1
|
Shi Z, Liu G, Jiang H, Shi S, Zhang X, Deng Y, Chen Y. Activation of P53 pathway contributes to Xenopus hybrid inviability. Proc Natl Acad Sci U S A 2023; 120:e2303698120. [PMID: 37186864 PMCID: PMC10214167 DOI: 10.1073/pnas.2303698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Hybrid incompatibility as a kind of reproductive isolation contributes to speciation. The nucleocytoplasmic incompatibility between Xenopus tropicalis eggs and Xenopus laevis sperm (te×ls) leads to specific loss of paternal chromosomes 3L and 4L. The hybrids die before gastrulation, of which the lethal causes remain largely unclear. Here, we show that the activation of the tumor suppressor protein P53 at late blastula stage contributes to this early lethality. We find that in stage 9 embryos, P53-binding motif is the most enriched one in the up-regulated Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) peaks between te×ls and wild-type X. tropicalis controls, which correlates with an abrupt stabilization of P53 protein in te×ls hybrids at stage 9. Inhibition of P53 activity via either tp53 knockout or overexpression of a dominant-negative P53 mutant or Murine double minute 2 proto-oncogene (Mdm2), a negative regulator of P53, by mRNA injection can rescue the te×ls early lethality. Our results suggest a causal function of P53 on hybrid lethality prior to gastrulation.
Collapse
Affiliation(s)
- Zhaoying Shi
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Guanghui Liu
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Hao Jiang
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Songyuan Shi
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Xuan Zhang
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yi Deng
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Yonglong Chen
- Department of Chemical Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
2
|
Long Q, Yan K, Wang C, Wen Y, Qi F, Wang H, Shi P, Liu X, Chan WY, Lu X, Zhao H. Modification of maternally defined H3K4me3 regulates the inviability of interspecific Xenopus hybrids. SCIENCE ADVANCES 2023; 9:eadd8343. [PMID: 37027476 PMCID: PMC10081845 DOI: 10.1126/sciadv.add8343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Increasing evidence suggests that interspecific hybridization is crucial to speciation. However, chromatin incompatibility during interspecific hybridization often renders this process. Genomic imbalances such as chromosomal DNA loss and rearrangements leading to infertility have been commonly noted in hybrids. The mechanism underlying reproductive isolation of interspecific hybridization remains elusive. Here, we identified that modification of maternally defined H3K4me3 in Xenopus laevis and Xenopus tropicalis hybrids determines the different fates of the two types of hybrids as te×ls with developmental arrest and viable le×ts. Transcriptomics highlighted that the P53 pathway was overactivated, and the Wnt signaling pathway was suppressed in te×ls hybrids. Moreover, the lack of maternal H3K4me3 in te×ls disturbed the balance of gene expression between the L and S subgenomes in this hybrid. Attenuation of p53 can postpone the arrested development of te×ls. Our study suggests an additional model of reproductive isolation based on modifications of maternally defined H3K4me3.
Collapse
Affiliation(s)
- Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Guangzhou Institutes of Biomedicine and Health, The Chinese Academy of Sciences, Guangzhou 511436, China
| | - Kai Yan
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Chendong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
| | - Yanling Wen
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
| | - Furong Qi
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Xingguo Liu
- Guangzhou Institutes of Biomedicine and Health, The Chinese Academy of Sciences, Guangzhou 511436, China
| | - Wai-Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
3
|
Kitaoka M, Smith OK, Straight AF, Heald R. Molecular conflicts disrupting centromere maintenance contribute to Xenopus hybrid inviability. Curr Biol 2022; 32:3939-3951.e6. [PMID: 35973429 PMCID: PMC9529917 DOI: 10.1016/j.cub.2022.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
Although central to evolution, the causes of hybrid inviability that drive reproductive isolation are poorly understood. Embryonic lethality occurs when the eggs of the frog X. tropicalis are fertilized with either X. laevis or X. borealis sperm. We observed that distinct subsets of paternal chromosomes failed to assemble functional centromeres, causing their mis-segregation during embryonic cell divisions. Core centromere DNA sequence analysis revealed little conservation among the three species, indicating that epigenetic mechanisms that normally operate to maintain centromere integrity are disrupted on specific paternal chromosomes in hybrids. In vitro reactions combining X. tropicalis egg extract with either X. laevis or X. borealis sperm chromosomes revealed that paternally matched or overexpressed centromeric histone CENP-A and its chaperone HJURP could rescue centromere assembly on affected chromosomes in interphase nuclei. However, although the X. laevis chromosomes maintained centromeric CENP-A in metaphase, X. borealis chromosomes did not and also displayed ultra-thin regions containing ribosomal DNA. Both centromere assembly and morphology of X. borealis mitotic chromosomes could be rescued by inhibiting RNA polymerase I or preventing the collapse of stalled DNA replication forks. These results indicate that specific paternal centromeres are inactivated in hybrids due to the disruption of associated chromatin regions that interfere with CENP-A incorporation, at least in some cases due to conflicts between replication and transcription machineries. Thus, our findings highlight the dynamic nature of centromere maintenance and its susceptibility to disruption in vertebrate interspecies hybrids.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Owen K Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
4
|
Ammari AA, ALghadi MG, ALhimaidi AR, Amran RA. The role of passage numbers of donor cells in the development of Arabian Oryx – Cow interspecific somatic cell nuclear transfer embryos. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The cloning between different animals known as interspecific somatic cell nuclear transfer (iSCNT) was carried out for endangered species. The iSCNT has been characterized by a poor success rate due to several factors that influence the formation of the SCNT in various cytoplasms. The cell cycle of the transferred somatic cell, the passage number of the cultured somatic cell, the mitochondria oocytes, and their capabilities are among these factors. This study investigates the role of the passage number of the Arabian Oryx somatic cell culture when transplanted to an enucleated domestic cow oocyte and embryo development in vitro. The fibroblast somatic cell of the Arabian Oryx was cultured for several passage lanes (3–13). The optimal passage cell number was found to be 10–13 Oryx cell lines that progressed to various cell stages up to the blastula stage. There was some variation between the different passage numbers of the oryx cell line. The 3–9 cell line did not show a good developmental stage. These could be attributed to several factors that control the iSCNT as stated by several investigators. More investigation is needed to clarify the role of factors that affect the success rate for the iSCNT.
Collapse
Affiliation(s)
- Aiman A. Ammari
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Muath G. ALghadi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ahmad R. ALhimaidi
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| | - Ramzi A. Amran
- Department of Zoology, King Saud University, College of Science , P.O. Box 2455 , Riyadh 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells Dev 2022; 169:203764. [PMID: 34974205 DOI: 10.1016/j.cdev.2021.203764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Despite the immense progress in genetics and cell biology, major knowledge gaps remain with respect to prediction and control of the global morphologies that will result from the cooperation of cells with known genomes. The understanding of cooperativity, competition, and synergy across diverse biological scales has been obscured by a focus on standard model systems that exhibit invariant species-specific anatomies. Morphogenesis of chimeric biological material is an especially instructive window on the control of biological growth and form because it emphasizes the need for prediction without reliance on familiar, standard outcomes. Here, we review an important and fascinating body of data from experiments utilizing DNA transfer, cell transplantation, organ grafting, and parabiosis. We suggest that these are all instances (at different levels of organization) of one general phenomenon: chimerism. Multi-scale chimeras are a powerful conceptual and experimental tool with which to probe the mapping between properties of components and large-scale anatomy: the laws of morphogenesis. The existing data and future advances in this field will impact not only the understanding of cooperation and the evolution of body forms, but also the design of strategies for system-level outcomes in regenerative medicine and swarm robotics.
Collapse
|
6
|
Roco ÁS, Ruiz-García A, Bullejos M. Interaction between sex-determining genes from two species: clues from Xenopus hybrids. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200104. [PMID: 34304589 PMCID: PMC8310712 DOI: 10.1098/rstb.2020.0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hybrids provide an interesting model to study the evolution of sex-determining genes and sex chromosome systems as they offer the opportunity to see how independently evolving sex-determining pathways interact in vivo. In this context, the genus Xenopus represents a stimulating model, since species with non-homologous sex chromosomes and different sex-determining genes have been identified. In addition, the possibility of interspecies breeding is favoured in this group, which arose by alloploidization events, with species ploidy ranging from 2n = 2x = 20 in X. tropicalis (the only diploid representative of the genus) to 2n = 12x = 108 in X. ruwenzoriensis. To study how two sex-determining genes interact in vivo, X. laevis × X. tropicalis hybrids were produced. Gonadal differentiation in these hybrids revealed that the dm-w gene is dominant over X. tropicalis male-determining sex chromosomes (Y or Z), even though the Y chromosome is dominant in X. tropicalis (Y > W>Z). In the absence of the dm-w gene (the Z chromosome from X. laevis is present), the W chromosome from X. tropicalis is able to trigger ovarian development. Testicular differentiation will take place in the absence of W chromosomes from any of the parental species. The dominance/recessivity relationships between these sex-determining loci in the context of either parental genome remains unknown. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Álvaro S. Roco
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| | - Adrián Ruiz-García
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas S/N, 23071 Jaén, Spain
| |
Collapse
|
7
|
Jukam D, Kapoor RR, Straight AF, Skotheim JM. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Curr Biol 2021; 31:4269-4281.e8. [PMID: 34388374 DOI: 10.1016/j.cub.2021.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In multicellular animals, the first major event after fertilization is the switch from maternal to zygotic control of development. During this transition, zygotic gene transcription is broadly activated in an otherwise quiescent genome in a process known as zygotic genome activation (ZGA). In fast-developing embryos, ZGA often overlaps with the slowing of initially synchronous cell divisions at the mid-blastula transition (MBT). Initial studies of the MBT led to the nuclear-to-cytoplasmic ratio model where MBT timing is regulated by the exponentially increasing amounts of some nuclear component "N" titrated against a fixed cytoplasmic component "C." However, more recent experiments have been interpreted to suggest that ZGA is independent of the N/C ratio. To determine the role of the N/C ratio in ZGA, we generated Xenopus frog embryos with ∼3-fold differences in genomic DNA (i.e., N) by using X. tropicalis sperm to fertilize X. laevis eggs with or without their maternal genome. Resulting embryos have otherwise identical X. tropicalis genome template amounts, embryo sizes, and X. laevis maternal environments. We generated transcriptomic time series across the MBT in both conditions and used X. tropicalis paternally derived mRNA to identify a high-confidence set of exclusively zygotic transcripts. Both ZGA and the increase in cell-cycle duration are delayed in embryos with ∼3-fold less DNA per cell. Thus, DNA is an important component of the N/C ratio, which is a critical regulator of zygotic genome activation in Xenopus embryos.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rishabh R Kapoor
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Miller KE, Brownlee C, Heald R. The power of amphibians to elucidate mechanisms of size control and scaling. Exp Cell Res 2020; 392:112036. [PMID: 32343955 PMCID: PMC7246146 DOI: 10.1016/j.yexcr.2020.112036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
Size is a fundamental feature of biology that affects physiology at all levels, from the organism to organs and tissues to cells and subcellular structures. How size is determined at these different levels, and how biological structures scale to fit together and function properly are important open questions. Historically, amphibian systems have been extremely valuable to describe scaling phenomena, as they occupy some of the extremes in biological size and are amenable to manipulations that alter genome and cell size. More recently, the application of biochemical, biophysical, and embryological techniques to amphibians has provided insight into the molecular mechanisms underlying scaling of subcellular structures to cell size, as well as how perturbation of normal size scaling impacts other aspects of cell and organism physiology.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA
| | - Christopher Brownlee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8651, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA.
| |
Collapse
|
9
|
Magalhães LC, Cortez JV, Bhat MH, Sampaio ACNPC, Freitas JLS, Duarte JMB, Melo LM, Freitas VJF. In Vitro Development and Mitochondrial Gene Expression in Brown Brocket Deer ( Mazama gouazoubira) Embryos Obtained by Interspecific Somatic Cell Nuclear Transfer. Cell Reprogram 2020; 22:208-216. [PMID: 32559409 DOI: 10.1089/cell.2019.0069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genetic diversity of Neotropical deer is increasingly jeopardized, owing to declining population size. Thus, the formation of cryobanking of somatic cells is important for the preservation of these species using cloning. The transformation of these cells into viable embryos has been hampered by a lack of endangered species oocytes. Accordingly, the aim of this study was to produce brown brocket deer embryos by interspecific somatic cell nuclear transfer (iSCNT), using goat or cattle oocytes as cytoplasts, and to elucidate embryo mitochondrial activity by measuring the expression levels of ATP6, COX3, and ND5. Cattle embryos produced by in vitro fertilization (IVF) were used as a control. There were no differences in the development of embryos produced by traditional SCNT and iSCNT when using either the goat cytoplasts (38.4% vs. 25.0% cleaved and 40.0% vs. 50.0% morula rates, respectively) or cattle cytoplast (72.8% vs. 65.5% cleaved and 11.3% vs. 5.9% blastocyst rates, respectively). Concerning the gene expression, no significant difference was observed when goat oocytes were used as cytoplasts. However, when using cattle oocytes and 16S as a reference gene, the iSCNT upregulated COX3, when compared with SCNT group. In contrast, when GAPDH was used as a reference gene, all the evaluated genes were upregulated in the iSCNT group, when compared with the IVF group. When compared with the SCNT group, only the expression of ATP6 was statistically different. In conclusion, it was demonstrated that interspecific nuclear transfer is a potentially useful tool for conservation programs of endangered similar deer species.
Collapse
Affiliation(s)
- Lívia C Magalhães
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| | - Jenin V Cortez
- Laboratory of Animal Biotechnology, National University Toribio Rodriguez de Mendoza, Chachapoyas, Peru
| | - Maajid H Bhat
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Ana Clara N P C Sampaio
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| | - Jeferson L S Freitas
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| | - José M B Duarte
- Department of Animal Science, Deer Research and Conservation Center, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Luciana M Melo
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil.,Molecular Genetics Research Unit, University Center Fametro (UNIFAMETRO), Fortaleza, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| |
Collapse
|
10
|
Kakebeen A, Wills A. Advancing genetic and genomic technologies deepen the pool for discovery in Xenopus tropicalis. Dev Dyn 2019; 248:620-625. [PMID: 31254427 DOI: 10.1002/dvdy.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Xenopus laevis and Xenopus tropicalis have long been used to drive discovery in developmental, cell, and molecular biology. These dual frog species boast experimental strengths for embryology including large egg sizes that develop externally, well-defined fate maps, and cell-intrinsic sources of nutrients that allow explanted tissues to grow in culture. Development of the Xenopus cell extract system has been used to study cell cycle and DNA replication. Xenopus tadpole tail and limb regeneration have provided fundamental insights into the underlying mechanisms of this processes, and the loss of regenerative competency in adults adds a complexity to the system that can be more directly compared to humans. Moreover, Xenopus genetics and especially disease-causing mutations are highly conserved with humans, making them a tractable system to model human disease. In the last several years, genome editing, expanding genomic resources, and intersectional approaches leveraging the distinct characteristics of each species have generated new frontiers in cell biology. While Xenopus have enduringly represented a leading embryological model, new technologies are generating exciting diversity in the range of discoveries being made in areas from genomics and proteomics to regenerative biology, neurobiology, cell scaling, and human disease modeling.
Collapse
Affiliation(s)
- Anneke Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Abstract
Frog species of the genus Xenopus are widely used for studies of cell and developmental biology, and recent genome sequencing has revealed interesting phylogenetic relationships. Here we describe methods to generate haploid, triploid, and hybrid species starting from eggs and sperm of Xenopus laevis and Xenopus tropicalis that enable investigation of how genome size and content affect physiology at the organismal, cellular, and subcellular levels.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
12
|
Gibeaux R, Miller K, Acker R, Kwon T, Heald R. Xenopus Hybrids Provide Insight Into Cell and Organism Size Control. Front Physiol 2018; 9:1758. [PMID: 30564147 PMCID: PMC6288844 DOI: 10.3389/fphys.2018.01758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
Determining how size is controlled is a fundamental question in biology that is poorly understood at the organismal, cellular, and subcellular levels. The Xenopus species, X. laevis and X. tropicalis differ in size at all three of these levels. Despite these differences, fertilization of X. laevis eggs with X. tropicalis sperm gives rise to viable hybrid animals that are intermediate in size. We observed that although hybrid and X. laevis embryogenesis initiates from the same sized zygote and proceeds synchronously through development, hybrid animals were smaller by the tailbud stage, and a change in the ratio of nuclear size to cell size was observed shortly after zygotic genome activation (ZGA), suggesting that differential gene expression contributes to size differences. Transcriptome analysis at the onset of ZGA identified twelve transcription factors paternally expressed in hybrids. A screen of these X. tropicalis factors by expression in X. laevis embryos revealed that Hes7 and Ventx2 significantly reduced X. laevis body length size by the tailbud stage, although nuclear to cell size scaling relationships were not affected as in the hybrid. Together, these results suggest that transcriptional regulation contributes to biological size control in Xenopus.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Kelly Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Rachael Acker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| |
Collapse
|
13
|
Gibeaux R, Acker R, Kitaoka M, Georgiou G, van Kruijsbergen I, Ford B, Marcotte EM, Nomura DK, Kwon T, Veenstra GJC, Heald R. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 2018; 553:337-341. [PMID: 29320479 PMCID: PMC5988642 DOI: 10.1038/nature25188] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Abstract
Hybridization of eggs and sperm from closely related species can give rise to genetic diversity, or can lead to embryo inviability owing to incompatibility. Although central to evolution, the cellular and molecular mechanisms underlying post-zygotic barriers that drive reproductive isolation and speciation remain largely unknown. Species of the African clawed frog Xenopus provide an ideal system to study hybridization and genome evolution. Xenopus laevis is an allotetraploid with 36 chromosomes that arose through interspecific hybridization of diploid progenitors, whereas Xenopus tropicalis is a diploid with 20 chromosomes that diverged from a common ancestor approximately 48 million years ago. Differences in genome size between the two species are accompanied by organism size differences, and size scaling of the egg and subcellular structures such as nuclei and spindles formed in egg extracts. Nevertheless, early development transcriptional programs, gene expression patterns, and protein sequences are generally conserved. Whereas the hybrid produced when X. laevis eggs are fertilized by X. tropicalis sperm is viable, the reverse hybrid dies before gastrulation. Here we apply cell biological tools and high-throughput methods to study the mechanisms underlying hybrid inviability. We reveal that two specific X. laevis chromosomes are incompatible with the X. tropicalis cytoplasm and are mis-segregated during mitosis, leading to unbalanced gene expression at the maternal to zygotic transition, followed by cell-autonomous catastrophic embryo death. These results reveal a cellular mechanism underlying hybrid incompatibility that is driven by genome evolution and contributes to the process by which biological populations become distinct species.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, CA 94720, Berkeley, USA
| | - Rachael Acker
- Department of Molecular and Cell Biology, University of California, CA 94720, Berkeley, USA
| | - Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, CA 94720, Berkeley, USA
| | - Georgios Georgiou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Breanna Ford
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, CA 94720, Berkeley, USA
| | - Edward M. Marcotte
- Department of Molecular Bioscience, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel K. Nomura
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, CA 94720, Berkeley, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Gert Jan C. Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, CA 94720, Berkeley, USA
| |
Collapse
|
14
|
Elurbe DM, Paranjpe SS, Georgiou G, van Kruijsbergen I, Bogdanovic O, Gibeaux R, Heald R, Lister R, Huynen MA, van Heeringen SJ, Veenstra GJC. Regulatory remodeling in the allo-tetraploid frog Xenopus laevis. Genome Biol 2017; 18:198. [PMID: 29065907 PMCID: PMC5655803 DOI: 10.1186/s13059-017-1335-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genome duplication has played a pivotal role in the evolution of many eukaryotic lineages, including the vertebrates. A relatively recent vertebrate genome duplication is that in Xenopus laevis, which resulted from the hybridization of two closely related species about 17 million years ago. However, little is known about the consequences of this duplication at the level of the genome, the epigenome, and gene expression. RESULTS The X. laevis genome consists of two subgenomes, referred to as L (long chromosomes) and S (short chromosomes), that originated from distinct diploid progenitors. Of the parental subgenomes, S chromosomes have degraded faster than L chromosomes from the point of genome duplication until the present day. Deletions appear to have the largest effect on pseudogene formation and loss of regulatory regions. Deleted regions are enriched for long DNA repeats and the flanking regions have high alignment scores, suggesting that non-allelic homologous recombination has played a significant role in the loss of DNA. To assess innovations in the X. laevis subgenomes we examined p300-bound enhancer peaks that are unique to one subgenome and absent from X. tropicalis. A large majority of new enhancers comprise transposable elements. Finally, to dissect early and late events following interspecific hybridization, we examined the epigenome and the enhancer landscape in X. tropicalis × X. laevis hybrid embryos. Strikingly, young X. tropicalis DNA transposons are derepressed and recruit p300 in hybrid embryos. CONCLUSIONS The results show that erosion of X. laevis genes and functional regulatory elements is associated with repeats and non-allelic homologous recombination and furthermore that young repeats have also contributed to the p300-bound regulatory landscape following hybridization and whole-genome duplication.
Collapse
Affiliation(s)
- Dei M Elurbe
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Sarita S Paranjpe
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Georgios Georgiou
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Ryan Lister
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Martijn A Huynen
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| | - Simon J van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| | - Gert Jan C Veenstra
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Denton RD, Greenwald KR, Gibbs HL. Locomotor endurance predicts differences in realized dispersal between sympatric sexual and unisexual salamanders. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Robert D. Denton
- Department of Evolution, Ecology and Organismal Biology Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
- Ohio Biodiversity Conservation Partnership Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
| | - Katherine R. Greenwald
- Department of Biology Eastern Michigan University, 441 Mark Jefferson Science Complex Ypsilanti MI 48197 USA
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
- Ohio Biodiversity Conservation Partnership Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
| |
Collapse
|
16
|
Maciak S, Michalak K, Kale SD, Michalak P. Nucleolar Dominance and Repression of 45S Ribosomal RNA Genes in Hybrids between Xenopus borealis and X. muelleri (2n = 36). Cytogenet Genome Res 2016; 149:290-296. [PMID: 27728911 DOI: 10.1159/000450665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleolar dominance is a dramatic disruption in the formation of nucleoli and the expression of ribosomal RNA (rRNA) genes, characteristic of some plant and animal hybrids. Here, we report that F1 hybrids produced from reciprocal crosses between 2 sister species of Xenopus clawed frogs, X. muelleri and X. borealis, undergo nucleolar dominance somewhat distinct from a pattern previously reported in hybrids between phylogenetically more distant Xenopus species. Patterns of nucleolar development, 45S rRNA expression, and gene copy inheritance were investigated using a combination of immunostaining, pyrosequencing, droplet digital PCR, flow cytometry, and epigenetic inhibition. In X. muelleri × X. borealis hybrids, typically only 1 nucleolus is formed, and 45S rRNA genes are predominantly expressed from 1 progenitor's alleles, X. muelleri, regardless of the cross-direction. These changes are accompanied by an extensive (∼80%) loss of rRNA gene copies in the hybrids relative to their parents, with the transcriptionally underdominant variant (X. borealis) being preferentially lost. Chemical treatment of hybrid larvae with a histone deacetylase inhibitor resulted in a partial derepression of the underdominant variant. Together, these observations shed light on the genetic and epigenetic basis of nucleolar dominance as an underappreciated manifestation of genetic conflicts within a hybrid genome.
Collapse
|
17
|
Teperek M, Simeone A, Gaggioli V, Miyamoto K, Allen GE, Erkek S, Kwon T, Marcotte EM, Zegerman P, Bradshaw CR, Peters AHFM, Gurdon JB, Jullien J. Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res 2016; 26:1034-46. [PMID: 27034506 PMCID: PMC4971762 DOI: 10.1101/gr.201541.115] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/29/2016] [Indexed: 12/02/2022]
Abstract
For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health.
Collapse
Affiliation(s)
- Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Serap Erkek
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4001 Basel, Switzerland
| | - Taejoon Kwon
- Department of Molecular Bioscience, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Department of Molecular Bioscience, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Philip Zegerman
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4001 Basel, Switzerland
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| |
Collapse
|
18
|
Levy DL, Heald R. Biological Scaling Problems and Solutions in Amphibians. Cold Spring Harb Perspect Biol 2015; 8:a019166. [PMID: 26261280 DOI: 10.1101/cshperspect.a019166] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
19
|
Abstract
This brief introduction is followed by a published version of my Nobel Laureate lecture, re-published herein with the kind permission of the Nobel Foundation. Much has happened since my original research, for which that prize was awarded. Hence, I am pleased to offer a few thoughts about the future of my research and its possible impact on humankind.Although the original work on nuclear transfer and reprogramming was done over half a century ago, advances continue to be made. In particular the Takahashi and Yamanaka induced pluripotent stem cells (iPS) procedure has opened up the field of cell replacement to a great extent. Now, more recently, further advances make this whole field come closer to actual usefulness for humans. Recently, in the UK, the government approved the use of mitochondrial replacement therapy to avoid the problems associated with genetically defective mitochondria in certain women. Although the House of Commons (members of Parliament) and the House of Lords had to debate and discuss whether to allow this kind of human therapy, I was very pleased to find that both bodies approved this procedure. This means that a patient can choose to make use of the procedure; it does not in any way force an individual to have a procedure that they are not comfortable with. In my view, this is a great advance in respect to giving patients a choice about the treatment they receive. I am told that the UK is the first country in the world to approve mitochondrial replacement therapy.Now that the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPr) technology is being widely used and works well, one can foresee that there will be those who wish to use this technology to make genetic changes to humans. For example, if a human has a gene that makes it susceptible to infection or any other disorder, the removal of that gene might give such a person immunity from that disease. If this gene deletion is done within the germ line, the genetic change will be inherited. However, one can imagine that various people will strongly object and say that this technology should not be allowed. I would very much hope that various regulatory bodies, governments, etc. will allow the choice to remain with the individual. I can see no argument for such bodies to make a law that removes any choice whatsoever by an individual.
Collapse
|
20
|
González-Grajales LA, Favetta LA, King WA, Mastromonaco GF. Developmental competence of 8?16-cell stage bison embryos produced by interspecies somatic cell nuclear transfer. Reprod Fertil Dev 2015; 28:RD14376. [PMID: 25763855 DOI: 10.1071/rd14376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Altered communication between nuclear and cytoplasmic components has been linked to impaired development in interspecies somatic cell nuclear transfer (iSCNT) embryos as a result of genetic divergence between the two species. This study investigated the developmental potential and mitochondrial function of cattle (Bos taurus), plains bison (Bison bison bison) and wood bison (Bison bison athabascae) embryos produced by iSCNT using domestic cattle oocytes as cytoplasts. Embryos in all groups were analysed for development, accumulation of ATP, apoptosis and gene expression of nuclear- and mitochondrial-encoded genes at the 8-16-cell stage. The results of this study showed no significant differences in the proportion of developed embryos at the 2-, 4- and 8-16-cell stages between groups. However, significantly higher ATP levels were observed in cattle SCNT embryos compared with bison iSCNT embryos. Significantly more condensed and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL)-positive nuclei were found in plains bison iSCNT embryos. No significant differences in the expression levels of nuclear respiratory factor 2 (NRF2) or mitochondrial subunit 2 of cytochrome c oxidase (mt-COX2) were found in any of the groups. However, mitochondrial transcription factor A (TFAM) expression significantly differed between groups. The results of this study provide insights into the potential causes that might lead to embryonic arrest in bison iSCNT embryos, including mitochondrial dysfunction, increased apoptosis and abnormal gene expression.
Collapse
|
21
|
Zuo Y, Gao Y, Su G, Bai C, Wei Z, Liu K, Li Q, Bou S, Li G. Irregular transcriptome reprogramming probably causes thec developmental failure of embryos produced by interspecies somatic cell nuclear transfer between the Przewalski's gazelle and the bovine. BMC Genomics 2014; 15:1113. [PMID: 25511933 PMCID: PMC4378013 DOI: 10.1186/1471-2164-15-1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
Background Interspecies somatic cell nuclear transfer (iSCNT) has been regarded as a potential alternative for rescuing highly endangered species and can be used as a model for studying nuclear–cytoplasmic interactions. However, iSCNT embryos often fail to produce viable offspring. The alterations in normal molecular mechanisms contributing to extremely poor development are for the most part unknown. Results Przewalski’s gazelle–bovine iSCNT embryos (PBNT) were produced by transferring Przewalski’s gazelle fibroblast nuclei into enucleated bovine oocytes. The percentages of PBNT embryos that developed to morula/blastocyst stages were extremely low even with the use of various treatments that included different SCNT protocols and treatment of embryos with small molecules. Transcriptional microarray analyses of the cloned embryos showed that the upregulation of reprogramming-associated genes in bovine–bovine SCNT (BBNT) embryos was significantly higher than those observed in PBNT embryos (1527:643). In all, 139 transcripts related to various transcription regulation factors (TFs) were unsuccessfully activated in the iSCNT embryos. Maternal degradation profiles showed that 1515 genes were uniquely downregulated in the BBNT embryos, while 343 genes were downregulated in the PBNT embryos. Incompatibilities between mitochondrial DNA (mtDNA) and nuclear DNA revealed that the TOMM (translocase of outer mitochondrial membrane)/TIMM (translocase of inner mitochondrial membrane) complex-associated genes in BBNT embryos had the highest expression levels, while the PBNT embryos exhibited much lower expression rates. Conclusions Improper degradation of maternal transcripts, incomplete activation of TFs and abnormal expression of genes associated with mitochondrial function in PBNT embryos likely contributed to incomplete reprogramming of the donor cell nuclei and therefore led to the developmental failure of these cloned embryos. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1113) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shorgan Bou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Key Laboratory of Herbivore Reproductive Biotechnology and Breeding Ministry of Agriculture, Inner Mongolia University, Hohhot 010070, China.
| | | |
Collapse
|
22
|
Gurdon JB. Ei und Kern: ein Kampf um die Vormacht (Nobel-Aufsatz). Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Gurdon JB. The egg and the nucleus: a battle for supremacy (Nobel Lecture). Angew Chem Int Ed Engl 2013; 52:13890-9. [PMID: 24311340 DOI: 10.1002/anie.201306722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/09/2022]
|
24
|
Abstract
Sir John Gurdon and Professor Shinya Yamanaka were the recipients of the 2012 Nobel Prize for Physiology or Medicine. This Spotlight article is a commentary on the early nuclear transplant work in Xenopus, which was very important for the Nobel award in 2012, and the influence of this work on the reprogramming field.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
25
|
Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, Forsythe JS, Polo JM, Trounce IA, McKenzie M, Nisbet DR, St. John JC. Mitochondrial DNA Haplotypes Define Gene Expression Patterns in Pluripotent and Differentiating Embryonic Stem Cells. Stem Cells 2013; 31:703-16. [DOI: 10.1002/stem.1313] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/22/2012] [Accepted: 11/28/2012] [Indexed: 01/07/2023]
|
26
|
Narbonne P, Halley-Stott RP, Gurdon JB. On the cellular and developmental lethality of a Xenopus nucleocytoplasmic hybrid. Commun Integr Biol 2012; 5:329-33. [PMID: 23060954 PMCID: PMC3460835 DOI: 10.4161/cib.20334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nucleocytoplasmic hybrid (cybrid) embryos result from the combination of the nucleus of one species, and the egg cytoplasm of another species. Cybrid embryos can be obtained either in the haploid state by the cross-fertilization or intra-cytoplasmic injection of an enucleated egg with sperm from another species, or in the diploid state by the technique of interspecies somatic cell nuclear transfer (iSCNT). Cybrids that originate from the combination of the nucleus and the cytoplasm of distantly related species commonly expire during early embryonic development, and the cause of this arrest is currently under investigation. Here we show that cells isolated from a Xenopus cybrid (Xenopus (Silurana) tropicalis haploid nucleus combined with Xenopus laevis egg cytoplasm) embryo are unable to proliferate and expand normally in vitro. We also provide evidence that the lack of nuclear donor species maternal poly(A)+ RNA-dependent factors in the recipient species egg may contribute to the developmental dead-end of distantly-related cybrid embryos. Overall, the data are consistent with the view that the development promoted by one species’ nucleus is dependent on the presence of maternally-derived, mRNA encoded, species-specific factors. These results also show that cybrid development can be improved without nuclear species mitochondria supplementation or replacement.
Collapse
Affiliation(s)
- Patrick Narbonne
- The Wellcome Trust/Cancer Research UK Gurdon Institute; The Henry Wellcome Building of Cancer and Developmental Biology; University of Cambridge; Cambridge, UK ; Department of Zoology; University of Cambridge; Cambridge, UK
| | | | | |
Collapse
|
27
|
Narbonne P, Miyamoto K, Gurdon JB. Reprogramming and development in nuclear transfer embryos and in interspecific systems. Curr Opin Genet Dev 2012; 22:450-8. [PMID: 23062626 PMCID: PMC3654497 DOI: 10.1016/j.gde.2012.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/29/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
Abstract
Nuclear transfer (NT) remains the most effective method to reprogram somatic cells to totipotency. Somatic cell nuclear transfer (SCNT) efficiency however remains low, but recurrent problems occurring in partially reprogrammed cloned embryos have recently been identified and some remedied. In particular, the trophectoderm has been identified as a lineage whose reprogramming success has a large influence on SCNT embryo development. Several interspecific hybrid and cybrid reprogramming systems have been developed as they offer various technical advantages and potential applications, and together with SCNT, they have led to the identification of a series of reprogramming events and responsible reprogramming factors. Interspecific incompatibilities hinder full exploitation of cross-species reprogramming systems, yet recent findings suggest that these may not constitute insurmountable obstacles.
Collapse
Affiliation(s)
- Patrick Narbonne
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
28
|
NARBONNE PATRICK, GURDON JOHNB. Amphibian interorder nuclear transfer embryos reveal conserved embryonic gene transcription, but deficient DNA replication or chromosome segregation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:975-86. [PMID: 23417419 PMCID: PMC3785129 DOI: 10.1387/ijdb.120150jg] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Early interspecies nuclear transfer (iNT) experiments suggested that a foreign nucleus may become permanently damaged after a few rounds of cell division in the cytoplasm of another species. That is, in some distant species combinations, nucleocytoplasmic hybrid (cybrid) blastula nuclei can no longer support development, even if they are back-transferred into their own kind of egg cytoplasm. We monitored foreign DNA amplification and RNA production by quantitative PCR (qPCR) and RT-qPCR in interorder amphibian hybrids and cybrids formed by the transfer of newt (Pleurodeles waltl) embryonic nuclei into intact and enucleated frog (Xenopus laevis) eggs. We found a dramatic reduction in the expansion of foreign DNA and cell numbers in developing cybrid embryos that correlated with reduced gene transcription. Interestingly, expansion in cell numbers was rescued by the recipient species (Xenopus) maternal genome in iNT hybrids, but it did not improve P. waltl DNA expansion or gene transcription. Also, foreign gene transcripts, normalized to DNA copy numbers, were mostly normal in both iNT hybrids and cybrids. Thus, incomplete foreign DNA replication and/or chromosome segregation during cell division may be the major form of nuclear damage occurring as a result of nuclear replication in a foreign cytoplasmic environment. It also shows that the mechanisms of embryonic gene transcription are highly conserved across amphibians and may not be a major cause of cybrid lethality.
Collapse
Affiliation(s)
- PATRICK NARBONNE
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, U.K. and Department of Zoology, University of Cambridge, Cambridge, U.K
| | - JOHN B. GURDON
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, U.K. and Department of Zoology, University of Cambridge, Cambridge, U.K
| |
Collapse
|