1
|
Toya H, Okamatsu-Ogura Y, Yokoi S, Kurihara M, Mito M, Iwasaki S, Hirose T, Nakagawa S. The essential role of architectural noncoding RNA Neat1 in cold-induced beige adipocyte differentiation in mice. RNA (NEW YORK, N.Y.) 2024; 30:1011-1024. [PMID: 38692841 PMCID: PMC11251523 DOI: 10.1261/rna.079972.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Neat1 is an architectural RNA that provides the structural basis for nuclear bodies known as paraspeckles. Although the assembly processes by which Neat1 organizes paraspeckle components are well-documented, the physiological functions of Neat1 are not yet fully understood. This is partly because Neat1 knockout (KO) mice, lacking paraspeckles, do not exhibit overt phenotypes under normal laboratory conditions. During our search for conditions that elicit clear phenotypes in Neat1 KO mice, we discovered that the differentiation of beige adipocytes-inducible thermogenic cells that emerge upon cold exposure-is severely impaired in these mutant mice. Neat1_2, the architectural isoform of Neat1, is transiently upregulated during the early stages of beige adipocyte differentiation, coinciding with increased paraspeckle formation. Genes with altered expression during beige adipocyte differentiation typically cluster at specific chromosomal locations, some of which move closer to paraspeckles upon cold exposure. These observations suggest that paraspeckles might coordinate the regulation of these gene clusters by controlling the activity of certain transcriptional condensates that coregulate multiple genes. We propose that our findings highlight a potential role for Neat1 and paraspeckles in modulating chromosomal organization and gene expression, potentially crucial processes for the differentiation of beige adipocytes.
Collapse
Affiliation(s)
- Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
4
|
Allegra A, Caserta S, Mirabile G, Gangemi S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023; 12:2392. [PMID: 37830606 PMCID: PMC10572300 DOI: 10.3390/cells12192392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
5
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
6
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
7
|
Mejia-Ramirez E, Geiger H, Florian MC. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum Mol Genet 2021; 29:R248-R254. [PMID: 32821941 DOI: 10.1093/hmg/ddaa189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Changes of polarity in somatic stem cells upon aging or disease lead to a functional deterioration of stem cells and consequently loss of tissue homeostasis, likely due to changes in the mode (symmetry versus asymmetry) of stem cell divisions. Changes in polarity of epigenetic markers (or 'epi-polarity') in stem cells, which are linked to alterations in chromatin architecture, might explain how a decline in the frequency of epipolar stem cells can have a long-lasting impact on the function of especially aging stem cells. The drift in epipolarity might represent a novel therapeutic target to improve stem cell function upon aging or disease. Here we review basic biological principles of epigenetic polarity, with a special focus on epipolarity and aging of hematopoietic stem cells.
Collapse
Affiliation(s)
- Eva Mejia-Ramirez
- Program of Regenerative Medicine, IDIBELL and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Av. Granvia 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, James-Franck-Ring 11c, 89081, Ulm, Germany
| | - M Carolina Florian
- Program of Regenerative Medicine, IDIBELL and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Av. Granvia 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Molecular Medicine, University of Ulm, James-Franck-Ring 11c, 89081, Ulm, Germany
| |
Collapse
|
8
|
Perry BW, Schield DR, Adams RH, Castoe TA. Microchromosomes Exhibit Distinct Features of Vertebrate Chromosome Structure and Function with Underappreciated Ramifications for Genome Evolution. Mol Biol Evol 2021; 38:904-910. [PMID: 32986808 PMCID: PMC7947875 DOI: 10.1093/molbev/msaa253] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent studies have revealed that microchromosomes contain a high density of genes and possess other distinct characteristics compared with macrochromosomes. Whether distinctive characteristics of microchromosomes extend to features of genome structure and organization, however, remains an open question. Here, we analyze Hi-C sequencing data from multiple vertebrate lineages and show that microchromosomes exhibit consistently high degrees of interchromosomal interaction (particularly with other microchromosomes), appear to be colocalized to a common central nuclear territory, and are comprised of a higher proportion of open chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity in vertebrate genome structure and function, and raise important questions regarding the evolutionary origins and ramifications of microchromosomes and the genes that they house.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
9
|
Guerrero-Martínez JA, Ceballos-Chávez M, Koehler F, Peiró S, Reyes JC. TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun 2020; 11:6196. [PMID: 33273453 PMCID: PMC7713251 DOI: 10.1038/s41467-020-19877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The Transforming Growth Factor-β (TGFβ) signaling pathway controls transcription by regulating enhancer activity. How TGFβ-regulated enhancers are selected and what chromatin changes are associated with TGFβ-dependent enhancers regulation are still unclear. Here we report that TGFβ treatment triggers fast and widespread increase in chromatin accessibility in about 80% of the enhancers of normal mouse mammary epithelial-gland cells, irrespective of whether they are activated, repressed or not regulated by TGFβ. This enhancer opening depends on both the canonical and non-canonical TGFβ pathways. Most TGFβ-regulated genes are located around enhancers regulated in the same way, often creating domains of several co-regulated genes that we term TGFβ regulatory domains (TRD). CRISPR-mediated inactivation of enhancers within TRDs impairs TGFβ-dependent regulation of all co-regulated genes, demonstrating that enhancer targeting is more promiscuous than previously anticipated. The area of TRD influence is restricted by topologically associating domains (TADs) borders, causing a bias towards co-regulation within TADs.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - María Ceballos-Chávez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - Florian Koehler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
10
|
Golczyk H, Limanówka A, Uchman-Książek A. Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation. Chromosoma 2020; 129:227-242. [PMID: 32681184 PMCID: PMC7666280 DOI: 10.1007/s00412-020-00740-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
A spectacular but poorly recognized nuclear repatterning is the association of heterochromatic domains during interphase. Using base-specific fluorescence and extended-depth-of-focus imaging, we show that the association of heterochromatic pericentromeres composed of AT- and GC-rich chromatin occurs on a large scale in cycling meiotic and somatic cells and during development in ring- and bivalent-forming Tradescantia spathacea (section Rhoeo) varieties. The mean number of pericentromere AT-rich domains per root meristem nucleus was ca. half the expected diploid number in both varieties, suggesting chromosome pairing via (peri)centromeric regions. Indeed, regular pairing of AT-rich domains was observed. The AT- and GC-rich associations in differentiated cells contributed to a significant reduction of the mean number of the corresponding foci per nucleus in relation to root meristem. Within the first 10 mm of the root, the pericentromere attraction was in progress, as if it was an active process and involved both AT- and GC-rich associations. Complying with Rabl arrangement, the pericentromeres preferentially located on one nuclear pole, clustered into diverse configurations. Among them, a strikingly regular one with 5-7 ring-arranged pericentromeric AT-rich domains may be potentially engaged in chromosome positioning during mitosis. The fluorescent pattern of pachytene meiocytes and somatic nuclei suggests the existence of a highly prescribed ring/chain type of chromocenter architecture with side-by-side arranged pericentromeric regions. The dynamics of pericentromere associations together with their non-random location within nuclei was compared with nuclear architecture in other organisms, including the widely explored Arabidopsis model.
Collapse
Affiliation(s)
- Hieronim Golczyk
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708, Lublin, Poland.
| | - Arleta Limanówka
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Grodzka 52, 31-044, Cracow, Poland
| | - Anna Uchman-Książek
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Grodzka 52, 31-044, Cracow, Poland
| |
Collapse
|
11
|
Blood disease-causing and -suppressing transcriptional enhancers: general principles and GATA2 mechanisms. Blood Adv 2020; 3:2045-2056. [PMID: 31289032 DOI: 10.1182/bloodadvances.2019000378] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Intensive scrutiny of human genomes has unveiled considerable genetic variation in coding and noncoding regions. In cancers, including those of the hematopoietic system, genomic instability amplifies the complexity and functional consequences of variation. Although elucidating how variation impacts the protein-coding sequence is highly tractable, deciphering the functional consequences of variation in noncoding regions (genome reading), including potential transcriptional-regulatory sequences, remains challenging. A crux of this problem is the sheer abundance of gene-regulatory sequence motifs (cis elements) mediating protein-DNA interactions that are intermixed in the genome with thousands of look-alike sequences lacking the capacity to mediate functional interactions with proteins in vivo. Furthermore, transcriptional enhancers harbor clustered cis elements, and how altering a single cis element within a cluster impacts enhancer function is unpredictable. Strategies to discover functional enhancers have been innovated, and human genetics can provide vital clues to achieve this goal. Germline or acquired mutations in functionally critical (essential) enhancers, for example at the GATA2 locus encoding a master regulator of hematopoiesis, have been linked to human pathologies. Given the human interindividual genetic variation and complex genetic landscapes of hematologic malignancies, enhancer corruption, creation, and expropriation by new genes may not be exceedingly rare mechanisms underlying disease predisposition and etiology. Paradigms arising from dissecting essential enhancer mechanisms can guide genome-reading strategies to advance fundamental knowledge and precision medicine applications. In this review, we provide our perspective of general principles governing the function of blood disease-linked enhancers and GATA2-centric mechanisms.
Collapse
|
12
|
McColloch A, Liebman C, Liu H, Cho M. Alterted Adipogenesis of Human Mesenchymal Stem Cells by Photobiomodulation Using 1064 nm Laser Light. Lasers Surg Med 2020; 53:263-274. [PMID: 32495397 DOI: 10.1002/lsm.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Photobiomodulation (PBM) describes the influence of light irradiation on biological tissues. Laser light in the near-infrared (NIR) spectrum has been shown to mitigate pain, reduce inflammation, and promote wound healing. The cellular mechanism that mediates PBM's effects is generally accepted to be at the site of the mitochondria, leading to an increased flux through the electron transport chain and adenosine triphosphate (ATP) production. Moreover, PBM has been demonstrated to reduce oxidative stress through an increased production of reactive oxygen species (ROS)-sequestering enzymes. The aim of the study is to determine whether these PBM-induced effects expedite or interfere with the intended stem cell differentiation to the adipogenic lineage. STUDY DESIGN/MATERIALS AND METHODS To determine the effects of 1064 nm laser irradiation (fluence of 8.8-26.4 J/cm2 ) on human mesenchymal stem cells (hMSCs) undergoing adipogenic differentiation, the ATP and ROS levels, and adipogenic markers were quantitatively measured. RESULTS At a low fluence (8.8 J/cm2 ) the ATP increase was essentially negligible, whereas a higher fluence induced a significant increase. In the laser-stimulated cells, PBM over time decreased the ROS level compared with the non-treated control group and significantly reduced the extent of adipogenesis. A reduction in the ROS level was correlated with a diminished lipid accumulation, reduced production of adipose-specific genetic markers, and delayed the chemically intended adipogenesis. CONCLUSION We characterized the use of NIR light exposure to modulate adipogenesis. Both the ATP and ROS levels in hMSCs responded to different energy densities. The current study is expected to contribute significantly to the growing field of PBM as well as stem cell tissue engineering by demonstrating the wavelength-dependent responses of hMSC differentiation. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew McColloch
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| | - Caleb Liebman
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| | - Michael Cho
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
13
|
GPSeq reveals the radial organization of chromatin in the cell nucleus. Nat Biotechnol 2020; 38:1184-1193. [PMID: 32451505 PMCID: PMC7610410 DOI: 10.1038/s41587-020-0519-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
With the exception of lamina-associated domains, the radial organization of chromatin in mammalian cells remains largely unexplored. Here, we describe genomic loci positioning by sequencing (GPSeq), a genome-wide method for inferring distances to the nuclear lamina all along the nuclear radius. GPSeq relies on gradual restriction digestion of chromatin from the nuclear lamina towards the nucleus center, followed by sequencing of the generated cut sites. Using GPSeq, we mapped the radial organization of the human genome at 100 kb resolution, which revealed radial patterns of genomic and epigenomic features, gene expression, as well as A/B subcompartments. By combining radial information with chromosome contact frequencies measured by Hi-C, we substantially improved the accuracy of whole-genome structure modeling. Finally, we charted the radial topography of DNA double-strand breaks, germline variants and cancer mutations, and found that they have distinctive radial arrangements in A/B subcompartments. We conclude that GPSeq can reveal fundamental aspects of genome architecture.
Collapse
|
14
|
Tian D, Zhang R, Zhang Y, Zhu X, Ma J. MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome. Genome Res 2020; 30:227-238. [PMID: 31907193 PMCID: PMC7050518 DOI: 10.1101/gr.250316.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof of principle to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that is in spatial contact more frequently than expected and that is regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm, MOCHI, to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and show distinct functional properties. Through integrative analysis, this work shows the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.
Collapse
Affiliation(s)
- Dechao Tian
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Ruochi Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xiaopeng Zhu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
15
|
Acute Myeloid Leukemia: Aging and Epigenetics. Cancers (Basel) 2019; 12:cancers12010103. [PMID: 31906064 PMCID: PMC7017261 DOI: 10.3390/cancers12010103] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological disorder mainly affecting people of older age. AML initiation is primarily attributed to mutations in crucial cellular regulators such as epigenetic factors, transcription factors, and signaling genes. AML’s aggressiveness and responsiveness to treatment depends on the specific cell type where leukemia first arose. Aged hematopoietic cells are often genetically and/or epigenetically altered and, therefore, present with a completely different cellular context for AML development compared to young cells. In this review, we summarize key aspects of AML development, and we focus, in particular, on the contribution of cellular aging to leukemogenesis and on current treatment options for elderly AML patients. Hematological disorders and leukemia grow exponentially with age. So far, with conventional induction therapy, many elderly patients experience a very poor overall survival rate requiring substantial social and medical costs during the relatively few remaining months of life. The global population’s age is increasing rapidly without an acceptable equal growth in therapeutic management of AML in the elderly; this is in sharp contrast to the increase in successful therapies for leukemia in younger patients. Therefore, a focus on the understanding of the biology of aging in the hematopoietic system, the development of appropriate research models, and new therapeutic approaches are urged.
Collapse
|
16
|
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci Rep 2019; 9:16381. [PMID: 31705037 PMCID: PMC6842088 DOI: 10.1038/s41598-019-52926-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells undergo drastic morphological alterations during differentiation. While extensive studies have been performed to examine the cytoskeletal remodeling, there is a growing interest to determine the morphological, structural and functional changes of the nucleus. The current study is therefore aimed at quantifying the extent of remodeling of the nuclear morphology of human mesenchymal stem cells during biochemically-induced adipogenic differentiation. Results show the size of nuclei decreased exponentially over time as the lipid accumulation is up-regulated. Increases in the lipid accumulation appear to lag the nuclear reorganization, suggesting the nuclear deformation is a prerequisite to adipocyte maturation. Furthermore, the lamin A/C expression was increased and redistributed to the nuclear periphery along with a subsequent increase in the nuclear aspect ratio. To further assess the role of the nucleus, a nuclear morphology with a high aspect ratio was achieved using microcontact-printed substrate. The cells with an elongated nuclear shape did not efficiently undergo adipogenesis, suggesting the cellular and nuclear processes associated with stem cell differentiation at the early stage of adipogenesis cause a change in the nuclear morphology and cannot be abrogated by the morphological cues. In addition, a novel computational biomechanical model was generated to simulate the nuclear shape change during differentiation and predict the forces acting upon the nucleus. This effort led to the development of computational scaling approach to simulate the experimentally observed adipogenic differentiation processes over 15 days in less than 1.5 hours.
Collapse
Affiliation(s)
- Andrew McColloch
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Manoochehr Rabiei
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Parisa Rabbani
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Alan Bowling
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Michael Cho
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA.
| |
Collapse
|
17
|
Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1458. [PMID: 31218817 DOI: 10.1002/wsbm.1458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
18
|
Laskowski AI, Neems DS, Laster K, Strojny-Okyere C, Rice EL, Konieczna IM, Voss JH, Mathew JM, Leventhal JR, Ramsey-Goldman R, Smith ED, Kosak ST. Varying levels of X chromosome coalescence in female somatic cells alters the balance of X-linked dosage compensation and is implicated in female-dominant systemic lupus erythematosus. Sci Rep 2019; 9:8011. [PMID: 31142749 PMCID: PMC6541617 DOI: 10.1038/s41598-019-44229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
The three-dimensional organization of the genome in mammalian interphase nuclei is intrinsically linked to the regulation of gene expression. Whole chromosome territories and their encoded gene loci occupy preferential positions within the nucleus that changes according to the expression profile of a given cell lineage or stage. To further illuminate the relationship between chromosome organization, epigenetic environment, and gene expression, here we examine the functional organization of chromosome X and corresponding X-linked genes in a variety of healthy human and disease state X diploid (XX) cells. We observe high frequencies of homologous chromosome X colocalization (or coalescence), typically associated with initiation of X-chromosome inactivation, occurring in XX cells outside of early embryogenesis. Moreover, during chromosome X coalescence significant changes in Xist, H3K27me3, and X-linked gene expression occur, suggesting the potential exchange of gene regulatory information between the active and inactive X chromosomes. We also observe significant differences in chromosome X coalescence in disease-implicated lymphocytes isolated from systemic lupus erythematosus (SLE) patients compared to healthy controls. These results demonstrate that X chromosomes can functionally interact outside of embryogenesis when X inactivation is initiated and suggest a potential gene regulatory mechanism aberration underlying the increased frequency of autoimmunity in XX individuals.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daniel S Neems
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle Laster
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chelsee Strojny-Okyere
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellen L Rice
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Iwona M Konieczna
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica H Voss
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - James M Mathew
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalind Ramsey-Goldman
- Deparment of Medicine, Rheumatology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Erica D Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, Vollmer A, Markaki Y, Leonhardt H, Buske C, Lipka DB, Plass C, Zheng Y, Mulaw MA, Geiger H, Florian MC. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol 2018; 19:189. [PMID: 30404662 PMCID: PMC6223039 DOI: 10.1186/s13059-018-1557-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The decline of hematopoietic stem cell (HSC) function upon aging contributes to aging-associated immune remodeling and leukemia pathogenesis. Aged HSCs show changes to their epigenome, such as alterations in DNA methylation and histone methylation and acetylation landscapes. We previously showed a correlation between high Cdc42 activity in aged HSCs and the loss of intranuclear epigenetic polarity, or epipolarity, as indicated by the specific distribution of H4K16ac. RESULTS Here, we show that not all histone modifications display a polar localization and that a reduction in H4K16ac amount and loss of epipolarity are specific to aged HSCs. Increasing the levels of H4K16ac is not sufficient to restore polarity in aged HSCs and the restoration of HSC function. The changes in H4K16ac upon aging and rejuvenation of HSCs are correlated with a change in chromosome 11 architecture and alterations in nuclear volume and shape. Surprisingly, by taking advantage of knockout mouse models, we demonstrate that increased Cdc42 activity levels correlate with the repression of the nuclear envelope protein LaminA/C, which controls chromosome 11 distribution, H4K16ac polarity, and nuclear volume and shape in aged HSCs. CONCLUSIONS Collectively, our data show that chromatin architecture changes in aged stem cells are reversible by decreasing the levels of Cdc42 activity, revealing an unanticipated way to pharmacologically target LaminA/C expression and revert alterations of the epigenetic architecture in aged HSCs.
Collapse
Affiliation(s)
- Ani Grigoryan
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Novella Guidi
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Katharina Senger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, 07743, Jena, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
| | - Yolanda Markaki
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniel B Lipka
- Regulation of Cellular Differentiation Group, INF280, 69120, Heidelberg, Germany
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF280, 69120, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF280, 69120, Heidelberg, Germany
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Albert-Einstein-Allee 11c, 89081, Ulm, Germany.
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
20
|
Soler-Oliva ME, Guerrero-Martínez JA, Bachetti V, Reyes JC. Analysis of the relationship between coexpression domains and chromatin 3D organization. PLoS Comput Biol 2017; 13:e1005708. [PMID: 28902867 PMCID: PMC5612749 DOI: 10.1371/journal.pcbi.1005708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
Gene order is not random in eukaryotic chromosomes, and co-regulated genes tend to be clustered. The mechanisms that determine co-regulation of large regions of the genome and its connection with chromatin three-dimensional (3D) organization are still unclear however. Here we have adapted a recently described method for identifying chromatin topologically associating domains (TADs) to identify coexpression domains (which we term “CODs”). Using human normal breast and breast cancer RNA-seq data, we have identified approximately 500 CODs. CODs in the normal and breast cancer genomes share similar characteristics but differ in their gene composition. COD genes have a greater tendency to be coexpressed with genes that reside in other CODs than with non-COD genes. Such inter-COD coexpression is maintained over large chromosomal distances in the normal genome but is partially lost in the cancer genome. Analyzing the relationship between CODs and chromatin 3D organization using Hi-C contact data, we find that CODs do not correspond to TADs. In fact, intra-TAD gene coexpression is the same as random for most chromosomes. However, the contact profile is similar between gene pairs that reside either in the same COD or in coexpressed CODs. These data indicate that co-regulated genes in the genome present similar patterns of contacts irrespective of the frequency of physical chromatin contacts between them. Prokaryotic operons normally comprise functionally related genes whose expression is coordinated. Even though operons do not exist in most eukaryotes, results from the last fifteen years indicate that gene order is nonetheless not random in eukaryotes, and that coexpressed genes tend to be grouped in the genome. We identify here about 500 coexpression domain (CODs) in normal breast tissue. Interestingly, we find that genes within CODs often are coexpressed with other genes that reside in other CODs placed very far away in the same chromosome, which is indicative of long-range inter-COD co-regulation. Furthermore, we find that coexpressed genes within CODs or within co-regulated CODs display similar three-dimensional chromatin contacts, suggesting a spatial coordination of CODs.
Collapse
Affiliation(s)
- María E. Soler-Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - José A. Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - Valentina Bachetti
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
| | - José C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Sevilla, Spain
- * E-mail:
| |
Collapse
|
21
|
Poterlowicz K, Yarker JL, Malashchuk I, Lajoie BR, Mardaryev AN, Gdula MR, Sharov AA, Kohwi-Shigematsu T, Botchkarev VA, Fessing MY. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells. PLoS Genet 2017; 13:e1006966. [PMID: 28863138 PMCID: PMC5599062 DOI: 10.1371/journal.pgen.1006966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.
Collapse
Affiliation(s)
- Krzysztof Poterlowicz
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Joanne L. Yarker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Igor Malashchuk
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Brian R. Lajoie
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrei N. Mardaryev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Michal R. Gdula
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Andrey A. Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Terumi Kohwi-Shigematsu
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Vladimir A. Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (MYF); , (VAB)
| | - Michael Y. Fessing
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- * E-mail: (MYF); , (VAB)
| |
Collapse
|
22
|
Marco E, Meuleman W, Huang J, Glass K, Pinello L, Wang J, Kellis M, Yuan GC. Multi-scale chromatin state annotation using a hierarchical hidden Markov model. Nat Commun 2017; 8:15011. [PMID: 28387224 PMCID: PMC5385569 DOI: 10.1038/ncomms15011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation. The impact of chromatin structure on gene expression makes it integral to our understanding of developmental and disease processes. Here, the authors introduce a hierarchical hidden Markov model to systematically annotate chromatin states at multiple length scales, and demonstrate its utility for the elucidation of the role of chromatin structure in gene expression.
Collapse
Affiliation(s)
- Eugenio Marco
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Wouter Meuleman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Jialiang Huang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Jianrong Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| |
Collapse
|
23
|
The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer. Biomolecules 2017; 7:biom7010015. [PMID: 28216563 PMCID: PMC5372727 DOI: 10.3390/biom7010015] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S-adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.
Collapse
|
24
|
Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 2016; 539:452-455. [PMID: 27783602 DOI: 10.1038/nature20149] [Citation(s) in RCA: 899] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022]
Abstract
Mammalian genomes are pervasively transcribed to produce thousands of long non-coding RNAs (lncRNAs). A few of these lncRNAs have been shown to recruit regulatory complexes through RNA-protein interactions to influence the expression of nearby genes, and it has been suggested that many other lncRNAs can also act as local regulators. Such local functions could explain the observation that lncRNA expression is often correlated with the expression of nearby genes. However, these correlations have been challenging to dissect and could alternatively result from processes that are not mediated by the lncRNA transcripts themselves. For example, some gene promoters have been proposed to have dual functions as enhancers, and the process of transcription itself may contribute to gene regulation by recruiting activating factors or remodelling nucleosomes. Here we use genetic manipulation in mouse cell lines to dissect 12 genomic loci that produce lncRNAs and find that 5 of these loci influence the expression of a neighbouring gene in cis. Notably, none of these effects requires the specific lncRNA transcripts themselves and instead involves general processes associated with their production, including enhancer-like activity of gene promoters, the process of transcription, and the splicing of the transcript. Furthermore, such effects are not limited to lncRNA loci: we find that four out of six protein-coding loci also influence the expression of a neighbour. These results demonstrate that cross-talk among neighbouring genes is a prevalent phenomenon that can involve multiple mechanisms and cis-regulatory signals, including a role for RNA splice sites. These mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs and broadly contribute to the regulation of both coding and non-coding genes.
Collapse
|
25
|
Robaszkiewicz E, Idziak-Helmcke D, Tkacz MA, Chrominski K, Hasterok R. The arrangement of Brachypodium distachyon chromosomes in interphase nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5571-5583. [PMID: 27588463 PMCID: PMC5049400 DOI: 10.1093/jxb/erw325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biological processes, such as DNA replication, transcription, and repair. However, detailed data about the CT arrangement in monocotyledonous plants are scarce. In this study, chromosome painting was used to analyse the distribution and associations of individual chromosomes in the 3-D preserved nuclei of Brachypodium distachyon root cells in order to determine the factors that may have an impact on the homologous CT arrangement. It was shown that the frequency of CT association is linked to the steric constraints imposed by the limited space within the nucleus and may depend on chromosome size and morphology as well as on the nuclear shape. Furthermore, in order to assess whether the distribution of interphase chromosomes is random or is subject to certain patterns, a comparison between the experimental data and the results of a computer simulation (ChroTeMo), which was based on a fully probabilistic distribution of the CTs, was performed. This comparison revealed that homologous chromosome arm CTs associate more often than if they were randomly arranged inside the interphase nucleus.
Collapse
Affiliation(s)
- Ewa Robaszkiewicz
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena A Tkacz
- Institute of Computer Science, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Kornel Chrominski
- Institute of Technology and Mechatronics, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
26
|
Pueschel R, Coraggio F, Meister P. From single genes to entire genomes: the search for a function of nuclear organization. Development 2016; 143:910-23. [PMID: 26980791 DOI: 10.1242/dev.129007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of different domains within the nucleus has been clear from the time, in the late 1920s, that heterochromatin and euchromatin were discovered. The observation that heterochromatin is less transcribed than euchromatin suggested that microscopically identifiable structures might correspond to functionally different domains of the nucleus. Until 15 years ago, studies linking gene expression and subnuclear localization were limited to a few genes. As we discuss in this Review, new genome-wide techniques have now radically changed the way nuclear organization is analyzed. These have provided a much more detailed view of functional nuclear architecture, leading to the emergence of a number of new paradigms of chromatin folding and how this folding evolves during development.
Collapse
Affiliation(s)
- Ringo Pueschel
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Francesca Coraggio
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
27
|
Gonzalez-Sandoval A, Gasser SM. Mechanism of chromatin segregation to the nuclear periphery in C. elegans embryos. WORM 2016; 5:e1190900. [PMID: 27695653 DOI: 10.1080/21624054.2016.1190900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
In eukaryotic organisms, gene regulation occurs in the context of chromatin. In the interphase nucleus, euchromatin and heterochromatin occupy distinct space during cell differentiation, with heterochromatin becoming enriched at the nuclear and nucleolar peripheries. This organization is thought to fine-tune gene expression. To elucidate the mechanisms that govern this level of genome organization, screens were carried out in C. elegans which monitored the loss of heterochromatin sequestration at the nuclear periphery. This led to the identification of a novel chromodomain protein, CEC-4 (Caenorhabditis elegans chromodomain protein 4) that mediates the anchoring of H3K9 methylation-bearing chromatin at the nuclear periphery in early to mid-stage embryos. Surprisingly, the loss of CEC-4 does not derepress genes found in heterochromatic domains, nor does it affect differentiation under standard laboratory conditions. On the other hand, CEC-4 contributes to the efficiency with which muscle differentiation is induced following ectopic expression of the master regulator, HLH-1. This is one of the first phenotypes specifically attributed to the ablation of heterochromatin anchoring.
Collapse
Affiliation(s)
- Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Topologically associated domains enriched for lineage-specific genes reveal expression-dependent nuclear topologies during myogenesis. Proc Natl Acad Sci U S A 2016; 113:E1691-700. [PMID: 26957603 DOI: 10.1073/pnas.1521826113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation.
Collapse
|
29
|
Hogan MS, Parfitt DE, Zepeda-Mendoza CJ, Shen MM, Spector DL. Transient pairing of homologous Oct4 alleles accompanies the onset of embryonic stem cell differentiation. Cell Stem Cell 2016; 16:275-88. [PMID: 25748933 DOI: 10.1016/j.stem.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/03/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
The relationship between chromatin organization and transcriptional regulation is an area of intense investigation. We characterized the spatial relationships between alleles of the Oct4, Sox2, and Nanog genes in single cells during the earliest stages of mouse embryonic stem cell (ESC) differentiation and during embryonic development. We describe homologous pairing of the Oct4 alleles during ESC differentiation and embryogenesis, and we present evidence that pairing is correlated with the kinetics of ESC differentiation. Importantly, we identify critical DNA elements within the Oct4 promoter/enhancer region that mediate pairing of Oct4 alleles. Finally, we show that mutation of OCT4/SOX2 binding sites within this region abolishes inter-chromosomal interactions and affects accumulation of the repressive H3K9me2 modification at the Oct4 enhancer. Our findings demonstrate that chromatin organization and transcriptional programs are intimately connected in ESCs and that the dynamic positioning of the Oct4 alleles is associated with the transition from pluripotency to lineage specification.
Collapse
Affiliation(s)
- Megan S Hogan
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David-Emlyn Parfitt
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cinthya J Zepeda-Mendoza
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Michael M Shen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
30
|
Chromatin-Driven Behavior of Topologically Associating Domains. J Mol Biol 2015; 427:608-25. [DOI: 10.1016/j.jmb.2014.09.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
|
31
|
Mittal A, Balasubramanian R, Cao J, Singh P, Subramanian S, Hicks G, Nothnagel EA, Abidi N, Janda J, Galbraith DW, Rock CD. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4217-39. [PMID: 24821950 PMCID: PMC4112631 DOI: 10.1093/jxb/eru198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Rajagopal Balasubramanian
- Tamil Nadu Agricultural University, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
| | - Jin Cao
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143 005, Punjab, India
| | - Senthil Subramanian
- South Dakota State University, Department of Plant Science, Brookings, SD 57007, USA
| | - Glenn Hicks
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Eugene A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Noureddine Abidi
- Texas Tech University, Department of Plant and Soil Science and Fiber and Biopolymer Research Institute, 1001 East Loop 289, Lubbock, TX 79409-5019, USA
| | - Jaroslav Janda
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - David W Galbraith
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
32
|
Rebolledo-Jaramillo B, Alarcon RA, Fernandez VI, Gutierrez SE. Cis-regulatory elements are harbored in Intron5 of the RUNX1 gene. BMC Genomics 2014; 15:225. [PMID: 24655352 PMCID: PMC3984029 DOI: 10.1186/1471-2164-15-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human RUNX1 gene is one of the most frequent target for chromosomal translocations associated with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). The highest prevalence in AML is noted with (8; 21) translocation; which represents 12 to 15% of all AML cases. Interestingly, all the breakpoints mapped to date in t(8;21) are clustered in intron 5 of the RUNX1 gene and intron 1 of the ETO gene. No homologous sequences have been found at the recombination regions; but DNase I hypersensitive sites (DHS) have been mapped to the areas of the genes involved in t(8;21). Presence of DHS sites is commonly associated with regulatory elements such as promoters, enhancers and silencers, among others. RESULTS In this study we used a combination of comparative genomics, cloning and transfection assays to evaluate potential regulatory elements located in intron 5 of the RUNX1 gene. Our genomic analysis identified nine conserved non-coding sequences that are evolutionarily conserved among rat, mouse and human. We cloned two of these regions in pGL-3 Promoter plasmid in order to analyze their transcriptional regulatory activity. Our results demonstrate that the identified regions can indeed regulate transcription of a reporter gene in a distance and position independent manner; moreover, their transcriptional effect is cell type specific. CONCLUSIONS We have identified nine conserved non coding sequence that are harbored in intron 5 of the RUNX1 gene. We have also demonstrated that two of these regions can regulate transcriptional activity in vitro. Taken together our results suggest that intron 5 of the RUNX1 gene contains multiple potential cis-regulatory elements.
Collapse
Affiliation(s)
| | | | | | - Soraya E Gutierrez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepcion, Chile.
| |
Collapse
|
33
|
Wood AM, Garza-Gongora AG, Kosak ST. A Crowdsourced nucleus: understanding nuclear organization in terms of dynamically networked protein function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:178-90. [PMID: 24412853 PMCID: PMC3954575 DOI: 10.1016/j.bbagrm.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Ashley M Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
Aguilar-Arnal L, Hakim O, Patel VR, Baldi P, Hager GL, Sassone-Corsi P. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat Struct Mol Biol 2013; 20:1206-13. [PMID: 24056944 PMCID: PMC3885543 DOI: 10.1038/nsmb.2667] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023]
Abstract
Dynamic transitions in the epigenome have been associated with regulated patterns of nuclear organization. The accumulating evidence that chromatin remodeling is implicated in circadian function prompted us to explore whether the clock may control nuclear architecture. We applied the chromosome conformation capture on chip technology in mouse embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interactions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation of the Bmal1 gene (also called Arntl). We establish that the Dbp circadian interactome contains a wide variety of genes and clock-related DNA elements. These findings reveal a previously unappreciated circadian and clock-dependent shaping of the nuclear landscape.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California Irvine, Irvine, California, U.S.A
| | - Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, U.S.A
| | - Vishal R. Patel
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine, Irvine, California, U.S.A
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine, Irvine, California, U.S.A
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, U.S.A
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California Irvine, Irvine, California, U.S.A
| |
Collapse
|
35
|
Rieder D, Ploner C, Krogsdam AM, Stocker G, Fischer M, Scheideler M, Dani C, Amri EZ, Müller WG, McNally JG, Trajanoski Z. Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 2013; 71:1741-59. [PMID: 24026398 DOI: 10.1007/s00018-013-1465-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/02/2013] [Accepted: 08/28/2013] [Indexed: 11/26/2022]
Abstract
Chromosomally separated, co-expressed genes can be in spatial proximity, but there is still debate about how this nuclear organization is achieved. Proposed mechanisms include global genome organization, preferential positioning of chromosome territories, or gene-gene sharing of various nuclear bodies. To investigate this question, we selected a set of genes that were co-expressed upon differentiation of human multipotent stem cells. We applied a novel multi-dimensional analysis procedure which revealed that prior to gene expression, the relative position of these genes was conserved in nuclei. Upon stem cell differentiation and concomitant gene expression, we found that co-expressed genes were closer together. In addition, we found that genes in the same 1-μm-diameter neighborhood associated with either the same splicing speckle or to a lesser extent with the same transcription factory. Dispersal of speckles by overexpression of the serine-arginine (SR) protein kinase cdc2-like kinase Clk2 led to a significant drop in the number of genes in shared neighborhoods. We demonstrate quantitatively that the frequencies of speckle and factory sharing can be explained by assuming stochastic selection of a nuclear body within a restricted sub-volume defined by the original global gene positioning present prior to gene expression. We conclude that the spatial organization of these genes is a two-step process in which transcription-induced association with nuclear bodies enhances and refines a pre-existing global organization.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innrain 80, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ritland Politz JC, Scalzo D, Groudine M. Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu Rev Cell Dev Biol 2013; 29:241-70. [PMID: 23834025 PMCID: PMC3999972 DOI: 10.1146/annurev-cellbio-101512-122317] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization.
Collapse
Affiliation(s)
| | - David Scalzo
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Groudine
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
37
|
Shatskikh AS, Gvozdev VA. Heterochromatin formation and transcription in relation to trans-inactivation of genes and their spatial organization in the nucleus. BIOCHEMISTRY (MOSCOW) 2013; 78:603-12. [DOI: 10.1134/s0006297913060060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Zuleger N, Boyle S, Kelly DA, de las Heras JI, Lazou V, Korfali N, Batrakou DG, Randles KN, Morris GE, Harrison DJ, Bickmore WA, Schirmer EC. Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol 2013; 14:R14. [PMID: 23414781 PMCID: PMC4053941 DOI: 10.1186/gb-2013-14-2-r14] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/15/2013] [Indexed: 01/04/2023] Open
Abstract
Background Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified. Results To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells. Conclusions The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.
Collapse
|
39
|
Iyer KV, Maharana S, Gupta S, Libchaber A, Tlusty T, Shivashankar GV. Modeling and experimental methods to probe the link between global transcription and spatial organization of chromosomes. PLoS One 2012; 7:e46628. [PMID: 23049710 PMCID: PMC3462193 DOI: 10.1371/journal.pone.0046628] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 09/06/2012] [Indexed: 11/24/2022] Open
Abstract
Genomes are spatially assembled into chromosome territories (CT) within the nucleus of living cells. Recent evidences have suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and complex transcription factor networks (TFNs), quantitative methods to establish their correlation is lacking. In this paper, we use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naïve and activated). Taken together, our methods highlight the functional coupling between topology of chromosomes and their respective gene expression patterns.
Collapse
Affiliation(s)
- K. Venkatesan Iyer
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shovamayee Maharana
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Soumya Gupta
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Albert Libchaber
- Laboratory of Experimental Condensed Matter Physics, Rockefeller University, New York City, New York, United States of America
| | - Tsvi Tlusty
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TT); (GVS)
| | - G. V. Shivashankar
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (TT); (GVS)
| |
Collapse
|
40
|
Cukierski WJ, Nandy K, Gudla P, Meaburn KJ, Misteli T, Foran DJ, Lockett SJ. Ranked retrieval of segmented nuclei for objective assessment of cancer gene repositioning. BMC Bioinformatics 2012; 13:232. [PMID: 22971117 PMCID: PMC3484015 DOI: 10.1186/1471-2105-13-232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/28/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Correct segmentation is critical to many applications within automated microscopy image analysis. Despite the availability of advanced segmentation algorithms, variations in cell morphology, sample preparation, and acquisition settings often lead to segmentation errors. This manuscript introduces a ranked-retrieval approach using logistic regression to automate selection of accurately segmented nuclei from a set of candidate segmentations. The methodology is validated on an application of spatial gene repositioning in breast cancer cell nuclei. Gene repositioning is analyzed in patient tissue sections by labeling sequences with fluorescence in situ hybridization (FISH), followed by measurement of the relative position of each gene from the nuclear center to the nuclear periphery. This technique requires hundreds of well-segmented nuclei per sample to achieve statistical significance. Although the tissue samples in this study contain a surplus of available nuclei, automatic identification of the well-segmented subset remains a challenging task. RESULTS Logistic regression was applied to features extracted from candidate segmented nuclei, including nuclear shape, texture, context, and gene copy number, in order to rank objects according to the likelihood of being an accurately segmented nucleus. The method was demonstrated on a tissue microarray dataset of 43 breast cancer patients, comprising approximately 40,000 imaged nuclei in which the HES5 and FRA2 genes were labeled with FISH probes. Three trained reviewers independently classified nuclei into three classes of segmentation accuracy. In man vs. machine studies, the automated method outperformed the inter-observer agreement between reviewers, as measured by area under the receiver operating characteristic (ROC) curve. Robustness of gene position measurements to boundary inaccuracies was demonstrated by comparing 1086 manually and automatically segmented nuclei. Pearson correlation coefficients between the gene position measurements were above 0.9 (p < 0.05). A preliminary experiment was conducted to validate the ranked retrieval in a test to detect cancer. Independent manual measurement of gene positions agreed with automatic results in 21 out of 26 statistical comparisons against a pooled normal (benign) gene position distribution. CONCLUSIONS Accurate segmentation is necessary to automate quantitative image analysis for applications such as gene repositioning. However, due to heterogeneity within images and across different applications, no segmentation algorithm provides a satisfactory solution. Automated assessment of segmentations by ranked retrieval is capable of reducing or even eliminating the need to select segmented objects by hand and represents a significant improvement over binary classification. The method can be extended to other high-throughput applications requiring accurate detection of cells or nuclei across a range of biomedical applications.
Collapse
|
41
|
Gao T, Nie Y, Guo J. Hypermethylation of the gene LARP2 for noninvasive prenatal diagnosis of β-thalassemia based on DNA methylation profile. Mol Biol Rep 2012; 39:6591-8. [PMID: 22327645 DOI: 10.1007/s11033-012-1489-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/24/2012] [Indexed: 12/31/2022]
Abstract
In order to identify epigenetic markers of β-thalassemia, a genome-wide profiling method named differential methylation hybridization was used to search these differentially methylated genes. Unsupervised hierarchical clustering and molecular annotation system were used to analyze the data, and methylation-specific PCR and real-time PCR were used to confirm the differentially methylated genes. This system was validated by detecting 13 cases, 10 of which were homo-zygous β-thalassaemia. Totally 113 genes were identified as methlyation-enriched genes (ratio ≥ 2.0, P < 0.05) and 96 genes were identified as hypomethylated genes in both groups (ratio ≤ 0.5, P < 0.05). The promoter of the gene of La ribonucleoprotein domain family (LARP2) was significantly hypermethylated in β-thalassemia, and the expression of LARP2 was significantly lower in β-thalassemia. Hypermethylation of the LARP2 promoter was correlated with its lower expression in β-thalassemia and our chip-based DNA methylation detection system can provide earlier diagnosis of β-thalassemia using this epigenetic marker.
Collapse
Affiliation(s)
- Tian Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Chongqiang Medical University, Chongqing, China
| | | | | |
Collapse
|
42
|
Ram S, Rodríguez JJ, Bosco G. Segmentation and detection of fluorescent 3D spots. Cytometry A 2012; 81:198-212. [DOI: 10.1002/cyto.a.22017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Roles of the nuclear lamina in stable nuclear association and assembly of a herpesviral transactivator complex on viral immediate-early genes. mBio 2012; 3:mBio.00300-11. [PMID: 22251972 PMCID: PMC3258183 DOI: 10.1128/mbio.00300-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C(-/-) cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C(-/-) mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. IMPORTANCE The targeting of chromosomes in the cell nucleus is thought to be important in the regulation of expression of genes on the chromosomes. The major documented effect of intranuclear targeting has been silencing of chromosomes at sites near the nuclear periphery. In this study, we show that targeting of the herpes simplex virus DNA genome to the nuclear periphery promotes formation of transcriptional activator complexes on the viral genome, demonstrating that the nuclear periphery also has sites for activation of transcription. These results highlight the importance of the nuclear lamina, the structure that lines the inner nuclear membrane, in both transcriptional activation and repression. Future studies defining the molecular structures of these two types of nuclear sites should define new levels of gene regulation.
Collapse
|
44
|
Abstract
Cells integrate physicochemical signals on the nanoscale from the local microenvironment, resulting in altered functional nuclear landscape and gene expression. These alterations regulate diverse biological processes including stem cell differentiation, establishing robust developmental genetic programs and cellular homeostatic control systems. The mechanisms by which these signals are integrated into the 3D spatiotemporal organization of the cell nucleus to elicit differential gene expression programs are poorly understood. In this review I analyze our current understanding of mechanosignal transduction mechanisms to the cell nucleus to induce differential gene regulation. A description of both physical and chemical coupling, resulting in a prestressed nuclear organization, is emphasized. I also highlight the importance of spatial dimension in chromosome assembly, as well as the temporal filtering and stochastic processes at gene promoters that may be important in understanding the biophysical design principles underlying mechanoregulation of gene transcription.
Collapse
Affiliation(s)
- G V Shivashankar
- Mechanobiology Institute & Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
45
|
Abstract
Although the nonrandom nature of interphase chromosome arrangement is widely accepted, how nuclear organization relates to genomic function remains unclear. Nuclear subcompartments may play a role by offering rich microenvironments that regulate chromatin state and ensure optimal transcriptional efficiency. Technological advances now provide genome-wide and four-dimensional analyses, permitting global characterizations of nuclear order. These approaches will help uncover how seemingly separate nuclear processes may be coupled and aid in the effort to understand the role of nuclear organization in development and disease.
Collapse
Affiliation(s)
- Indika Rajapakse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
46
|
Demicheli R, Coradini D. Gene regulatory networks: a new conceptual framework to analyse breast cancer behaviour. Ann Oncol 2011; 22:1259-1265. [PMID: 21109571 DOI: 10.1093/annonc/mdq546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- R Demicheli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori.
| | - D Coradini
- Institute of Medical Statistics and Biometry, Università di Milano, Milano, Italy
| |
Collapse
|
47
|
Physical nuclear organization: loops and entropy. Curr Opin Cell Biol 2011; 23:332-7. [DOI: 10.1016/j.ceb.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 01/07/2023]
|
48
|
Wang ZZ, Gong BS, Wang HK, Wang HJ, Zhou M, Wang QH, Chen X, Liu T, Li X. MicroRNA regulation constrains the organization of target genes on mammalian chromosomes. FEBS Lett 2011; 585:1897-904. [PMID: 21549707 DOI: 10.1016/j.febslet.2011.04.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022]
Abstract
The regulation of microRNAs (miRNAs) is a complicated process requiring a large number of molecular events to be coordinated in both space and time. It is not known whether this complicated regulation process constrains the organization of target genes on mammalian chromosomes. We performed a genome-wide analysis to provide a better picture of chromosomal organization of miRNA target genes. Our results showed clustering of the target genes (TGs) of miRNAs on mammalian chromosomes, and further revealed that the particular gene organization is constrained by miRNA regulation. The clustering pattern of TGs provides an insight into the complexity of miRNA regulation.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Understanding the evolutionary origin of the nucleus and its compartmentalized architecture provides a huge but, as expected, greatly rewarding challenge in the post-genomic era. We start this chapter with a survey of current hypotheses on the evolutionary origin of the cell nucleus. Thereafter, we provide an overview of evolutionarily conserved features of chromatin organization and arrangements, as well as topographical aspects of DNA replication and transcription, followed by a brief introduction of current models of nuclear architecture. In addition to features which may possibly apply to all eukaryotes, the evolutionary plasticity of higher-order nuclear organization is reflected by cell-type- and species-specific features, by the ability of nuclear architecture to adapt to specific environmental demands, as well as by the impact of aberrant nuclear organization on senescence and human disease. We conclude this chapter with a reflection on the necessity of interdisciplinary research strategies to map epigenomes in space and time.
Collapse
|
50
|
Rajapakse I, Scalzo D, Tapscott SJ, Kosak ST, Groudine M. Networking the nucleus. Mol Syst Biol 2010; 6:395. [PMID: 20664641 PMCID: PMC2925527 DOI: 10.1038/msb.2010.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/31/2010] [Indexed: 12/13/2022] Open
Abstract
The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus.
Collapse
Affiliation(s)
- Indika Rajapakse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|