells 2022; 11:cells11132093. [PMID: 35805177 PMCID: PMC9265566 DOI: 10.3390/cells11132093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Dermal papilla cells (DPCs) are an important element of the hair follicle (HF) niche, widely used as an in vitro model to study hair growth-related research. These cells are usually grown in 2D culture, but this system did not show efficient therapeutic effects on HF regeneration and growth, and key differences were observed between cell activity in vitro and in vivo. Recent studies have showed that DPCs grown in 3D hanging spheroids are more morphologically akin to an intact DP microenvironment. In this current study, global gene molecular analysis showed that the 3D model highly affected cell adhesion molecules and hair growth-related pathways. Furthermore, we compared the expression of signalling molecules and metabolism-associated proteins of DPCs treated with minoxidil (an FDA-approved drug for hair loss treatment) and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (recently found to induce hair growth in vitro and in vivo) in 3D spheroid hanging drops and a 2D monolayer using DNA microarray analysis. Further validations by determining the gene and protein expressions of key signature molecules showed the suitability of this 3D system for enhancing the DPC activity of the hair growth-promoting agents minoxidil and TCQA.
Collapse
|
42
|
He J, Zhao B, Huang X, Fu X, Liu G, Tian Y, Wu C, Mao J, Liu J, Gun S, Tian K. Gene network analysis reveals candidate genes related with the hair follicle development in sheep. BMC Genomics 2022; 23:428. [PMID: 35672687 PMCID: PMC9175362 DOI: 10.1186/s12864-022-08552-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Merino sheep are the most famous fine wool sheep in the world. They have high wool production and excellent wool quality and have attracted worldwide attention. The fleece of the Merino sheep is composed predominantly of wool fibers grown from secondary wool follicles. Therefore, it is necessary to study the development of hair follicles to understand the mechanism of wool production. The hair follicle is a complex biological system involved in a dynamic process governed by gene regulation. The hair follicle development process is very complex and poorly understood. The purpose of our research is to identify candidate genes related to hair follicle development, provide a theoretical molecular breeding basis for the cultivation of fine wool sheep, and provide a reference for the problems of hair loss and alopecia areata that affect human beings. Results We analyzed mRNAs data in skin tissues of 18 Merino sheep at four embryonic days (E65, E85, E105 and E135) and two postnatal days (P7 and P30). G1 to G6 represent hair follicles developmental at six stages (i.e. E65 to P30). We identified 7879 differentially expressed genes (DEGs) and 12623 novel DEGs, revealed different expression patterns of these DEGs at six stages of hair follicle development, and demonstrated their complex interactions. DEGs with stage-specific expression were significantly enriched in epidermal differentiation and development, hair follicle development and hair follicle morphogenesis and were enriched in many pathways related to hair follicle development. The key genes (LAMA5, WNT10A, KRT25, SOSTDC1, ZDHHC21, FZD1, BMP7, LRP4, TGFβ2, TMEM79, SOX10, ITGB4, KRT14, ITGA6, and GLI2) affecting hair follicle morphogenesis were identified by network analysis. Conclusion This study provides a new reference for the molecular basis of hair follicle development and lays a foundation for further improving sheep hair follicle breeding. Candidate genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine wool sheep. These results are a valuable resource for biological investigations of fleece evolution in animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08552-2.
Collapse
Affiliation(s)
- Junmin He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jingyi Mao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jing Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
43
|
Sasaki GH. Clinical Use of Extracellular Vesicles in the Management of Male and Female Pattern Hair Loss: A Preliminary Retrospective IRB Safety and Efficacy Study. Aesthet Surg J Open Forum 2022; 4:ojac045. [PMID: 35923863 PMCID: PMC9342625 DOI: 10.1093/asjof/ojac045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pattern hair loss is a common disorder in female and male subjects that may benefit from the use of cell-free XoFlo (Direct Biologics, LLC, Austin, TX) therapy.
Objectives
To assess the safety, efficacy and satisfaction of a single extracellular vesicle (EV) treatment over 6 months.
Methods
A retrospective open-label study among 22 female and 9 male subjects who demonstrated early stages of alopecia or were in remission from prior medical and surgical treatments. The amount of undiluted or diluted volumes of EV solution used was determined by extent and degree of alopecia. Global photography, SGAIS and IGAIS questionnaires, and trichoscan measurements were compared at baseline and six months in three response categories.
Results
Frequent growth responses were observed: older aged females and younger aged males, shorter history of alopecia; earlier stages of hair loss; larger and undiluted volumes of XoFlo; prior positive responses to medical and surgical treatments; and absence or control of disease factors affecting hair. The benefit of micro-needling to therapy was indeterminate. Global photography, trichoscan for density, follicle diameter, terminal: vellus ratio, and SGAIS/IGAIS satisfaction questionnaires at baseline and six months were useful in assessing clinical efficacy. No significant adverse reactions were observed.
Conclusions
Intradermal injections with varying doses of EVs were safe and effective among indicated alopecic female and male subjects. Findings suggest that the presence of positive factors, absence of conditions known to negatively affect hair growth, and administration of larger volumes of XoFlo may have a significant influence on the use of this new cell-free therapy. FDA-approved biologic, multi-centered IRB/ Investigational New Drug (IND) trials are clearly required to determine its future in the management of hair loss.
Collapse
|
44
|
Feng Z, Gong H, Fu J, Xu X, Song Y, Yan X, Mabrouk I, Zhou Y, Wang Y, Fu X, Sui Y, Liu T, Li C, Liu Z, Tian X, Sun L, Guo K, Sun Y, Hu J. In Ovo Injection of CHIR-99021 Promotes Feather Follicle Development via Modulating the Wnt Signaling Pathway and Transcriptome in Goose Embryos ( Anser cygnoides). Front Physiol 2022; 13:858274. [PMID: 35669574 PMCID: PMC9164139 DOI: 10.3389/fphys.2022.858274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3β. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.
Collapse
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tuoya Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| |
Collapse
|
45
|
Gao L, Chen EQ, Zhong HB, Xie J, Song HZ, Zhao XB, Lin LR, Liu Q, Wang S, Wu WY, Zhao RC, Liao XH. Large-scale isolation of functional dermal papilla cells using novel surface marker LEPR. Cytometry A 2022; 101:675-681. [PMID: 35524584 DOI: 10.1002/cyto.a.24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Dermal papilla (DP) cells regulate hair follicle epithelial cells and melanocytes by secreting functional factors, playing a key role in hair follicle morphogenesis and hair growth. DP cells can reconstitute new hair follicles and induce hair regeneration, providing a potential therapeutic strategy for treating hair loss. However, current methods for isolating DP cells are either inefficient (physical microdissection) or only applied to genetically labeled mice. We systematically screened for the surface proteins specifically expressed in skin DP using mRNA expression databases. We identified two antibodies against receptors LEPR and SCARA5 which could specifically label and isolate DP cells by flow cytometry from mice back skin at the growth phase. The sorted LEPR+ cells maintained the DP characteristics after culturing in vitro, expressing DP marker alkaline phosphatase and functional factors including RSPO1/2 and EDN3, the three major DP secretory factors that regulate hair follicle epithelial cells and melanocytes. Furthermore, the low-passage LEPR+ DP cells could reconstitute hair follicles on nude mice using chamber graft assay when combined with epithelial stem cells. The method of isolating functional DP cells we established here lays a solid foundation for developing DP cell-based therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Eve Qian Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hong-Bing Zhong
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Xie
- Department of Dermatology, the Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, China
| | - Hong-Zhi Song
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin-Ran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wen-Yu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
46
|
Mao MQ, Jing J, Miao YJ, Lv ZF. Epithelial-Mesenchymal Interaction in Hair Regeneration and Skin Wound Healing. Front Med (Lausanne) 2022; 9:863786. [PMID: 35492363 PMCID: PMC9048199 DOI: 10.3389/fmed.2022.863786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Interactions between epithelial and mesenchymal cells influence hair follicles (HFs) during embryonic development and skin regeneration following injury. Exchanging soluble molecules, altering key pathways, and extracellular matrix signal transduction are all part of the interplay between epithelial and mesenchymal cells. In brief, the mesenchyme contains dermal papilla cells, while the hair matrix cells and outer root sheath represent the epithelial cells. This study summarizes typical epithelial–mesenchymal signaling molecules and extracellular components under the control of follicular stem cells, aiming to broaden our current understanding of epithelial–mesenchymal interaction mechanisms in HF regeneration and skin wound healing.
Collapse
|
47
|
Yao F, Zhao B, Hu S, Bai S, Jin R, Zhang C, Chen Y, Wu X. miR-129-5p Participates in Hair Follicle Growth by Targeting HOXC13 in Rabbit. Genes (Basel) 2022; 13:679. [PMID: 35456485 PMCID: PMC9024705 DOI: 10.3390/genes13040679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Mammalian hair formation is critically determined by the growth of hair follicles (HF). MiRNAs are crucial in the periodic development of hair follicles; they maintain epidermal homeostasis by targeting genes and influencing the activity of signaling pathways and related regulators. Our study discovered miR-129-5p to be overexpressed in the skin of Angora rabbits during catagen, and was negatively correlated with HOXC13 expression (Pearson’s R = −0.313, p < 0.05). The dual-Luciferase reporter gene detection system and Western blotting confirmed that miR-129-5p targeted HOXC13. In addition, miR-129-5p overexpression was found to significantly inhibit the expression of hair follicle development-related genes (HFDRGs), such as BCL2, WNT2, CCND1, and LEF1 (p < 0.01), and promoted the expression of SFRP2, TGF-β1, and FGF2 (p < 0.01), which was the same as the knockdown of HOXC13. In contrast, the knockout of miR-129-5p was the opposite, and it demonstrated similar results to the overexpression of HOXC13. CCK8 and flow cytometry demonstrated that miR-129-5p mimics significantly promoted the apoptosis of dermal papilla cells (DPCs) and inhibited proliferation (p < 0.01), while the inhibitor was found to reduce the apoptosis of DPCs and promote proliferation (p < 0.01). These results showed that miR-129-5p can participate in the periodic development of HF by targeting HOXC13, and it can induce apoptosis and inhibit proliferation of DPCs. These results will help to understand the role and mechanism of miR-129-5p in the periodic development of HF, and will provide support for subsequent studies, not only providing a theoretical basis for genetically improving the quality of hair in animals in the future, but also a new theory and method for diagnosing and treating hair loss in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (F.Y.); (B.Z.); (S.H.); (S.B.); (R.J.); (C.Z.); (Y.C.)
| |
Collapse
|
48
|
Direct Reprograming of Mouse Fibroblasts into Dermal Papilla Cells via Small Molecules. Int J Mol Sci 2022; 23:ijms23084213. [PMID: 35457029 PMCID: PMC9030401 DOI: 10.3390/ijms23084213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
The reprogramming of somatic fibroblasts into alternative cell linages could provide a promising source of cells for regenerative medicine and cell therapy. However, the direct conversion of fibroblasts into other functional cell types is still challenging. In this study, we show that dermal-papilla-cell-like cells (DPC-LCs) can be generated by treating fibroblasts, including L929 mouse fibroblast cell lines and somatic mouse fibroblasts, with small molecules. Based on alkaline phosphatase activity and other molecular markers, different compounds or their combinations are needed for converting the two different fibroblasts into DPC-LCs. Notably, we found that TTNPB alone can efficiently convert primary adult mouse fibroblasts into DPC-LCs. DPC-LCs generated from mouse fibroblasts showed a stronger hair-inducing capacity. Transcriptome analysis reveals that expression of genes associated with a hair-inducing capacity are increased in DPC-LCs. This pharmacological approach to generating functional dermal papilla cells may have many important implications for hair follicle regeneration and hair loss therapy.
Collapse
|
49
|
Wang J, Wu X, Kang Y, Zhang L, Niu H, Qu J, Wang Y, Ji D, Li Y. Integrative analysis of circRNAs from Yangtze River Delta white goat neck skin tissue by high-throughput sequencing (circRNA-seq). Anim Genet 2022; 53:405-415. [PMID: 35383992 DOI: 10.1111/age.13198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 01/22/2023]
Abstract
The Yangtze River Delta white goat is a unique goat species that can produce superior-quality brush hair. The formation of this brush hair is controlled by a series of critical genes and related signaling pathways. Circular RNAs (circRNAs), are ubiquitous endogenous non-coding RNAs that regulate many biological and physiological processes in mammals. However, little is known about the potential regulatory role of circRNAs on superior-quality brush hair formation in Yangtze River Delta white goat. In this study, high-throughput sequencing technology was used to only detect circRNAs in the neck skin tissue of normal-quality goats (NHQs) and superior-quality goats (HQs). A total of 61 803 circRNAs were identified and 32 of them were differentially expressed in the NHQ group vs. the HQ group. Functional enrichment analysis showed that the source gene of differentially expressed circRNAs (DE-circRNAs) was enriched mostly in platelet activation and the focal adhesion signal pathway. Action mechanism analysis revealed that DE-circRNAs could sponge to many identified miRNAs, including miR-31, miR-125b, miR-let-7a and miR-149-5p, which have important roles in goat hair follicle stem cell growth, hair follicle development and morphogenesis. Altogether, our findings provide a valuable basis for studying circRNAs involved in superior-quality brush hair traits and meanwhile advance our understanding of circRNA complex regulation mechanisms in Yangtze River Delta white goat skin hair follicle development.
Collapse
Affiliation(s)
- Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yan Kang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haoyuan Niu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
50
|
Llamas-Molina JM, Carrero-Castaño A, Ruiz-Villaverde R, Campos A. Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review. Life (Basel) 2022; 12:117. [PMID: 35054510 PMCID: PMC8779163 DOI: 10.3390/life12010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/26/2022] Open
Abstract
Androgenetic alopecia (AGA) is an androgen-dependent process and represents the most frequent non-scarring alopecia. Treatments for AGA do not always achieve a satisfactory result for the patient, and sometimes cause side effects that lead to discontinuation of treatment. AGA therapeutics currently includes topical and oral drugs, as well as follicular unit micro-transplantation techniques. Tissue engineering (TE) is postulated as one of the possible future solutions to the problem and aims to develop fully functional hair follicles that maintain their cyclic rhythm in a physiological manner. However, despite its great potential, reconstitution of fully functional hair follicles is still a challenge to overcome and the knowledge gained of the key processes in hair follicle morphogenesis and biology has not yet been translated into effective replacement therapies in clinical practice. To achieve this, it is necessary to research and develop new approaches, techniques and biomaterials. In this review, present and emerging hair follicle bioengineering strategies are evaluated. The current problems of these bioengineering techniques are discussed, as well as the advantages and disadvantages, and the future prospects for the field of TE and successful hair follicle regeneration.
Collapse
Affiliation(s)
| | | | - Ricardo Ruiz-Villaverde
- Department of Dermatology, Hospital Universitario San Cecilio, 18016 Granada, Spain;
- Instituto Biosanitario de Granada, Ibs, 18016 Granada, Spain;
| | - Antonio Campos
- Instituto Biosanitario de Granada, Ibs, 18016 Granada, Spain;
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|