1
|
Rentsch D, Bergs A, Shao J, Elvers N, Ruse C, Seidenthal M, Aoki I, Gottschalk A. Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans. Genetics 2025; 229:1-48. [PMID: 39110015 PMCID: PMC11708922 DOI: 10.1093/genetics/iyae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 01/11/2025] Open
Abstract
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Christiane Ruse
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
2
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? Genetics 2025; 229:1-36. [PMID: 39475455 PMCID: PMC11708918 DOI: 10.1093/genetics/iyae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that do not inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here, I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggests that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Zdraljevic S, Walter-McNeill L, Bruni GN, Bloom JS, Leighton DH, Collins J, Marquez H, Alexander N, Kruglyak L. Divergent C. elegans toxin alleles are suppressed by distinct mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591160. [PMID: 39605437 PMCID: PMC11601442 DOI: 10.1101/2024.04.26.591160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Toxin-antidote elements (TAs) are selfish DNA sequences that bias their transmission to the next generation. TAs typically consist of two linked genes: a toxin and an antidote. The toxin kills progeny that do not inherit the TA, while the antidote counteracts the toxin in progeny that inherit the TA. We previously discovered two TAs in C. elegans that follow the canonical TA model of two linked genes: peel-1/zeel-1 and sup-35/pha-1. Here, we report a new TA that exists in three distinct states across the C. elegans population. The canonical TA, which is found in isolates from the Hawaiian islands, consists of two genes that encode a maternally deposited toxin (MLL-1) and a zygotically expressed antidote (SMLL-1). The toxin induces larval lethality in embryos that do not inherit the antidote gene. A second version of the TA has lost the toxin gene but retains a partially functional antidote. Most C. elegans isolates, including the standard laboratory strain N2, carry a highly divergent allele of the toxin that has retained its activity, but have lost the antidote through pseudogenization. We show that the N2 toxin allele has acquired mutations that enable piRNA binding to initiate MUT-16-dependent 22G small RNA amplification that targets the transcript for degradation. The N2 haplotype represents the first naturally occurring unlinked toxin-antidote system where the toxin is post-transcriptionally suppressed by endogenous small RNA pathways.
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Giancarlo N. Bruni
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Joshua S. Bloom
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Daniel H.W. Leighton
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - J.B. Collins
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Heriberto Marquez
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Noah Alexander
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Hua Y, Zhang J, Yang MY, Zhang FY, Ren JY, Lyu XH, Ding Y, Suo F, Shao GC, Li J, Dong MQ, Ye K, Du LL. A meiotic driver hijacks an epigenetic reader to disrupt mitosis in noncarrier offspring. Proc Natl Acad Sci U S A 2024; 121:e2408347121. [PMID: 39485795 PMCID: PMC11551393 DOI: 10.1073/pnas.2408347121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
Killer meiotic drivers (KMDs) are selfish genetic elements that distort Mendelian inheritance by selectively killing meiotic products lacking the KMD element, thereby promoting their own propagation. Although KMDs have been found in diverse eukaryotes, only a limited number of them have been characterized at the molecular level, and their killing mechanisms remain largely unknown. In this study, we identify that a gene previously deemed essential for cell survival in the fission yeast Schizosaccharomyces pombe is a single-gene KMD. This gene, tdk1, kills nearly all tdk1Δ progeny in a tdk1+ × tdk1Δ cross. By analyzing polymorphisms of tdk1 among natural strains, we identify a resistant haplotype, HT3. This haplotype lacks killing ability yet confers resistance to killing by the wild-type tdk1. Proximity labeling experiments reveal an interaction between Tdk1, the protein product of tdk1, and the epigenetic reader Bdf1. Interestingly, the nonkilling Tdk1-HT3 variant does not interact with Bdf1. Cryoelectron microscopy further elucidated the binding interface between Tdk1 and Bdf1, pinpointing mutations within Tdk1-HT3 that disrupt this interface. During sexual reproduction, Tdk1 forms stable Bdf1-binding nuclear foci in all spores after meiosis. These foci persist in germinated tdk1Δ progeny and impede chromosome segregation during mitosis by generating aberrant chromosomal adhesions. This study identifies a KMD that masquerades as an essential gene and reveals the molecular mechanism by which this KMD hijacks cellular machinery to execute killing. Additionally, we unveil that losing the hijacking ability is an evolutionary path for this single-gene KMD to evolve into a nonkilling resistant haplotype.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing102206, China
| | - Fan-Yi Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing102206, China
| | - Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing102206, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing102206, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing102206, China
| | - Jun Li
- National Institute of Biological Sciences, Beijing102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
5
|
Hua Y, Zhang J, Yang MY, Ren JY, Suo F, Liang L, Dong MQ, Ye K, Du LL. Structural duality enables a single protein to act as a toxin-antidote pair for meiotic drive. Proc Natl Acad Sci U S A 2024; 121:e2408618121. [PMID: 39485800 PMCID: PMC11551426 DOI: 10.1073/pnas.2408618121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
In sexual reproduction, selfish genetic elements known as killer meiotic drivers (KMDs) bias inheritance by eliminating gametes that do not carry them. The selective killing behavior of most KMDs can be explained by a toxin-antidote model, where a toxin harms all gametes while an antidote provides resistance to the toxin in carriers. This study investigates whether and how the KMD element tdk1 in the fission yeast Schizosaccharomyces pombe deploys this strategy. Intriguingly, tdk1 relies on a single protein product, Tdk1, for both killing and resistance. We show that Tdk1 exists in a nontoxic tetrameric form during vegetative growth and meiosis but transforms into a distinct toxic form in spores. This toxic form acquires the ability to interact with the histone reader Bdf1 and assembles into supramolecular foci that disrupt mitosis in noncarriers after spore germination. In contrast, Tdk1 synthesized during germination of carrier spores is nontoxic and acts as an antidote, dismantling the preformed toxic Tdk1 assemblies. Replacement of the N-terminal region of Tdk1 with a tetramer-forming peptide reveals its dual roles in imposing an autoinhibited tetrameric conformation and facilitating the assembly of supramolecular foci when autoinhibition is released. Moreover, we successfully reconstituted a functional KMD element by combining a construct that exclusively expresses Tdk1 during meiosis ("toxin-only") with another construct that expresses Tdk1 specifically during germination ("antidote-only"). This work uncovers a remarkable example of a single protein employing structural duality to form a toxin-antidote pair, expanding our understanding of the mechanisms underlying toxin-antidote systems.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing102206, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing102206, China
| | - Lingfei Liang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
6
|
Rockman MV. Parental-effect gene-drive elements under partial selfing, or why do Caenorhabditis genomes have hyperdivergent regions? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604817. [PMID: 39091748 PMCID: PMC11291142 DOI: 10.1101/2024.07.23.604817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
7
|
Caro L, Wei AD, Thomas CA, Posch G, Uremis A, Franzi MC, Abell SJ, Laszlo AH, Gundlach JH, Ramirez JM, Ailion M. Mechanism of an animal toxin-antidote system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598564. [PMID: 38915716 PMCID: PMC11195288 DOI: 10.1101/2024.06.11.598564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Toxin-antidote systems are selfish genetic elements composed of a linked toxin and antidote. The peel-1 zeel-1 toxin-antidote system in C. elegans consists of a transmembrane toxin protein PEEL-1 which acts cell autonomously to kill cells. Here we investigate the molecular mechanism of PEEL-1 toxicity. We find that PEEL-1 requires a small membrane protein, PMPL-1, for toxicity. Together, PEEL-1 and PMPL-1 are sufficient for toxicity in a heterologous system, HEK293T cells, and cause cell swelling and increased cell permeability to monovalent cations. Using purified proteins, we show that PEEL-1 and PMPL-1 allow ion flux through lipid bilayers and generate currents which resemble ion channel gating. Our work suggests that PEEL-1 kills cells by co-opting PMPL-1 and creating a cation channel.
Collapse
Affiliation(s)
- Lews Caro
- Molecular and Cellular Biology Ph.D. Program, University of Washington; Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington; Seattle, WA 91895, USA
| | - Aguan D. Wei
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute; Seattle, WA 98101, USA
| | | | - Galen Posch
- Department of Biochemistry, University of Washington; Seattle, WA 91895, USA
| | - Ahmet Uremis
- Department of Biochemistry, University of Washington; Seattle, WA 91895, USA
| | | | - Sarah J. Abell
- Department of Physics, University of Washington; Seattle, WA 91895, USA
| | - Andrew H. Laszlo
- Department of Physics, University of Washington; Seattle, WA 91895, USA
| | - Jens H. Gundlach
- Department of Physics, University of Washington; Seattle, WA 91895, USA
| | - Jan-Marino Ramirez
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute; Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington School of Medicine; Seattle, WA 98104, USA
| | - Michael Ailion
- Molecular and Cellular Biology Ph.D. Program, University of Washington; Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington; Seattle, WA 91895, USA
| |
Collapse
|
8
|
Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF. The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans. EMBO Rep 2024; 25:2698-2721. [PMID: 38744971 PMCID: PMC11169420 DOI: 10.1038/s44319-024-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.
Collapse
Affiliation(s)
- Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen F Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Breimann L, Bahry E, Zouinkhi M, Kolyvanov K, Street LA, Preibisch S, Ercan S. Analysis of developmental gene expression using smFISH and in silico staging of C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594414. [PMID: 38798598 PMCID: PMC11118362 DOI: 10.1101/2024.05.15.594414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Regulation of transcription during embryogenesis is key to development and differentiation. To study transcript expression throughout Caenorhabditis elegans embryogenesis at single-molecule resolution, we developed a high-throughput single-molecule fluorescence in situ hybridization (smFISH) method that relies on computational methods to developmentally stage embryos and quantify individual mRNA molecules in single embryos. We applied our system to sdc-2, a zygotically transcribed gene essential for hermaphrodite development and dosage compensation. We found that sdc-2 is rapidly activated during early embryogenesis by increasing both the number of mRNAs produced per transcription site and the frequency of sites engaged in transcription. Knockdown of sdc-2 and dpy-27, a subunit of the dosage compensation complex (DCC), increased the number of active transcription sites for the X chromosomal gene dpy-23 but not the autosomal gene mdh-1, suggesting that the DCC reduces the frequency of dpy-23 transcription. The temporal resolution from in silico staging of embryos showed that the deletion of a single DCC recruitment element near the dpy-23 gene causes higher dpy-23 mRNA expression after the start of dosage compensation, which could not be resolved using mRNAseq from mixed-stage embryos. In summary, we have established a computational approach to quantify temporal regulation of transcription throughout C. elegans embryogenesis and demonstrated its potential to provide new insights into developmental gene regulation.
Collapse
Affiliation(s)
- Laura Breimann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ella Bahry
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Helmholtz Imaging, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Marwan Zouinkhi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Klim Kolyvanov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lena Annika Street
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Stephan Preibisch
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
10
|
Delmore K, Justen H, Kay KM, Kitano J, Moyle LC, Stelkens R, Streisfeld MA, Yamasaki YY, Ross J. Genomic Approaches Are Improving Taxonomic Representation in Genetic Studies of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041438. [PMID: 37848243 PMCID: PMC10835617 DOI: 10.1101/cshperspect.a041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Until recently, our understanding of the genetics of speciation was limited to a narrow group of model species with a specific set of characteristics that made genetic analysis feasible. Rapidly advancing genomic technologies are eliminating many of the distinctions between laboratory and natural systems. In light of these genomic developments, we review the history of speciation genetics, advances that have been gleaned from model and non-model organisms, the current state of the field, and prospects for broadening the diversity of taxa included in future studies. Responses to a survey of speciation scientists across the world reveal the ongoing division between the types of questions that are addressed in model and non-model organisms. To bridge this gap, we suggest integrating genetic studies from model systems that can be reared in the laboratory or greenhouse with genomic studies in related non-models where extensive ecological knowledge exists.
Collapse
Affiliation(s)
- Kira Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California 93740, USA
| |
Collapse
|
11
|
Chou HT, Valencia F, Alexander JC, Bell AD, Deb D, Pollard DA, Paaby AB. Diversification of small RNA pathways underlies germline RNA interference incompetence in wild Caenorhabditis elegans strains. Genetics 2024; 226:iyad191. [PMID: 37865119 PMCID: PMC10763538 DOI: 10.1093/genetics/iyad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 10/23/2023] Open
Abstract
The discovery that experimental delivery of dsRNA can induce gene silencing at target genes revolutionized genetics research, by both uncovering essential biological processes and creating new tools for developmental geneticists. However, the efficacy of exogenous RNA interference (RNAi) varies dramatically within the Caenorhabditis elegans natural population, raising questions about our understanding of RNAi in the lab relative to its activity and significance in nature. Here, we investigate why some wild strains fail to mount a robust RNAi response to germline targets. We observe diversity in mechanism: in some strains, the response is stochastic, either on or off among individuals, while in others, the response is consistent but delayed. Increased activity of the Argonaute PPW-1, which is required for germline RNAi in the laboratory strain N2, rescues the response in some strains but dampens it further in others. Among wild strains, genes known to mediate RNAi exhibited very high expression variation relative to other genes in the genome as well as allelic divergence and strain-specific instances of pseudogenization at the sequence level. Our results demonstrate functional diversification in the small RNA pathways in C. elegans and suggest that RNAi processes are evolving rapidly and dynamically in nature.
Collapse
Affiliation(s)
- Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jacqueline C Alexander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Diptodip Deb
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Janelia Research Campus, Ashburn, VA 20147, USA
| | - Daniel A Pollard
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
13
|
You S, Zhao Z, Yu X, Zhu S, Wang J, Lei D, Zhou J, Li J, Chen H, Xiao Y, Chen W, Wang Q, Lu J, Chen K, Zhou C, Zhang X, Cheng Z, Guo X, Ren Y, Zheng X, Liu S, Liu X, Tian Y, Jiang L, Tao D, Wu C, Wan J. A toxin-antidote system contributes to interspecific reproductive isolation in rice. Nat Commun 2023; 14:7528. [PMID: 37980335 PMCID: PMC10657391 DOI: 10.1038/s41467-023-43015-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/18/2023] [Indexed: 11/20/2023] Open
Abstract
Breakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer). Here, we report the cloning of qHMS1, a quantitative trait locus controlling hybrid male sterility between these two species. Like qHMS7, another locus we cloned previously, qHMS1 encodes a toxin-antidote system, but differs in the encoded proteins, their evolutionary origin, and action time point during pollen development. In plants heterozygous at qHMS1, ~ 50% of pollens carrying qHMS1-D (an allele from cultivated rice) are selectively killed. In plants heterozygous at both qHMS1 and qHMS7, ~ 75% pollens without co-presence of qHMS1-Mer and qHMS7-D are selectively killed, indicating that the antidotes function in a toxin-dependent manner. Our results indicate that different toxin-antidote systems provide stacked reproductive isolation for maintaining species identity and shed light on breakdown of hybrid male sterility.
Collapse
Affiliation(s)
- Shimin You
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Dekun Lei
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jiawu Zhou
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, 650200, P. R. China
| | - Jing Li
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, 650200, P. R. China
| | - Haiyuan Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yanjia Xiao
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Weiwei Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Qiming Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jiayu Lu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Keyi Chen
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Dayun Tao
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, 650200, P. R. China.
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
14
|
Perdomo-González DI, Id-Lahoucine S, Molina A, Cánovas A, Laseca N, Azor PJ, Valera M. Transmission ratio distortion detection by neutral genetic markers in the Pura Raza Española horse breed. Animal 2023; 17:101012. [PMID: 37950978 DOI: 10.1016/j.animal.2023.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023] Open
Abstract
Transmission Ratio Distortion (TRD) is a genetic phenomenon widely demonstrated in several livestock species, but barely in equine species. The TRD occurs when certain genotypes are over- or under-represented in the offspring of a particular mating and can be caused by a variety of factors during gamete formation or during embryonic development. For this study, 126 394 trios consisting of a stallion, mare, and offspring were genotyped using a panel of 17 neutral microsatellite markers recommended by the International Society for Animal Genetics for paternity tests and individual identification. The number of alleles available for each marker ranges from 13 to 18, been 268 the total number of alleles investigated. The TRDscan v.2.0 software was used with the biallelic procedure to identify regions with distorted segregation ratios. After completing the analysis, a total of 12 alleles (out of 11 microsatellites) were identified with decisive evidence for genotypic TRD; 3 and 9 with additive and heterosis patterns, respectively. In addition, 19 alleles (out of 10 microsatellites) were identified displaying allelic TRD. Among them, 14 and 5 were parent-unspecific and stallion-mare-specific TRD. Out of the TRD regions, 24 genes were identified and annotated, predominantly associated with cholesterol metabolism and homeostasis. These genes are often linked to non-specific symptoms like impaired fertility, stunted growth, and compromised overall health. The results suggest a significant impact on the inheritance of certain genetic traits in horses. Further analysis and validation are needed to better understand the TRD impact before the potential implementation in the horse breeding programme strategies.
Collapse
Affiliation(s)
| | - S Id-Lahoucine
- Department of Animal and Veterinary Science, Scotland's Rural College, Easter Bush, Edinburgh EH25 9RG, United Kingdom
| | - A Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba 14014, Spain
| | - A Cánovas
- Center of Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - N Laseca
- Departamento de Genética, Universidad de Córdoba, Córdoba 14014, Spain
| | - P J Azor
- Real Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Sevilla 41014, Spain
| | - M Valera
- Departamento de Agronomía, ETSIA, Universidad de Sevilla, Sevilla 41005, Spain
| |
Collapse
|
15
|
Long L, Xu W, Valencia F, Paaby AB, McGrath PT. A toxin-antidote selfish element increases fitness of its host. eLife 2023; 12:e81640. [PMID: 37874324 PMCID: PMC10629817 DOI: 10.7554/elife.81640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/23/2023] [Indexed: 10/25/2023] Open
Abstract
Selfish genetic elements can promote their transmission at the expense of individual survival, creating conflict between the element and the rest of the genome. Recently, a large number of toxin-antidote (TA) post-segregation distorters have been identified in non-obligate outcrossing nematodes. Their origin and the evolutionary forces that keep them at intermediate population frequencies are poorly understood. Here, we study a TA element in Caenorhabditis elegans called zeel-1;peel-1. Two major haplotypes of this locus, with and without the selfish element, segregate in C. elegans. We evaluate the fitness consequences of the zeel-1;peel-1 element outside of its role in gene drive in non-outcrossing animals and demonstrate that loss of the toxin peel-1 decreased fitness of hermaphrodites and resulted in reductions in fecundity and body size. These findings suggest a biological role for peel-1 beyond toxin lethality. This work demonstrates that a TA element can provide a fitness benefit to its hosts either during their initial evolution or by being co-opted by the animals following their selfish spread. These findings guide our understanding on how TA elements can remain in a population where gene drive is minimized, helping resolve the mystery of prevalent TA elements in selfing animals.
Collapse
Affiliation(s)
- Lijiang Long
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Wen Xu
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
16
|
Sepulveda NB, Chen D, Petrella LN. Moderate heat stress-induced sterility is due to motility defects and reduced mating drive in Caenorhabditis elegans males. J Exp Biol 2023; 226:jeb245546. [PMID: 37724024 DOI: 10.1242/jeb.245546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.
Collapse
Affiliation(s)
- Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Donald Chen
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| |
Collapse
|
17
|
Cahoon CK, Richter CM, Dayton AE, Libuda DE. Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans. eLife 2023; 12:e84538. [PMID: 37796106 PMCID: PMC10611432 DOI: 10.7554/elife.84538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
In sexually reproducing organisms, germ cells faithfully transmit the genome to the next generation by forming haploid gametes, such as eggs and sperm. Although most meiotic proteins are conserved between eggs and sperm, many aspects of meiosis are sexually dimorphic, including the regulation of recombination. The synaptonemal complex (SC), a large ladder-like structure that forms between homologous chromosomes, is essential for regulating meiotic chromosome organization and promoting recombination. To assess whether sex-specific differences in the SC underpin sexually dimorphic aspects of meiosis, we examined Caenorhabditis elegans SC central region proteins (known as SYP proteins) in oogenesis and spermatogenesis and uncovered sex-specific roles for the SYPs in regulating meiotic recombination. We find that SC composition, specifically SYP-2, SYP-3, SYP-5, and SYP-6, is regulated by sex-specific mechanisms throughout meiotic prophase I. During pachytene, both oocytes and spermatocytes differentially regulate the stability of SYP-2 and SYP-3 within an assembled SC. Further, we uncover that the relative amount of SYP-2 and SYP-3 within the SC is independently regulated in both a sex-specific and a recombination-dependent manner. Specifically, we find that SYP-2 regulates the early steps of recombination in both sexes, while SYP-3 controls the timing and positioning of crossover recombination events across the genomic landscape in only oocytes. Finally, we find that SYP-2 and SYP-3 dosage can influence the composition of the other SYPs in the SC via sex-specific mechanisms during pachytene. Taken together, we demonstrate dosage-dependent regulation of individual SC components with sex-specific functions in recombination. These sexual dimorphic features of the SC provide insights into how spermatogenesis and oogenesis adapted similar chromosome structures to differentially regulate and execute recombination.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Amelia E Dayton
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
18
|
Crawford MW, Posch G, Cattin-Ortolá J, Topalidou I, Ailion M. Mutations in the NXF-1:NXT-1 mRNA export complex affect gene-expression driven by the hsp-16.41 promoter. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000918. [PMID: 37583452 PMCID: PMC10423990 DOI: 10.17912/micropub.biology.000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
The NXF-1 : NXT-1 heterodimer is essential for the nuclear export of mRNA. Here we describe three new alleles of nxf-1 and one allele of nxt-1 isolated from a forward genetic screen. These mutations cause no apparent phenotype under normal growth conditions, but partially suppress the lethality caused by heat-shock induced expression of the PEEL-1 toxin from P hsp-16.41 :: peel-1 . There is also decreased expression of P hsp-16.41 ::eGFP in an nxf-1 mutant. We propose that NXF-1 : NXT-1 influences the expression of heat-shock activated genes due to a role in the recruitment of the hsp-16.41 promoter to the nuclear pore complex during heat-shock.
Collapse
Affiliation(s)
| | - Galen Posch
- Department of Biochemistry, University of Washington, Seattle, WA USA
| | | | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA USA
| |
Collapse
|
19
|
Kukhtar D, Fussenegger M. Synthetic biology in multicellular organisms: Opportunities in nematodes. Biotechnol Bioeng 2023. [PMID: 37448225 DOI: 10.1002/bit.28497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Cutter AD. Synthetic gene drives as an anthropogenic evolutionary force. Trends Genet 2023; 39:347-357. [PMID: 36997427 DOI: 10.1016/j.tig.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/30/2023]
Abstract
Genetic drive represents a fundamental evolutionary force that can exact profound change to the genetic composition of populations by biasing allele transmission. Herein I propose that the use of synthetic homing gene drives, the human-mediated analog of endogenous genetic drives, warrants the designation of 'genetic welding' as an anthropogenic evolutionary force. Conceptually, this distinction parallels that of artificial and natural selection. Genetic welding is capable of imposing complex and rapid heritable phenotypic change on entire populations, whether motivated by biodiversity conservation or public health. Unanticipated possible long-term evolutionary outcomes, however, demand further investigation and bioethical consideration. The emerging importance of genetic welding also compels our explicit recognition of genetic drive as an addition to the other four fundamental forces of evolution.
Collapse
|
22
|
Mok C, Xiao MA, Wan YC, Zhao W, Ahmed SM, Luallen RJ, Reinke AW. High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathog 2023; 19:e1011225. [PMID: 36893187 PMCID: PMC10030041 DOI: 10.1371/journal.ppat.1011225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.
Collapse
Affiliation(s)
- Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meng A. Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yin C. Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shanzeh M. Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Wang W, Flury AG, Rodriguez AT, Garrison JL, Brem RB. A role for worm cutl-24 in background- and parent-of-origin-dependent ER stress resistance. BMC Genomics 2022; 23:842. [PMID: 36539699 PMCID: PMC9764823 DOI: 10.1186/s12864-022-09063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perform poorly in organismal systems that lack high rates of meiotic recombination, like Caenorhabditis worms. RESULTS Here we discovered unique ER stress resistance in a wild Kenyan C. elegans isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed, cuticlin-like gene cutl-24 for validation. In gene-disruption and controlled crossing experiments, we found that cutl-24 was required in Kenyan hermaphrodite mothers for ER stress tolerance in their inter-strain hybrid offspring; cutl-24 was also a contributor to the trait in purebred backgrounds. CONCLUSIONS These data establish the Kenyan strain allele of cutl-24 as a determinant of a natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity in invertebrate animals without the need for a panel of meiotic recombinants.
Collapse
Affiliation(s)
- Wenke Wang
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Anna G Flury
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Andrew T Rodriguez
- Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
- Department of Cellular and Molecular Pharmacology, UC San Francisco, San Francisco, CA, United States.
- Global Consortium for Reproductive Longevity & Equality, Novato, CA, United States.
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, United States.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
24
|
Ding Q, Ren X, Li R, Chan L, Ho VWS, Bi Y, Xie D, Zhao Z. Highly efficient transgenesis with miniMos in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2022; 12:jkac254. [PMID: 36171682 PMCID: PMC9713419 DOI: 10.1093/g3journal/jkac254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Caenorhabditis briggsae as a companion species for Caenorhabditis elegans has played an increasingly important role in study of evolution of development and genome and gene regulation. Aided by the isolation of its sister spices, it has recently been established as a model for speciation study. To take full advantage of the species for comparative study, an effective transgenesis method especially those with single-copy insertion is important for functional comparison. Here, we improved a transposon-based transgenesis methodology that had been originally developed in C. elegans but worked marginally in C. briggsae. By incorporation of a heat shock step, the transgenesis efficiency in C. briggsae with a single-copy insertion is comparable to that in C. elegans. We used the method to generate 54 independent insertions mostly consisting of a mCherry tag over the C. briggsae genome. We demonstrated the use of the tags in identifying interacting loci responsible for hybrid male sterility between C. briggsae and Caenorhabditis nigoni when combined with the GFP tags we generated previously. Finally, we demonstrated that C. briggsae tolerates the C. elegans toxin, PEEL-1, but not SUP-35, making the latter a potential negative selection marker against extrachromosomal array.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Luyan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
25
|
Revathi K, Subramaniam K. An efficient negative selection marker for Mos1 -mediated single-copy integration in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000647. [PMID: 36338151 PMCID: PMC9634457 DOI: 10.17912/micropub.biology.000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Mos1 -mediated single-copy integration (MosSCI) in C. elegans relies on the introduction of plasmid constructs into the germ line. Such plasmids form extrachromosomal arrays containing multiple copies of the transgene. Presently, one positive-selection and four negative-selection reporters are used to identify animals that carry the integrated transgene but not the array. Even with four reporters, the negative selection is inefficient. Here, we show that the expression of the toxic protein PEEL-1 from a transgene containing the endogenous peel-1 introns kills all array-carrying animals, which facilitates efficient selection of animals carrying the integrated transgene.
Collapse
Affiliation(s)
- Kandan Revathi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
26
|
Nyaanga J, Andersen EC. Linkage mapping reveals loci that underlie differences in Caenorhabditis elegans growth. G3 GENES|GENOMES|GENETICS 2022; 12:6663991. [PMID: 35961034 PMCID: PMC9526057 DOI: 10.1093/g3journal/jkac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured postembryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856) and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body growth. We further examined these growth-associated quantitative trait loci using chromosome substitution strains and near-isogenic lines and validated the chromosome X quantitative trait loci. In addition, we generated a list of candidate genes for the chromosome X quantitative trait loci. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of growth in Caenorhabditis elegans natural populations.
Collapse
Affiliation(s)
- Joy Nyaanga
- Department of Molecular Biosciences, Northwestern University , Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University , Evanston, IL 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University , Evanston, IL 60208, USA
| |
Collapse
|
27
|
Velazco-Cruz L, Ross JA. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay. PLoS One 2022; 17:e0272843. [PMID: 35951524 PMCID: PMC9371335 DOI: 10.1371/journal.pone.0272843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying the alleles that reduce hybrid fitness is a major goal in the study of speciation genetics. It is rare to identify systems in which hybrid incompatibilities with minor phenotypic effects are segregating in genetically diverse populations of the same biological species. Such traits do not themselves cause reproductive isolation but might initiate the process. In the nematode Caenorhabditis briggsae, a small percent of F2 generation hybrids between two natural populations suffer from developmental delay, in which adulthood is reached after approximately 33% more time than their wild-type siblings. Prior efforts to identify the genetic basis for this hybrid incompatibility assessed linkage using one or two genetic markers on chromosome III and suggested that delay is caused by a toxin-antidote element. Here, we have genotyped F2 hybrids using multiple chromosome III markers to refine the developmental delay locus. Also, to better define the developmental delay phenotype, we measured the development rate of 66 F2 hybrids and found that delay is not restricted to a particular larval developmental stage. Deviation of the developmental delay frequency from hypothetical expectations for a toxin-antidote element adds support to the assertion that the epistatic interaction is not fully penetrant. Our mapping and refinement of the delay phenotype motivates future efforts to study the genetic architecture of hybrid dysfunction between genetically distinct populations of one species by identifying the underlying loci.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Department of Biology, California State University, Fresno, California, United States of America
| | - Joseph A. Ross
- Department of Biology, California State University, Fresno, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Simon M, Durand S, Ricou A, Vrielynck N, Mayjonade B, Gouzy J, Boyer R, Roux F, Camilleri C, Budar F. APOK3, a pollen killer antidote in Arabidopsis thaliana. Genetics 2022; 221:6603116. [PMID: 35666201 DOI: 10.1093/genetics/iyac089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The principles of heredity state that the two alleles carried by a heterozygote are equally transmitted to the progeny. However, genomic regions that escape this rule have been reported in many organisms. It is notably the case of genetic loci referred to as gamete killers, where one allele enhances its transmission by causing the death of the gametes that do not carry it. Gamete killers are of great interest, particularly to understand mechanisms of evolution and speciation. Although being common in plants, only a few, all in rice, have so far been deciphered to the causal genes. Here, we studied a pollen killer found in hybrids between two accessions of Arabidopsis thaliana. Exploring natural variation, we observed this pollen killer in many crosses within the species. Genetic analyses revealed that three genetically linked elements are necessary for pollen killer activity. Using mutants, we showed that this pollen killer works according to a poison-antidote model, where the poison kills pollen grains not producing the antidote. We identified the gene encoding the antidote, a chimeric protein addressed to mitochondria. De novo genomic sequencing in twelve natural variants with different behaviors regarding the pollen killer revealed a hyper variable locus, with important structural variations particularly in killer genotypes, where the antidote gene recently underwent duplications. Our results strongly suggest that the gene has newly evolved within A. thaliana. Finally, we identified in the protein sequence polymorphisms related to its antidote activity.
Collapse
Affiliation(s)
- Matthieu Simon
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Stéphanie Durand
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Anthony Ricou
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Nathalie Vrielynck
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | | | - Jérôme Gouzy
- LIPME,Université de Toulouse,INRAE,CNRS, 31326 Castanet-Tolosan, France
| | - Roxane Boyer
- INRAE, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France(doi : 10.15454/1.5572370921303193E12)
| | - Fabrice Roux
- LIPME,Université de Toulouse,INRAE,CNRS, 31326 Castanet-Tolosan, France
| | - Christine Camilleri
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Françoise Budar
- Université Paris-Saclay,INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
29
|
Kasimatis KR, Moerdyk-Schauwecker MJ, Lancaster R, Smith A, Willis JH, Phillips PC. Post-insemination selection dominates pre-insemination selection in driving rapid evolution of male competitive ability. PLoS Genet 2022; 18:e1010063. [PMID: 35157717 PMCID: PMC8880957 DOI: 10.1371/journal.pgen.1010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual reproduction is a complex process that contributes to differences between the sexes and divergence between species. From a male’s perspective, sexual selection can optimize reproductive success by acting on the variance in mating success (pre-insemination selection) as well as the variance in fertilization success (post-insemination selection). The balance between pre- and post-insemination selection has not yet been investigated using a strong hypothesis-testing framework that directly quantifies the effects of post-insemination selection on the evolution of reproductive success. Here we use experimental evolution of a uniquely engineered genetic system that allows sperm production to be turned off and on in obligate male-female populations of Caenorhabditis elegans. We show that enhanced post-insemination competition increases the efficacy of selection and surpasses pre-insemination sexual selection in driving a polygenic response in male reproductive success. We find that after 10 selective events occurring over 30 generations post-insemination selection increased male reproductive success by an average of 5- to 7-fold. Contrary to expectation, enhanced pre-insemination competition hindered selection and slowed the rate of evolution. Furthermore, we found that post-insemination selection resulted in a strong polygenic response at the whole-genome level. Our results demonstrate that post-insemination sexual selection plays a critical role in the rapid optimization of male reproductive fitness. Therefore, explicit consideration should be given to post-insemination dynamics when considering the population effects of sexual selection. Some of the most dramatic and diverse phenotypes observed in nature––such as head-butting in wild sheep and the elaborate tails of peacocks––are sexually dimorphic. These remarkable phenotypes are a result of sexual selection optimizing reproductive success in females and males independently. For males, total reproductive success is comprised of winning a mating event and then translating that mating event into a fertilization event. Therefore, to understand not only how male reproductive success is comprised, but also how it evolves, we must examine the interaction between pre- and post-insemination sexual selection. We combine environmentally-inducible control of sperm production within a highly reproducible factorial experimental evolution design to directly quantify the contribution of post-insemination selection to male reproductive evolution. We demonstrate that enhanced sperm competition increases the efficacy of selection and enhances the rate of male evolution. Alternatively, we show that enhanced pre-insemination competition slows the evolutionary rate. Using whole-genome approaches, we identify over 60 genes that contribute to male fertilization success. Brought together, our new approaches and results demonstrate that the unseen world of molecular interactions occurring during post-insemination are as fundamentally important as pre-mating factors.
Collapse
Affiliation(s)
- Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KRK); (PCP)
| | | | - Ruben Lancaster
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Alexander Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KRK); (PCP)
| |
Collapse
|
30
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
31
|
Snoek BL, Sterken MG, Nijveen H, Volkers RJM, Riksen J, Rosenstiel PC, Schulenburg H, Kammenga JE. The genetics of gene expression in a Caenorhabditis elegans multiparental recombinant inbred line population. G3 (BETHESDA, MD.) 2021; 11:jkab258. [PMID: 34568931 PMCID: PMC8496280 DOI: 10.1093/g3journal/jkab258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
Studying genetic variation of gene expression provides a powerful way to unravel the molecular components underlying complex traits. Expression quantitative trait locus (eQTL) studies have been performed in several different model species, yet most of these linkage studies have been based on the genetic segregation of two parental alleles. Recently, we developed a multiparental segregating population of 200 recombinant inbred lines (mpRILs) derived from four wild isolates (JU1511, JU1926, JU1931, and JU1941) in the nematode Caenorhabditis elegans. We used RNA-seq to investigate how multiple alleles affect gene expression in these mpRILs. We found 1789 genes differentially expressed between the parental lines. Transgression, expression beyond any of the parental lines in the mpRILs, was found for 7896 genes. For expression QTL mapping almost 9000 SNPs were available. By combining these SNPs and the RNA-seq profiles of the mpRILs, we detected almost 6800 eQTLs. Most trans-eQTLs (63%) co-locate in six newly identified trans-bands. The trans-eQTLs found in previous two-parental allele eQTL experiments and this study showed some overlap (17.5-46.8%), highlighting on the one hand that a large group of genes is affected by polymorphic regulators across populations and conditions, on the other hand, it shows that the mpRIL population allows identification of novel gene expression regulatory loci. Taken together, the analysis of our mpRIL population provides a more refined insight into C. elegans complex trait genetics and eQTLs in general, as well as a starting point to further test and develop advanced statistical models for detection of multiallelic eQTLs and systems genetics studying the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Joost Riksen
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Philip C Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098 Kiel, Germany
- Competence Centre for Genomic Analysis (CCGA) Kiel, University of Kiel, 24098 Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, University of Kiel, 24098 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306 Ploen, Germany
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| |
Collapse
|
32
|
Evans KS, van Wijk MH, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 2021; 37:933-947. [PMID: 34229867 DOI: 10.1016/j.tig.2021.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
Although many studies have examined quantitative trait variation across many species, only a small number of genes and thereby molecular mechanisms have been discovered. Without these data, we can only speculate about evolutionary processes that underlie trait variation. Here, we review how quantitative and molecular genetics in the nematode Caenorhabditis elegans led to the discovery and validation of 37 quantitative trait genes over the past 15 years. Using these data, we can start to make inferences about evolution from these quantitative trait genes, including the roles that coding versus noncoding variation, gene family expansion, common versus rare variants, pleiotropy, and epistasis play in trait variation across this species.
Collapse
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
33
|
Zakas C, Rockman MV. Baby makes three: Maternal, paternal, and zygotic genetic effects shape larval phenotypic evolution. Evolution 2021; 75:1607-1618. [PMID: 33928631 PMCID: PMC8361925 DOI: 10.1111/evo.14244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023]
Abstract
The evolutionary potential of a population is shaped by the genetic architecture of its life-history traits. Early-life phenotypes are influenced by both maternal and offspring genotype, and efforts to understand life-history evolution therefore require consideration of the interactions between these separate but correlated genomes. We used a four-generation experimental pedigree to estimate the genetic architecture of early-life phenotypes in a species with dramatic variation in larval size and morphology. In the polychaete annelid Streblospio benedicti, females make either many small eggs that develop into complex larvae that feed in the plankton or few large eggs that develop into benthic juveniles without having to feed as larvae. By isolating the contributions of maternal, paternal, and zygotic genotype to larval traits, we determined that larval anatomical structures are governed by the offspring genotype at a small number of large-effect loci. Larval size is not shaped by the larva's own genotype but instead depends on loci that act in the mother, and at two genomic locations, by loci that act in the father. The overall phenotype of each larva thus depends on three separate genomes, and a population's response to selection on larval traits will reflect the interactions among them.
Collapse
Affiliation(s)
- Christina Zakas
- Department of GeneticsNorth Carolina State UniversityRaleighNorth Carolina
- Department of Biology and Center for Genomics & Systems BiologyNew York UniversityNew YorkNew York
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems BiologyNew York UniversityNew YorkNew York
| |
Collapse
|
34
|
Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. THE ISME JOURNAL 2021; 15:1680-1694. [PMID: 33452479 PMCID: PMC8163844 DOI: 10.1038/s41396-020-00879-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both mutualistic, dependent and parasitic associations. Here we characterize an intracellular bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida). We present a complete bacterial genome comprising a 1.39 Mb circular chromosome with 40.6% GC content. Fluorescent in situ hybridisation confirms that the endosymbiont is located adjacent to the nuclear membrane, and a detailed model of its intracellular niche is generated using serial block-face scanning electron microscopy. Phylogenomic analysis shows that the endosymbiont belongs to the Holosporales, most closely related to other α-proteobacterial endosymbionts of ciliates and amoebae. Comparative genomics indicates that it has a limited metabolism and is nutritionally host-dependent. However, the endosymbiont genome does encode diverse symbiont-specific secretory proteins, including a type VI secretion system and three separate toxin-antitoxin systems. We show that these systems are actively transcribed and hypothesize they represent a mechanism by which B. saltans becomes addicted to its endosymbiont. Consistent with this idea, attempts to cure Bodo of endosymbionts led to rapid and uniform cell death. This study adds kinetoplastid flagellates to ciliates and amoebae as hosts of Paracaedibacter-like bacteria, suggesting that these antagonistic endosymbioses became established very early in Eukaryotic evolution.
Collapse
Affiliation(s)
- Samriti Midha
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool, L69 7ZB, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Ic2 Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
35
|
Koneru SL, Hintze M, Katsanos D, Barkoulas M. Cryptic genetic variation in a heat shock protein modifies the outcome of a mutation affecting epidermal stem cell development in C. elegans. Nat Commun 2021; 12:3263. [PMID: 34059684 PMCID: PMC8166903 DOI: 10.1038/s41467-021-23567-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
A fundamental question in medical genetics is how the genetic background modifies the phenotypic outcome of mutations. We address this question by focusing on the seam cells, which display stem cell properties in the epidermis of Caenorhabditis elegans. We demonstrate that a putative null mutation in the GATA transcription factor egl-18, which is involved in seam cell fate maintenance, is more tolerated in the CB4856 isolate from Hawaii than the lab reference strain N2 from Bristol. We identify multiple quantitative trait loci (QTLs) underlying the difference in phenotype expressivity between the two isolates. These QTLs reveal cryptic genetic variation that reinforces seam cell fate through potentiating Wnt signalling. Within one QTL region, a single amino acid deletion in the heat shock protein HSP-110 in CB4856 is sufficient to modify Wnt signalling and seam cell development, highlighting that natural variation in conserved heat shock proteins can shape phenotype expressivity. How the genetic background modifies the expression of mutations is a key question that is addressed in this study in the context of seam cell development in Caenorhabditis elegans isolates. One amino acid deletion in a conserved heat shock protein is sufficient to shape phenotype expressivity upon mutation of a GATA transcription factor.
Collapse
Affiliation(s)
- Sneha L Koneru
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Mark Hintze
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | |
Collapse
|
36
|
Félix MA. Evolution: Drivers in a Traffic Jam. Curr Biol 2021; 31:R257-R260. [PMID: 33689727 DOI: 10.1016/j.cub.2021.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic loci coding for a toxin and its antidote behave like selfish elements. Two new studies find an accumulation of such elements in one species.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France.
| |
Collapse
|
37
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
38
|
El Mouridi S, AlHarbi S, Frøkjær-Jensen C. A histamine-gated channel is an efficient negative selection marker for C. elegans transgenesis. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000349. [PMID: 33437931 PMCID: PMC7794662 DOI: 10.17912/micropub.biology.000349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sonia El Mouridi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Sarah AlHarbi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia,
Correspondence to: Christian Frøkjær-Jensen ()
| |
Collapse
|
39
|
Ubiquitous Selfish Toxin-Antidote Elements in Caenorhabditis Species. Curr Biol 2021; 31:990-1001.e5. [PMID: 33417886 DOI: 10.1016/j.cub.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Toxin-antidote elements (TAs) are selfish genetic dyads that spread in populations by selectively killing non-carriers. TAs are common in prokaryotes, but very few examples are known in animals. Here, we report the discovery of maternal-effect TAs in both C. tropicalis and C. briggsae, two distant relatives of C. elegans. In C. tropicalis, multiple TAs combine to cause a striking degree of intraspecific incompatibility: five elements reduce the fitness of >70% of the F2 hybrid progeny of two Caribbean isolates. We identified the genes underlying one of the novel TAs, slow-1/grow-1, and found that its toxin, slow-1, is homologous to nuclear hormone receptors. Remarkably, although previously known TAs act during embryonic development, maternal loading of slow-1 in oocytes specifically slows down larval development, delaying the onset of reproduction by several days. Finally, we found that balancing selection acting on linked, conflicting TAs hampers their ability to spread in populations, leading to more stable genetic incompatibilities. Our findings indicate that TAs are widespread in Caenorhabditis species and target a wide range of developmental processes and that antagonism between them may cause lasting incompatibilities in natural populations. We expect that similar phenomena exist in other animal species.
Collapse
|
40
|
Abdalla EA, Id‐Lahoucine S, Cánovas A, Casellas J, Schenkel FS, Wood BJ, Baes CF. Discovering lethal alleles across the turkey genome using a transmission ratio distortion approach. Anim Genet 2020; 51:876-889. [PMID: 33006154 PMCID: PMC7702127 DOI: 10.1111/age.13003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Deviation from Mendelian inheritance expectations (transmission ratio distortion, TRD) has been observed in several species, including the mouse and humans. In this study, TRD was characterized in the turkey genome using both allelic (specific- and unspecific-parent TRD) and genotypic (additive- and dominance-TRD) parameterizations within a Bayesian framework. In this study, we evaluated TRD for 23 243 genotyped Turkeys across 56 393 autosomal SNPs. The analyses included 500 sires, 2013 dams and 11 047 offspring (trios). Three different haplotype sliding windows of 4, 10 and 20 SNPs were used across the autosomal chromosomes. Based on the genotypic parameterizations, 14 haplotypes showed additive and dominance TRD effects highlighting regions with a recessive TRD pattern. In contrast, the allelic model uncovered 12 haplotype alleles with the allelic TRD pattern which showed an underrepresentation of heterozygous offspring in addition to the absence of homozygous animals. For regions with the allelic pattern, only one particular region showed a parent-specific TRD where the penetrance was high via the dam, but low via the sire. The gene set analysis uncovered several gene ontology functional terms, Reactome pathways and several Medical Subject Headings that showed significant enrichment of genes associated with TRD. Many of these gene ontology functional terms (e.g. mitotic spindle assembly checkpoint, DRM complex and Aneuploidy), Reactome pathways (e.g. Mismatch repair) and Medical Subject Headings (e.g. Adenosine monophosphate) are known to be related to fertility, embryo development and lethality. The results of this study revealed potential novel candidate lethal haplotypes, functional terms and pathways that may enhance breeding programs in Turkeys through reducing mortality and improving reproduction rate.
Collapse
Affiliation(s)
- E. A. Abdalla
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - S. Id‐Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - A. Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - J. Casellas
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - F. S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - B. J. Wood
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
- Hybrid TurkeysC‐650 Riverbend Drive, Suite CKitchenerONN2K 3S2Canada
- School of Veterinary ScienceUniversity of QueenslandGattonQld4343Australia
| | - C. F. Baes
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
- Institute of Genetics, Vetsuisse FacultyUniversity of BernBern3001Switzerland
| |
Collapse
|
41
|
Ragle JM, Aita AL, Morrison KN, Martinez-Mendez R, Saeger HN, Ashley GA, Johnson LC, Schubert KA, Shakes DC, Ward JD. The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis. Development 2020; 147:dev193862. [PMID: 33060131 PMCID: PMC7710015 DOI: 10.1242/dev.193862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Aita
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | | | - Raquel Martinez-Mendez
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hannah N Saeger
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Guinevere A Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Londen C Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine A Schubert
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
42
|
Abstract
In life's constant battle for survival, it takes one to kill but two to conquer. Toxin-antitoxin or toxin-antidote (TA) elements are genetic dyads that cheat the laws of inheritance to guarantee their transmission to the next generation. This seemingly simple genetic arrangement—a toxin linked to its antidote—is capable of quickly spreading and persisting in natural populations. TA elements were first discovered in bacterial plasmids in the 1980s and have recently been characterized in fungi, plants, and animals, where they underlie genetic incompatibilities and sterility in crosses between wild isolates. In this review, we provide a unified view of TA elements in both prokaryotic and eukaryotic organisms and highlight their similarities and differences at the evolutionary, genetic, and molecular levels. Finally, we propose several scenarios that could explain the paradox of the evolutionary origin of TA elements and argue that these elements may be key evolutionary players and that the full scope of their roles is only beginning to be uncovered.
Collapse
Affiliation(s)
- Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
43
|
Evans KS, Zdraljevic S, Stevens L, Collins K, Tanny RE, Andersen EC. Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008986. [PMID: 33175833 PMCID: PMC7682890 DOI: 10.1371/journal.pgen.1008986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kimberly Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
44
|
Stevenson ZC, Moerdyk-Schauwecker MJ, Jamison B, Phillips PC. Rapid Self-Selecting and Clone-Free Integration of Transgenes into Engineered CRISPR Safe Harbor Locations in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:3775-3782. [PMID: 32816924 PMCID: PMC7534419 DOI: 10.1534/g3.120.401400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
Precision genome editing for model organisms has revolutionized functional analysis and validation of a wide variety of molecular systems. To date, the capacity to insert single-copy transgenes into the model nematode Caenorhabditis elegans has focused on utilizing either transposable elements or CRISPR-based safe harbor strategies. These methods require plate-level screening processes to avoid selecting heritable extrachromosomal arrays or rely on co-CRISPR markers to identify knock-in events. As a result, verification of transgene insertion requires anti-array selection screening methods and PCR genotyping. These approaches also rely on cloning plasmids for the addition of transgenes. Here, we present a novel safe harbor CRISPR-based integration strategy that utilizes engineered insertion locations containing a synthetic guide RNA target and a split-selection system to eliminate false positives from array formation, thereby providing integration-specific selection. This approach allows the experimenter to confirm an integration event has taken place without molecular validation or anti-array screening methods and is capable of producing integrated transgenic lines in as little as five days post-injection. To further increase the speed of generating transgenic lines, we also utilized the C. elegans native microhomology-based recombination, to assemble transgenes in-situ, removing the cloning step. We show that complete transgenes can be made and inserted into our split-selection safe harbor locations starting from PCR products, providing a clone-free and molecular-validation-free strategy for single-copy transgene integration. Overall, this combination of approaches provides an economical and rapid system for generating highly reproducible complex transgenics in C. elegans.
Collapse
|
45
|
McDiarmid TA, Au V, Moerman DG, Rankin CH. Peel-1 negative selection promotes screening-free CRISPR-Cas9 genome editing in Caenorhabditis elegans. PLoS One 2020; 15:e0238950. [PMID: 32960926 PMCID: PMC7508457 DOI: 10.1371/journal.pone.0238950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Improved genome engineering methods that enable automation of large and precise edits are essential for systematic investigations of genome function. We adapted peel-1 negative selection to an optimized Dual-Marker Selection (DMS) cassette protocol for CRISPR-Cas9 genome engineering in Caenorhabditis elegans and observed robust increases in multiple measures of efficiency that were consistent across injectors and four genomic loci. The use of Peel-1-DMS selection killed animals harboring transgenes as extrachromosomal arrays and spared genome-edited integrants, often circumventing the need for visual screening to identify genome-edited animals. To demonstrate the applicability of the approach, we created deletion alleles in the putative proteasomal subunit pbs-1 and the uncharacterized gene K04F10.3 and used machine vision to automatically characterize their phenotypic profiles, revealing homozygous essential and heterozygous behavioral phenotypes. These results provide a robust and scalable approach to rapidly generate and phenotype genome-edited animals without the need for screening or scoring by eye.
Collapse
Affiliation(s)
- Troy A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vinci Au
- Department of Zoology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald G. Moerman
- Department of Zoology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
El Mouridi S, Peng Y, Frøkjær-Jensen C. Characterizing a strong pan-muscular promoter (P mlc-1) as a fluorescent co-injection marker to select for single-copy insertions. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000302. [PMID: 32908967 PMCID: PMC7474950 DOI: 10.17912/micropub.biology.000302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Sonia El Mouridi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Yuli Peng
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
47
|
Maternal effect killing by a supergene controlling ant social organization. Proc Natl Acad Sci U S A 2020; 117:17130-17134. [PMID: 32636262 DOI: 10.1073/pnas.2003282117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Supergenes underlie striking polymorphisms in nature, yet the evolutionary mechanisms by which they arise and persist remain enigmatic. These clusters of linked loci can spread in populations because they captured coadapted alleles or by selfishly distorting the laws of Mendelian inheritance. Here, we show that the supergene haplotype associated with multiple-queen colonies in Alpine silver ants is a maternal effect killer. All eggs from heterozygous queens failed to hatch when they did not inherit this haplotype. Hence, the haplotype specific to multiple-queen colonies is a selfish genetic element that enhances its own transmission by causing developmental arrest of progeny that do not carry it. At the population level, such transmission ratio distortion favors the spread of multiple-queen colonies, to the detriment of the alternative haplotype associated with single-queen colonies. Hence, selfish gene drive by one haplotype will impact the evolutionary dynamics of alternative forms of colony social organization. This killer hidden in a social supergene shows that large nonrecombining genomic regions are prone to cause multifarious effects across levels of biological organization.
Collapse
|
48
|
The Gene scb-1 Underlies Variation in Caenorhabditis elegans Chemotherapeutic Responses. G3-GENES GENOMES GENETICS 2020; 10:2353-2364. [PMID: 32385045 PMCID: PMC7341127 DOI: 10.1534/g3.120.401310] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most organisms and has broad implications for medicine and agriculture. The identification of the molecular mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our understanding of both genetic and phenotypic complexity by characterizing novel gene functions. Quantitative trait locus (QTL) mapping has been used to identify several pleiotropic regions in many organisms. However, gene knockout studies are needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we use a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to identify a single large-effect QTL on the center of chromosome V associated with variation in responses to eight chemotherapeutics. We validate this QTL with near-isogenic lines and pair genome-wide gene expression data with drug response traits to perform mediation analysis, leading to the identification of a pleiotropic candidate gene, scb-1, for some of the eight chemotherapeutics. Using deletion strains created by genome editing, we show that scb-1, which was previously implicated in response to bleomycin, also underlies responses to other double-strand DNA break-inducing chemotherapeutics. This finding provides new evidence for the role of scb-1 in the nematode drug response and highlights the power of mediation analysis to identify causal genes.
Collapse
|
49
|
Snoek BL, Sterken MG, Hartanto M, van Zuilichem AJ, Kammenga JE, de Ridder D, Nijveen H. WormQTL2: an interactive platform for systems genetics in Caenorhabditis elegans. Database (Oxford) 2020; 2020:baz149. [PMID: 31960906 PMCID: PMC6971878 DOI: 10.1093/database/baz149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
Quantitative genetics provides the tools for linking polymorphic loci to trait variation. Linkage analysis of gene expression is an established and widely applied method, leading to the identification of expression quantitative trait loci (eQTLs). (e)QTL detection facilitates the identification and understanding of the underlying molecular components and pathways, yet (e)QTL data access and mining often is a bottleneck. Here, we present WormQTL2, a database and platform for comparative investigations and meta-analyses of published (e)QTL data sets in the model nematode worm C. elegans. WormQTL2 integrates six eQTL studies spanning 11 conditions as well as over 1000 traits from 32 studies and allows experimental results to be compared, reused and extended upon to guide further experiments and conduct systems-genetic analyses. For example, one can easily screen a locus for specific cis-eQTLs that could be linked to variation in other traits, detect gene-by-environment interactions by comparing eQTLs under different conditions, or find correlations between QTL profiles of classical traits and gene expression. WormQTL2 makes data on natural variation in C. elegans and the identified QTLs interactively accessible, allowing studies beyond the original publications. Database URL: www.bioinformatics.nl/WormQTL2/.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Margi Hartanto
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Albert-Jan van Zuilichem
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| |
Collapse
|
50
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|