1
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2025; 62:2955-2972. [PMID: 39196495 PMCID: PMC11790743 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Chen J, Tu W, Li Z, Ma M, Jiang S, Guan W, Wang R, Pan Y, Peng Q. Diverse functions of sex determination gene doublesex on sexually dimorphic neuronal development and behaviors. J Genet Genomics 2025:S1673-8527(25)00042-6. [PMID: 39984156 DOI: 10.1016/j.jgg.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Sex-specific neurons play pivotal roles in regulating sexually dimorphic behaviors. In insects, the sex determination gene doublesex (dsx) establishes major sexual dimorphism of the nervous system, in which male-specific dsxM promotes neuronal development, while female-specific dsxF inhibits neuronal development by promoting neuronal apoptosis. In this study, we find that dsx regulates the number of dsx-expressing central neurons in Drosophila in cell-specific manners. Although dsxM overall promotes an increase in the number of dsx neurons, it inhibits the emergence of specific pC1 neurons. dsxF reduces the number of different pC1/pC2 subtypes, but promotes the formation of pC1d. We also find that dsxM and dsxF barely affect the number of some pC2 neurons. Changes in the number of pC1/pC2 neuron numbers alter their roles in regulating different behaviors, including courtship, aggression, and locomotion. Our results demonstrate the multifaceted functions of dsx in sexually dimorphic neuronal development and behaviors.
Collapse
Affiliation(s)
- Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wen Tu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ziqi Li
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Simei Jiang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyue Guan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, China.
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
3
|
Kocher TD, Meisel RP, Gamble T, Behrens KA, Gammerdinger WJ. Yes, polygenic sex determination is a thing! Trends Genet 2024; 40:1001-1017. [PMID: 39505660 DOI: 10.1016/j.tig.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
The process of sexual development in animals is modulated by a variety of mechanisms. Some species respond to environmental cues, while, in others, sex determination is thought to be controlled by a single 'master regulator' gene. However, many animals respond to a combination of environmental cues (e.g., temperature) and genetic factors (e.g., sex chromosomes). Even among species in which genetic factors predominate, there is a continuum between monofactorial and polygenic systems. The perception that polygenic systems are rare may result from experiments that lack the statistical power to detect multiple loci. Intellectual biases against the existence of polygenic sex determination (PSD) may further arise from misconceptions about the regulation of developmental processes and a misreading of theoretical results on the stability of polygenic systems of sex determination.
Collapse
Affiliation(s)
- Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
4
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Li M, Chen DS, Junker IP, Szorenyi FI, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior in Drosophila. Nat Commun 2024; 15:9210. [PMID: 39468043 PMCID: PMC11519493 DOI: 10.1038/s41467-024-53610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor circuit facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Shiozaki HM, Wang K, Lillvis JL, Xu M, Dickson BJ, Stern DL. Activity of nested neural circuits drives different courtship songs in Drosophila. Nat Neurosci 2024; 27:1954-1965. [PMID: 39198658 PMCID: PMC11452343 DOI: 10.1038/s41593-024-01738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Motor systems implement diverse motor programs to pattern behavioral sequences, yet how different motor actions are controlled on a moment-by-moment basis remains unclear. Here, we investigated the neural circuit mechanisms underlying the control of distinct courtship songs in Drosophila. Courting males rapidly alternate between two types of song: pulse and sine. By recording calcium signals in the ventral nerve cord in singing flies, we found that one neural population is active during both songs, whereas an expanded neural population, which includes neurons from the first population, is active during pulse song. Brain recordings showed that this nested activation pattern is present in two descending pathways required for singing. Connectomic analysis reveals that these two descending pathways provide structured input to ventral nerve cord neurons in a manner consistent with their activation patterns. These results suggest that nested premotor circuit activity, directed by distinct descending signals, enables rapid switching between motor actions.
Collapse
Affiliation(s)
- Hiroshi M Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Min Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
7
|
Coig R, Harrison BR, Johnson RS, MacCoss MJ, Promislow DE. Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612537. [PMID: 39345368 PMCID: PMC11429604 DOI: 10.1101/2024.09.11.612537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sex has a major effect on the metabolome. However, we do not yet understand the degree to which these quantitative sex differences in metabolism are associated with anatomical dimorphism and modulated by sex-specific tissues. In the fruit fly, Drosophila melanogaster, knocking out the doublesex (dsx) gene gives rise to adults with intermediate sex characteristics. Here we sought to determine the degree to which this key node in sexual development leads to sex differences in the fly metabolome. We measured 91 metabolites across head, thorax and abdomen in Drosophila, comparing the differences between distinctly sex-dimorphic flies with those of reduced sexual dimorphism: dsx null flies. Notably, in the reduced dimorphism flies, we observed a sex difference in only 1 of 91 metabolites, kynurenate, whereas 51% of metabolites (46/91) were significantly different between wildtype XX and XY flies in at least one tissue, suggesting that dsx plays a major role in sex differences in fly metabolism. Kynurenate was consistently higher in XX flies in both the presence and absence of functioning dsx. We observed tissue-specific consequences of knocking out dsx. Metabolites affected by sex were significantly enriched in branched chain amino acid metabolism and the mTOR pathway. This highlights the importance of considering variation in genes that cause anatomical sexual dimorphism when analyzing sex differences in metabolic profiles and interpreting their biological significance.
Collapse
Affiliation(s)
- Rene Coig
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Benjamin R. Harrison
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Daniel E.L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
- Department of Biology, University of Washington, Seattle, WA, United States
- Current address: Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| |
Collapse
|
8
|
Hérault C, Pihl T, Hudry B. Cellular sex throughout the organism underlies somatic sexual differentiation. Nat Commun 2024; 15:6925. [PMID: 39138201 PMCID: PMC11322332 DOI: 10.1038/s41467-024-51228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Sex chromosomes underlie the development of male or female sex organs across species. While systemic signals derived from sex organs prominently contribute to sex-linked differences, it is unclear whether the intrinsic presence of sex chromosomes in somatic tissues has a specific function. Here, we use genetic tools to show that cellular sex is crucial for sexual differentiation throughout the body in Drosophila melanogaster. We reveal that every somatic cell converts the intrinsic presence of sex chromosomes into the active production of a sex determinant, a female specific serine- and arginine-rich (SR) splicing factor. This discovery dismisses the mosaic model which posits that only a subset of cells has the potential to sexually differentiate. Using cell-specific sex reversals, we show that this prevalence of cellular sex drives sex differences in organ size and body weight and is essential for fecundity. These findings demonstrate that cellular sex drives differentiation programs at an organismal scale and highlight the importance of cellular sex pathways in sex trait evolution.
Collapse
Affiliation(s)
- Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
9
|
Mahadevaraju S, Pal S, Bhaskar P, McDonald BD, Benner L, Denti L, Cozzi D, Bonizzoni P, Przytycka TM, Oliver B. Diverse somatic Transformer and sex chromosome karyotype pathways regulate gene expression in Drosophila gonad development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607556. [PMID: 39372789 PMCID: PMC11451611 DOI: 10.1101/2024.08.12.607556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The somatic sex determination gene transformer (tra) is required for the highly sexually dimorphic development of most somatic cells, including those of the gonads. In addition, somatic tra is required for the germline development even though it is not required for sex determination within germ cells. Germ cell autonomous gene expression is also necessary for their sex determination. To understand the interplay between these signals, we compared the phenotype and gene expression of larval wild-type gonads and the sex-transformed tra gonads. XX larval ovaries transformed into testes were dramatically smaller than wild-type, with significant reductions in germ cell number, likely due to altered geometry of the stem cell niche. Additionally, there was a defect in progression into spermatocyte stages. XY larval testes transformed into ovaries had excessive germ cells, possibly due to the earlier onset of cell division. We suggest that germ cells are neither fully female nor male following somatic sex transformation, with certain pathways characteristic of each sex expressed in tra mutants. We found multiple patterns of somatic and germline gene expression control exclusively due to tra, exclusively due to sex chromosome karyotype, but usually due to a combination of these factors showing tra and sex chromosome karyotype pathways regulate gene expression during Drosophila gonad development.
Collapse
Affiliation(s)
- Sharvani Mahadevaraju
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology. St. Mary’s College of Maryland, St. Mary’s City, Maryland, USA
| | - Soumitra Pal
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pradeep Bhaskar
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brennan D. McDonald
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Denti
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Davide Cozzi
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Teresa M. Przytycka
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Nyberg KG, Navales FG, Keles E, Nguyen JQ, Hertz LM, Carthew RW. Robust and heritable knockdown of gene expression using a self-cleaving ribozyme in Drosophila. Genetics 2024; 227:iyae067. [PMID: 38701221 PMCID: PMC11304983 DOI: 10.1093/genetics/iyae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
The current toolkit for genetic manipulation in the model animal Drosophila melanogaster is extensive and versatile but not without its limitations. Here, we report a powerful and heritable method to knockdown gene expression in D. melanogaster using the self-cleaving N79 hammerhead ribozyme, a modification of a naturally occurring ribozyme found in the parasite Schistosoma mansoni. A 111-bp ribozyme cassette, consisting of the N79 ribozyme surrounded by insulating spacer sequences, was inserted into 4 independent long noncoding RNA genes as well as the male-specific splice variant of doublesex using scarless CRISPR/Cas9-mediated genome editing. Ribozyme-induced RNA cleavage resulted in robust destruction of 3' fragments typically exceeding 90%. Single molecule RNA fluorescence in situ hybridization results suggest that cleavage and destruction can even occur for nascent transcribing RNAs. Knockdown was highly specific to the targeted RNA, with no adverse effects observed in neighboring genes or the other splice variants. To control for potential effects produced by the simple insertion of 111 nucleotides into genes, we tested multiple catalytically inactive ribozyme variants and found that a variant with scrambled N79 sequence best recapitulated natural RNA levels. Thus, self-cleaving ribozymes offer a novel approach for powerful gene knockdown in Drosophila, with potential applications for the study of noncoding RNAs, nuclear-localized RNAs, and specific splice variants of protein-coding genes.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Fritz Gerald Navales
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eren Keles
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Q Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura M Hertz
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Yan W, Li Y, Louis EJ, Kyriacou CP, Hu Y, Cordell RL, Xie X. Quantitative genetic analysis of attractiveness of yeast products to Drosophila. Genetics 2024; 227:iyae048. [PMID: 38560786 PMCID: PMC11151935 DOI: 10.1093/genetics/iyae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
An attractive perfume is a complex mixture of compounds, some of which may be unpleasant on their own. This is also true for the volatile combinations from yeast fermentation products in vineyards and orchards when assessed by Drosophila. Here, we used crosses between a yeast strain with an attractive fermentation profile and another strain with a repulsive one and tested fly responses using a T-maze. QTL analysis reveals allelic variation in four yeast genes, namely PTC6, SAT4, YFL040W, and ARI1, that modulated expression levels of volatile compounds [assessed by gas chromatography-mass spectrometry (GC-MS)] and in different combinations, generated various levels of attractiveness. The parent strain that is more attractive to Drosophila has repulsive alleles at two of the loci, while the least attractive parent has attractive alleles. Behavioral assays using artificial mixtures mimicking the composition of odors from fermentation validated the results of GC-MS and QTL mapping, thereby directly connecting genetic variation in yeast to attractiveness in flies. This study can be used as a basis for dissecting the combination of olfactory receptors that mediate the attractiveness/repulsion of flies to yeast volatiles and may also serve as a model for testing the attractiveness of pest species such as Drosophila suzukii to their host fruit.
Collapse
Affiliation(s)
- Weiru Yan
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yishen Li
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Edward J Louis
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Yue Hu
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Rebecca L Cordell
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Ye D, Walsh JT, Junker IP, Ding Y. Changes in the cellular makeup of motor patterning circuits drive courtship song evolution in Drosophila. Curr Biol 2024; 34:2319-2329.e6. [PMID: 38688283 DOI: 10.1016/j.cub.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
How evolutionary changes in genes and neurons encode species variation in complex motor behaviors is largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely related species D. yakuba, which has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song-patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites supporting the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, although they have maintained the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.
Collapse
Affiliation(s)
- Dajia Ye
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin T Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Li C, Li CQ, Chen ZB, Liu BQ, Sun X, Wei KH, Li CY, Luan JB. Wolbachia symbionts control sex in a parasitoid wasp using a horizontally acquired gene. Curr Biol 2024; 34:2359-2372.e9. [PMID: 38692276 DOI: 10.1016/j.cub.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.
Collapse
Affiliation(s)
- Ce Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Kai-Heng Wei
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen-Yi Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
14
|
Diamandi JA, Duckhorn JC, Miller KE, Weinstock M, Leone S, Murphy MR, Shirangi TR. Developmental remodeling repurposes larval neurons for sexual behaviors in adult Drosophila. Curr Biol 2024; 34:1183-1193.e3. [PMID: 38377996 DOI: 10.1016/j.cub.2024.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Most larval neurons in Drosophila are repurposed during metamorphosis for functions in adult life, but their contribution to the neural circuits for sexually dimorphic behaviors is unknown. Here, we identify two interneurons in the nerve cord of adult Drosophila females that control ovipositor extrusion, a courtship rejection behavior performed by mated females. We show that these two neurons are present in the nerve cord of larvae as mature, sexually monomorphic interneurons. During pupal development, they acquire the expression of the sexual differentiation gene, doublesex; undergo doublesex-dependent programmed cell death in males; and are remodeled in females for functions in female mating behavior. Our results demonstrate that the neural circuits for courtship in Drosophila are built in part using neurons that are sexually reprogrammed from former sex-shared activities in larval life.
Collapse
Affiliation(s)
- Julia A Diamandi
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Julia C Duckhorn
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Kara E Miller
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Mason Weinstock
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Sofia Leone
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Micaela R Murphy
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Troy R Shirangi
- Department of Biology, Villanova University, 800 East Lancaster Ave, Villanova, PA 19085, USA.
| |
Collapse
|
15
|
Hull JJ, Heu CC, Gross RJ, LeRoy DM, Schutze IX, Langhorst D, Fabrick JA, Brent CS. Doublesex is essential for masculinization but not feminization in Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104085. [PMID: 38307215 DOI: 10.1016/j.ibmb.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Roni J Gross
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Inana X Schutze
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Daniel Langhorst
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Colin S Brent
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| |
Collapse
|
16
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Urum A, Rice G, Glassford W, Yanku Y, Shklyar B, Rebeiz M, Preger-Ben Noon E. A developmental atlas of male terminalia across twelve species of Drosophila. Front Cell Dev Biol 2024; 12:1349275. [PMID: 38487271 PMCID: PMC10937369 DOI: 10.3389/fcell.2024.1349275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom-the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.
Collapse
Affiliation(s)
- Anna Urum
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - William Glassford
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yifat Yanku
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Boris Shklyar
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Ye D, Walsh JT, Junker IP, Ding Y. Changes in the cellular makeup of motor patterning circuits drive courtship song evolution in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576861. [PMID: 38328135 PMCID: PMC10849698 DOI: 10.1101/2024.01.23.576861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
How evolutionary changes in genes and neurons encode species variation in complex motor behaviors are largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely-related species D. yakuba, who has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites serving the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, while maintaining the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution, and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.
Collapse
Affiliation(s)
- Dajia Ye
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin T Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Li M, Chen DS, Junker IP, Szorenyi F, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570174. [PMID: 38106147 PMCID: PMC10723342 DOI: 10.1101/2023.12.05.570174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor program facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabianna Szorenyi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Current address: School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
21
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
Shen P, Wan X, Wu F, Shi K, Li J, Gao H, Zhao L, Zhou C. Neural circuit mechanisms linking courtship and reward in Drosophila males. Curr Biol 2023; 33:2034-2050.e8. [PMID: 37160122 DOI: 10.1016/j.cub.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Courtship has evolved to achieve reproductive success in animal species. However, whether courtship itself has a positive value remains unclear. In the present work, we report that courtship is innately rewarding and can induce the expression of appetitive short-term memory (STM) and long-term memory (LTM) in Drosophila melanogaster males. Activation of male-specific P1 neurons is sufficient to mimic courtship-induced preference and memory performance. Surprisingly, P1 neurons functionally connect to a large proportion of dopaminergic neurons (DANs) in the protocerebral anterior medial (PAM) cluster. The acquisition of STM and LTM depends on two distinct subsets of PAM DANs that convey the courtship-reward signal to the restricted regions of the mushroom body (MB) γ and α/β lobes through two dopamine receptors, D1-like Dop1R1 and D2-like Dop2R. Furthermore, the retrieval of STM stored in the MB α'/β' lobes and LTM stored in the MB α/β lobe relies on two distinct MB output neurons. Finally, LTM consolidation requires two subsets of PAM DANs projecting to the MB α/β lobe and corresponding MB output neurons. Taken together, our findings demonstrate that courtship is a potent rewarding stimulus and reveal the underlying neural circuit mechanisms linking courtship and reward in Drosophila males.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hongjiang Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
23
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Verhulst EC, Pannebakker BA, Geuverink E. Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101023. [PMID: 36958587 DOI: 10.1016/j.cois.2023.101023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Endosymbionts are maternally transmitted, and therefore benefit from maximizing female offspring numbers. Parthenogenesis-induction (PI) is the most effective type of manipulation for transmission, but has solely been detected in haplodiploid species, whereas cytoplasmic incompatibility (CI) is detected frequently across the arthropod phylum, including haplodiploids. This puzzling observation led us to hypothesize that the molecular sex-determination mechanism of the haplodiploid host may be a constraining factor in the ability of endosymbionts to induce parthenogenesis. Recent insights indicate that PI-endosymbionts may be able to directly manipulate sex-determination genes to induce the necessary steps required for PI in haplodiploids. However, sex-determination cascades vary extensively, so PI-induction would require a specialized and host-dependent tool set. Contrastingly, CI-related genes target conserved cell-cycle mechanisms, are located on mobile elements, and spread easily. Finally, endosymbiont-manipulations may have a strong impact on the effectiveness of haplodiploid biocontrol agents, but can also be used to enhance their efficacy.
Collapse
Affiliation(s)
- Eveline C Verhulst
- Wageningen Univer sity & Research, Laboratory of Entomology, The Netherlands.
| | - Bart A Pannebakker
- Wageningen University & Research, Laboratory of Genetics, The Netherlands
| | - Elzemiek Geuverink
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), The Netherlands.
| |
Collapse
|
25
|
Wu WT, Xu LY, Yan ZJ, Bi N, Cheng CY, Yang F, Yang WJ, Yang JS. Identification and characterization of the Doublesex gene and its mRNA isoforms in the brine shrimp Artemia franciscana. Biochem J 2023; 480:385-401. [PMID: 36852878 DOI: 10.1042/bcj20220495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Doublesex (DSX) proteins are members of the Doublesex/mab-3-related (DMRT) protein family and play crucial roles in sex determination and differentiation among the animal kingdom. In the present study, we identified two Doublesex (Dsx)-like mRNA isoforms in the brine shrimp Artemia franciscana (Kellogg 1906), which are generated by the combination of alternative promoters, alternative splicing and alternative polyadenylation. The two transcripts exhibited sex-biased enrichment, which we termed AfrDsxM and AfrDsxF. They share a common region which encodes an identical N-terminal DNA-binding (DM) domain. RT-qPCR analyses showed that AfrDsxM is dominantly expressed in male Artemia while AfrDsxF is specifically expressed in females. Expression levels of both isoforms increased along with the developmental stages of their respective sexes. RNA interference with dsRNA showed that the knockdown of AfrDsxM in male larvae led to the appearance of female traits including an ovary-like structure in the original male reproductive system and an elevated expression of vitellogenin. However, silencing of AfrDsxF induced no clear phenotypic change in female Artemia. These results indicated that the male AfrDSXM may act as inhibiting regulator upon the default female developmental mode in Artemia. Furthermore, electrophoretic mobility shift assay analyses revealed that the unique DM domain of AfrDSXs can specifically bind to promoter segments of potential downstream target genes like AfrVtg. These data show that AfrDSXs play crucial roles in regulating sexual development in Artemia, and further provide insight into the evolution of sex determination/differentiation in sexual organisms.
Collapse
Affiliation(s)
- Wen-Tao Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lian-Ying Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Jun Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Bi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cai-Yuan Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Laslo M, Just J, Angelini DR. Theme and variation in the evolution of insect sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:162-181. [PMID: 35239250 PMCID: PMC10078687 DOI: 10.1002/jez.b.23125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
The development of dimorphic adult sexes is a critical process for most animals, one that is subject to intense selection. Work in vertebrate and insect model species has revealed that sex determination mechanisms vary widely among animal groups. However, this variation is not uniform, with a limited number of conserved factors. Therefore, sex determination offers an excellent context to consider themes and variations in gene network evolution. Here we review the literature describing sex determination in diverse insects. We have screened public genomic sequence databases for orthologs and duplicates of 25 genes involved in insect sex determination, identifying patterns of presence and absence. These genes and a 3.5 reference set of 43 others were used to infer phylogenies and compared to accepted organismal relationships to examine patterns of congruence and divergence. The function of candidate genes for roles in sex determination (virilizer, female-lethal-2-d, transformer-2) and sex chromosome dosage compensation (male specific lethal-1, msl-2, msl-3) were tested using RNA interference in the milkweed bug, Oncopeltus fasciatus. None of these candidate genes exhibited conserved roles in these processes. Amidst this variation we wish to highlight the following themes for the evolution of sex determination: (1) Unique features within taxa influence network evolution. (2) Their position in the network influences a component's evolution. Our analyses also suggest an inverse association of protein sequence conservation with functional conservation.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Cell Biology, Curriculum Fellows ProgramHarvard Medical School25 Shattuck StBostonMassachusettsUSA
| | - Josefine Just
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMassachusettsUSA
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| | - David R. Angelini
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| |
Collapse
|
27
|
Just J, Laslo M, Lee YJ, Yarnell M, Zhang Z, Angelini DR. Distinct developmental mechanisms influence sexual dimorphisms in the milkweed bug Oncopeltus fasciatus. Proc Biol Sci 2023; 290:20222083. [PMID: 36722087 PMCID: PMC9890105 DOI: 10.1098/rspb.2022.2083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
Sexual dimorphism is common in animals. The most complete model of sex determination comes from Drosophila melanogaster, where the relative dosage of autosomes and X chromosomes leads indirectly to sex-specific transcripts of doublesex (dsx). Female Dsx interacts with a mediator complex protein encoded by intersex (ix) to activate female development. In males, the transcription factor encoded by fruitless (fru) promotes male-specific behaviour. The genetics of sex determination have been examined in a small number of other insects, yet several questions remain about the plesiomorphic state. Is dsx required for female and male development? Is fru conserved in male behaviour or morphology? Are other components such as ix functionally conserved? To address these questions, we report expression and functional tests of dsx, ix and fru in the hemipteran Oncopeltus fasciatus, characterizing three sexual dimorphisms. dsx prevents ix phenotypes in all sexes and dimorphic traits in the milkweed bug. ix and fru are expressed across the body, in females and males. fru and ix also affect the genitalia of both sexes, but have effects limited to different dimorphic structures in different sexes. These results reveal roles for ix and fru distinct from other insects, and demonstrate distinct development mechanisms in different sexually dimorphic structures.
Collapse
Affiliation(s)
- Josefine Just
- Department of Biology, Colby College, 5700 Mayflower Hill, Waterville, ME 04901, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Mara Laslo
- Curriculum Fellows Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ye Jin Lee
- Department of Biology, Colby College, 5700 Mayflower Hill, Waterville, ME 04901, USA
| | - Michael Yarnell
- Department of Pediatrics, University of Colorado School of Medicine, 13123 East 16th Avenue, B065, Aurora, CO 80045, USA
| | - Zhuofan Zhang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA 30332, USA
| | - David R. Angelini
- Department of Biology, Colby College, 5700 Mayflower Hill, Waterville, ME 04901, USA
| |
Collapse
|
28
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
29
|
Lushchak O, Strilbytska O, Storey KB. Gender-specific effects of pro-longevity interventions in Drosophila. Mech Ageing Dev 2023; 209:111754. [PMID: 36375654 DOI: 10.1016/j.mad.2022.111754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Sex differences in lifespan are well recognized in the majority of animal species. For example, in male versus female Drosophila melanogaster there are significant differences in behavior and physiology. However, little is known about the underlying mechanisms of gender differences in responses to pro-longevity interventions in this model organism. Here we summarize the existing data on the effects of nutritional and pharmacological anti-aging interventions such as nutrition regimens, diet and dietary supplementation on the lifespan of male and female Drosophila. We demonstrate that males and females have different sensitivities to interventions and that the effects are highly dependent on genetic background, mating, dose and exposure duration. Our work highlights the importance of understanding the mechanisms that underlie the gender-specific effect of anti-aging manipulations. This will provide insight into how these benefits may be valuable for elucidating the primary physiological and molecular targets involved in aging and lifespan determination.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
30
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
31
|
Han C, Peng Q, Su X, Xing L, Ji X, Pan Y. A male-specific doublesex isoform reveals an evolutionary pathway of sexual development via distinct alternative splicing mechanisms. Commun Biol 2022; 5:728. [PMID: 35869175 PMCID: PMC9307624 DOI: 10.1038/s42003-022-03664-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
The doublesex/mab-3 related transcription factor (Dmrt) genes regulate sexual development in metazoans. Studies of the doublesex (dsx) gene in insects, in particular Drosophila melanogaster, reveal that alternative splicing of dsx generates sex-specific Dsx isoforms underlying sexual differentiation. Such a splicing-based mechanism underlying sex-specific Dmrt function is thought to be evolved from a transcription-based mechanism used in non-insect species, but how such transition occurs during evolution is not known. Here we identified a male-specific dsx transcript (dsxM2) through intron retention (IR), in addition to previously identified dsxM and dsxF transcripts through alternative polyadenylation (APA) with mutually exclusive exons. We found that DsxM2 had similarly masculinizing function as DsxM. We also found that the IR-based mechanism generating sex-specific dsx transcripts was conserved from flies to cockroaches. Further analysis of these dsx transcripts suggested an evolutionary pathway from sexually monomorphic to sex-specific dsx via the sequential use of IR-based and APA-based alternative splicing. An ancestral male-specific doublesex isoform, dsxM2, is identified via intron retention, with a masculinizing function weaker than the modern dsxM
Collapse
|
32
|
CRISPR/Cas9-Mediated Mutagenesis of Sex-Specific Doublesex Splicing Variants Leads to Sterility in Spodoptera frugiperda, a Global Invasive Pest. Cells 2022; 11:cells11223557. [PMID: 36428986 PMCID: PMC9688123 DOI: 10.3390/cells11223557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith), an emerging invasive pest worldwide, has posed a serious agricultural threat to the newly invaded areas. Although somatic sex differentiation is fundamentally conserved among insects, the sex determination cascade in S. frugiperda is largely unknown. In this study, we cloned and functionally characterized Doublesex (dsx), a "molecular switch" modulating sexual dimorphism in S. frugiperda using male- and female-specific isoforms. Given that Lepidoptera is recalcitrant to RNAi, CRISPR/Cas9-mediated mutagenesis was employed to construct S. frugiperda mutants. Specifically, we designed target sites on exons 2, 4, and 5 to eliminate the common, female-specific, and male-specific regions of S. frugiperda dsx (Sfdsx), respectively. As expected, abnormal development of both the external and internal genitalia was observed during the pupal and adult stages. Interestingly, knocking out sex-specific dsx variants in S. frugiperda led to significantly reduced fecundity and fertility in adults of corresponding sex. Our combined results not only confirm the conserved function of dsx in S. frugiperda sex differentiation but also provide empirical evidence for dsx as a potential target for the Sterile Insect Technique (SIT) to combat this globally invasive pest in a sustainable and environmentally friendly way.
Collapse
|
33
|
Rohner PT, Hu Y, Moczek AP. Developmental bias in the evolution and plasticity of beetle horn shape. Proc Biol Sci 2022; 289:20221441. [PMID: 36168764 PMCID: PMC9515630 DOI: 10.1098/rspb.2022.1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
The degree to which developmental systems bias the phenotypic effects of environmental and genetic variation, and how these biases affect evolution, is subject to much debate. Here, we assess whether developmental variability in beetle horn shape aligns with the phenotypic effects of plasticity and evolutionary divergence, yielding three salient results. First, we find that most pathways previously shown to regulate horn length also affect shape. Second, we find that the phenotypic effects of manipulating divergent developmental pathways are correlated with each other as well as multivariate fluctuating asymmetry-a measure of developmental variability. Third, these effects further aligned with thermal plasticity, population differences and macroevolutionary divergence between sister taxa and more distantly related species. Collectively, our results support the hypothesis that changes in horn shape-whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences-converge along 'developmental lines of least resistance', i.e. are biased by the developmental system underpinning horn shape.
Collapse
Affiliation(s)
- Patrick T. Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Yonggang Hu
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
34
|
The doublesex gene regulates dimorphic sexual and aggressive behaviors in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2201513119. [PMID: 36067320 PMCID: PMC9477402 DOI: 10.1073/pnas.2201513119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most animal species display dimorphic sexual behaviors and male-biased aggressiveness. Current models have focused on the male-specific product from the fruitless (fruM) gene, which controls male courtship and male-specific aggression patterns in fruit flies, and describe a male-specific mechanism underlying sexually dimorphic behaviors. Here we show that the doublesex (dsx) gene, which expresses male-specific DsxM and female-specific DsxF transcription factors, functions in the nervous system to control both male and female sexual and aggressive behaviors. We find that Dsx is not only required in central brain neurons for male and female sexual behaviors, but also functions in approximately eight pairs of male-specific neurons to promote male aggressiveness and approximately two pairs of female-specific neurons to inhibit female aggressiveness. DsxF knockdown females fight more frequently, even with males. Our findings reveal crucial roles of dsx, which is broadly conserved from worms to humans, in a small number of neurons in both sexes to establish dimorphic sexual and aggressive behaviors.
Collapse
|
35
|
Gao JJ, Barmina O, Thompson A, Kim BY, Suvorov A, Tanaka K, Watabe H, Toda MJ, Chen JM, Katoh TK, Kopp A. Secondary reversion to sexual monomorphism associated with tissue-specific loss of doublesex expression. Evolution 2022; 76:2089-2104. [PMID: 35841603 DOI: 10.1111/evo.14564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023]
Abstract
Animal evolution is characterized by frequent turnover of sexually dimorphic traits-new sex-specific characters are gained, and some ancestral sex-specific characters are lost, in many lineages. In insects, sexual differentiation is predominantly cell autonomous and depends on the expression of the doublesex (dsx) transcription factor. In most cases, cells that transcribe dsx have the potential to undergo sex-specific differentiation, while those that lack dsx expression do not. Consistent with this mode of development, comparative research has shown that the origin of new sex-specific traits can be associated with the origin of new spatial domains of dsx expression. In this report, we examine the opposite situation-a secondary loss of the sex comb, a male-specific grasping structure that develops on the front legs of some drosophilid species. We show that while the origin of the sex comb is linked to an evolutionary gain of dsx expression in the leg, sex comb loss in a newly identified species of Lordiphosa (Drosophilidae) is associated with a secondary loss of dsx expression. We discuss how the developmental control of sexual dimorphism affects the mechanisms by which sex-specific traits can evolve.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, China.,State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, China
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kohtaro Tanaka
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Hideaki Watabe
- The Hokkaido University Museum, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810, Japan
| | - Masanori J Toda
- The Hokkaido University Museum, Kita-10, Nishi-8, Kitaku, Sapporo, 060-0810, Japan
| | - Ji-Min Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan University, China
| | - Takehiro K Katoh
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, China
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
36
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
37
|
Chen J, Zhu H, Wang R, Su X, Ruan Z, Pan Y, Peng Q. Functional Dissection of Protein Kinases in Sexual Development and Female Receptivity of Drosophila. Front Cell Dev Biol 2022; 10:923171. [PMID: 35757001 PMCID: PMC9220291 DOI: 10.3389/fcell.2022.923171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is crucial for a variety of biological functions, but how it is involved in sexual development and behavior is rarely known. In this study, we performed a screen of RNA interference targeting 177 protein kinases in Drosophila and identified 13 kinases involved in sexual development in one or both sexes. We further identified that PKA and CASK promote female sexual behavior while not affecting female differentiation. Knocking down PKA or CASK in about five pairs of pC1 neurons in the central brain affects the fine projection but not cell number of these pC1 neurons and reduces virgin female receptivity. We also found that PKA and CASK signaling is required acutely during adulthood to promote female sexual behavior. These results reveal candidate kinases required for sexual development and behaviors and provide insights into how kinases would regulate neuronal development and physiology to fine tune the robustness of sexual behaviors.
Collapse
Affiliation(s)
- Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Huan Zhu
- School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiangbin Su
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zongcai Ruan
- School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|
39
|
Jois S, Chan YB, Fernandez MP, Pujari N, Janz LJ, Parker S, Leung AKW. Sexually dimorphic peripheral sensory neurons regulate copulation duration and persistence in male Drosophila. Sci Rep 2022; 12:6177. [PMID: 35418584 PMCID: PMC9007984 DOI: 10.1038/s41598-022-10247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Peripheral sensory neurons are the gateway to the environment across species. In Drosophila, olfactory and gustatory senses are required to initiate courtship, as well as for the escalation of courtship patterns that lead to copulation. To be successful, copulation must last long enough to ensure the transfer of sperm and seminal fluid that ultimately leads to fertilization. The peripheral sensory information required to regulate copulation duration is unclear. Here, we employed genetic manipulations that allow driving gene expression in the male genitalia as a tool to uncover the role of these genitalia specific neurons in copulation. The fly genitalia contain sex-specific bristle hairs innervated by mechanosensory neurons. To date, the role of the sensory information collected by these peripheral neurons in male copulatory behavior is unknown. We confirmed that these MSNs are cholinergic and co-express both fru and dsx. We found that the sensory information received by the peripheral sensory neurons from the front legs (GRNs) and mechanosensory neurons (MSNs) at the male genitalia contribute to the regulation of copulation duration. Moreover, our results show that their function is required for copulation persistence, which ensures copulation is undisrupted in the presence of environmental stress before sperm transfer is complete.
Collapse
Affiliation(s)
- Shreyas Jois
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Yick-Bun Chan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Paz Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, NY, 10027, USA
| | - Narsimha Pujari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Lea Joline Janz
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Sarah Parker
- Centre for Applied Epidemiology, Large Animal Clinical Science, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
40
|
Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus. Commun Biol 2022; 5:210. [PMID: 35256751 PMCID: PMC8901906 DOI: 10.1038/s42003-022-03165-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Aedes albopictus is a major vector of arboviruses. Better understanding of its sex determination is crucial for developing mosquito control tools, especially genetic sexing strains. In Aedes aegypti, Nix is the primary gene responsible for masculinization and Nix-expressing genetic females develop into fertile, albeit flightless, males. In Ae. albopictus, Nix has also been implicated in masculinization but its role remains to be further characterized. In this work, we establish Ae. albopictus transgenic lines ectopically expressing Nix. Several are composed exclusively of genetic females, with transgenic individuals being phenotypic and functional males due to the expression of the Nix transgene. Their reproductive fitness is marginally impaired, while their flight performance is similar to controls. Overall, our results show that Nix is sufficient for full masculinization in Ae. albopictus. Moreover, the transgene construct contains a fluorescence marker allowing efficient automated sex sorting. Consequently, such strains constitute valuable sexing strains for genetic control. Nix expression with a fluorescent marker in genetically female Ae. albopictus causes masculinization with minimal effects to reproductive fitness and flight performance.
Collapse
|
41
|
Wang Y, Rensink AH, Fricke U, Riddle MC, Trent C, van de Zande L, Verhulst EC. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103724. [PMID: 35093500 DOI: 10.1016/j.ibmb.2022.103724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Sexually dimorphic traits in insects are subject to sexual selection, but our knowledge of the underlying molecular mechanisms is still scarce. Here we investigate how the highly conserved gene, Doublesex (Dsx), is involved in shaping sexual dimorphism in the model parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). First, we present the revised Dsx gene structure including an alternative transcription start, and two additional male NvDsx transcript isoforms. We show sex-specific NvDsx expression and splicing throughout development, and demonstrate that transient NvDsx silencing in different male developmental stages shifts two sexually dimorphic traits from male to female morphology, with the effect being dependent on the timing of silencing. In addition, we determined the effect of NvDsx on the development of reproductive organs. Transient silencing of NvDsx in early male larvae affects the growth and differentiation of the internal and external reproductive tissues. We did not observe phenotypic changes in females after NvDsx silencing. Our results indicate that male NvDsx is required to suppress female-specific traits and/or to promote male-specific traits during distinct developmental windows. This provides new insights into the regulatory activity of Dsx during male wasp development in the Hymenoptera.
Collapse
Affiliation(s)
- Yidong Wang
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Anna H Rensink
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Ute Fricke
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Megan C Riddle
- Biology Department, Western Washington University, Washington, USA
| | - Carol Trent
- Biology Department, Western Washington University, Washington, USA
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Eveline C Verhulst
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands; Wageningen University, Laboratory of Genetics, Wageningen, the Netherlands.
| |
Collapse
|
42
|
Luecke D, Rice G, Kopp A. Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes. Evol Dev 2022; 24:37-60. [PMID: 35239254 PMCID: PMC9179014 DOI: 10.1111/ede.12398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Integrative Biology, Michigan State University
| | - Gavin Rice
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Biological Sciences, University of Pittsburgh
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis
| |
Collapse
|
43
|
Duckhorn JC, Cande J, Metkus MC, Song H, Altamirano S, Stern DL, Shirangi TR. Regulation of Drosophila courtship behavior by the Tlx/tailless-like nuclear receptor, dissatisfaction. Curr Biol 2022; 32:1703-1714.e3. [PMID: 35245457 DOI: 10.1016/j.cub.2022.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Sexually dimorphic courtship behaviors in Drosophila melanogaster develop from the activity of the sexual differentiation genes, doublesex (dsx) and fruitless (fru), functioning with other regulatory factors that have received little attention. The dissatisfaction (dsf) gene encodes an orphan nuclear receptor homologous to vertebrate Tlx and Drosophila tailless that is critical for the development of several aspects of female- and male-specific sexual behaviors. Here, we report the pattern of dsf expression in the central nervous system and show that the activity of sexually dimorphic abdominal interneurons that co-express dsf and dsx is necessary and sufficient for vaginal plate opening in virgin females, ovipositor extrusion in mated females, and abdominal curling in males during courtship. We find that dsf activity results in different neuroanatomical outcomes in females and males, promoting and suppressing, respectively, female development and function of these neurons depending upon the sexual state of dsx expression. We posit that dsf and dsx interact to specify sex differences in the neural circuitry for dimorphic abdominal behaviors.
Collapse
Affiliation(s)
- Julia C Duckhorn
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Jessica Cande
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mary C Metkus
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Hyeop Song
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - Sofia Altamirano
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Troy R Shirangi
- Villanova University, Department of Biology, 800 East Lancaster Ave, Villanova, PA 19085, USA.
| |
Collapse
|
44
|
Borrero-Echeverry F, Solum M, Trona F, Becher PG, Wallin EA, Bengtsson M, Witzgall P, Lebreton S. The female sex pheromone (Z)-4-undecenal mediates flight attraction and courtship in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104355. [PMID: 35007554 DOI: 10.1016/j.jinsphys.2022.104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Specific mate communication and recognition underlies reproduction and hence speciation. Our study provides new insights in Drosophila melanogaster premating olfactory communication. Mate communication evolves during adaptation to ecological niches and makes use of social signals and habitat cues. Female-produced, species-specific volatile pheromone (Z)-4-undecenal (Z4-11Al) and male pheromone (Z)-11-octadecenyl acetate (cVA) interact with food odour in a sex-specific manner. Furthermore, Z4-11Al, which mediates upwind flight attraction in both sexes, also elicits courtship in experienced males. Two isoforms of the olfactory receptor Or69a are co-expressed in the same olfactory sensory neurons. Z4-11Al is perceived via Or69aB, while the food odorant (R)-linalool is a main ligand for the other variant, Or69aA. However, only Z4-11Al mediates courtship in experienced males, not (R)-linalool. Behavioural discrimination is reflected by calcium imaging of the antennal lobe, showing distinct glomerular activation patterns by these two compounds. Male sex pheromone cVA is known to affect male and female courtship at close range, but does not elicit upwind flight attraction as a single compound, in contrast to Z4-11Al. A blend of the food odour vinegar and cVA attracted females, while a blend of vinegar and female pheromone Z4-11Al attracted males, instead. Sex-specific upwind flight attraction to blends of food volatiles and male and female pheromone, respectively, adds a new element to Drosophila olfactory premating communication and is an unambiguous paradigm for identifying the behaviourally active components, towards a more complete concept of food-pheromone odour objects.
Collapse
Affiliation(s)
- Felipe Borrero-Echeverry
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; Corporación Colombiana de Investgación Agropecuaria, Agrosavia, Mosquera, Colombia
| | - Marit Solum
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Federica Trona
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Paul G Becher
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Marie Bengtsson
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Peter Witzgall
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Sebastien Lebreton
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; IRSEA, Research Institute for Semiochemistry and Applied Ethology, Quartier Salignan, 84400 Apt, France
| |
Collapse
|
45
|
Peng Q, Chen J, Wang R, Zhu H, Han C, Ji X, Pan Y. The sex determination gene doublesex regulates expression and secretion of the basement membrane protein Collagen IV. J Genet Genomics 2022; 49:636-644. [PMID: 35017121 DOI: 10.1016/j.jgg.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The highly conserved doublesex (dsx) and doublesex/mab-3 related (Dmrt) genes control sexually dimorphic traits across animals. The dsx gene encodes sex-specific transcription factors, DsxM in males and DsxF in females, which function differentially and often oppositely to establish sexual dimorphism. Here, we report that mutations in dsx, or overexpression of dsx, result in abnormal distribution of the basement membrane (BM) protein Collagen IV in the fat body. We find that Dsx isoforms regulate the expression of Collagen IV in the fat body and its secretion into the BM of other tissues. We identify the procollagen lysyl hydroxylase (dPlod) gene, which is involved in the biosynthesis of Collagen IV, as a direct target of Dsx. We further show that Dsx regulates Collagen IV through dPlod-dependent and independent pathways. These findings reveal how Dsx isoforms function in the secretory fat body to regulate Collagen IV and remotely establish sexual dimorphism.
Collapse
Affiliation(s)
- Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Huan Zhu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Caihong Han
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
46
|
Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev 2022; 16:112-125. [PMID: 34515237 PMCID: PMC8885888 DOI: 10.1159/000518272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.
Collapse
Affiliation(s)
- David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark W. Murphy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
Peng Q, Chen J, Pan Y. From fruitless to sex: On the generation and diversification of an innate behavior. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12772. [PMID: 34672079 DOI: 10.1111/gbb.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Male sexual behavior in Drosophila melanogaster, largely controlled by the fruitless (fru) gene encoding the male specific FruM protein, is among the best studied animal behaviors. Although substantial studies suggest that FruM specifies a neuronal circuitry governing all aspects of male sexual behaviors, recent findings show that FruM is not absolutely necessary for such behaviors. We propose that another regulatory gene doublesex encoding the male-specific DsxM protein builds a core neuronal circuitry that possesses the potential for courtship, which could be either induced through adult social experience or innately manifested during development by FruM expression in a broader neuronal circuitry. FruM expression levels and patterns determine the modes of courtship behavior from innate heterosexual, homosexual, bisexual, to learned courtship. We discuss how FruM expression is regulated by hormones and social experiences and tunes functional flexibility of the sex circuitry. We propose that regulatory genes hierarchically build the potential for innate and learned aspects of courtship behaviors, and expression changes of these regulatory genes among different individuals and species with different social experiences ultimately lead to behavioral diversification.
Collapse
Affiliation(s)
- Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
48
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
49
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
50
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|