1
|
Da Silva A, Ahbara A, Baazaoui I, Jemaa SB, Cao Y, Ciani E, Dzomba EF, Evans L, Gootwine E, Hanotte O, Harris L, Li MH, Mastrangelo S, Missohou A, Molotsi A, Muchadeyi FC, Mwacharo JM, Tallet G, Vernus P, Hall SJG, Lenstra JA. History and genetic diversity of African sheep: Contrasting phenotypic and genomic diversity. Anim Genet 2025; 56:e13488. [PMID: 39561986 DOI: 10.1111/age.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Domesticated sheep have adapted to contrasting and extreme environments and continue to play important roles in local community-based economies throughout Africa. Here we review the Neolithic migrations of thin-tailed sheep and the later introductions of fat-tailed sheep into eastern Africa. According to contemporary pictorial evidence, the latter occurred in Egypt not before the Ptolemaic period (305-25 BCE). We further describe the more recent history of sheep in Egypt, the Maghreb, west and central Africa, central-east Africa, and southern Africa. We also present a comprehensive molecular survey based on the analysis of 50 K SNP genotypes for 59 African breeds contributed by several laboratories. We propose that gene flow and import of fat-tailed sheep have partially overwritten the diversity profile created by the initial migration. We found a genetic contrast between sheep north and south of the Sahara and a west-east contrast of thin- and fat-tailed sheep. There is no close relationship between African and central and east Asian fat-tailed breeds, whereas we observe within Africa only a modest effect of tail types on breed relationships.
Collapse
Affiliation(s)
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
- Faculty of Sciences, Misurata University, Misurata, Libya
| | - Imen Baazaoui
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus University of Autònoma de Barcelona, Bellaterra, Spain
| | - Slim Ben Jemaa
- National Institute Agronomic Research of Tunisia, University of Carthage, Ariana, Tunisia
| | - Yinhong Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Zoology Chinese Academy of Sciences (CAS), Beijing, China
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, University Bari "Aldo Moro", Bari, Italy
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Linda Evans
- Department of History and Archaeology, Macquarie University, Sydney, New South Wales, Australia
| | - Elisha Gootwine
- Institute of Animal Science, ARO, Volcani Center, Rishon LeZion, Israel
| | - Olivier Hanotte
- School of Life Sciences, The University of Nottingham, Nottingham, UK
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Laura Harris
- Department of History and Archaeology, Macquarie University, Sydney, New South Wales, Australia
| | - Meng-Hua Li
- Institute of Zoology Chinese Academy of Sciences (CAS), Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Ayao Missohou
- Animal Production and Nutrition Unit, Inter-State School of Veterinary Science and Medicine (EISMV), Dakar, Senegal
| | - Annelin Molotsi
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Farai C Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, South Africa
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Gaëlle Tallet
- University of Paris 1, Panthéon-Sorbonne, Paris, France
| | | | | | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Ben-Jemaa S, Yahyaoui G, Kdidi S, Najjari A, Lenstra JA, Mastrangelo S, Gaouar SBS, Mwacharo JM, Khorchani T, Yahyaoui MH. Genome-wide scans for signatures of selection in North African sheep reveals differentially selected regions between fat- and thin-tailed breeds. Anim Genet 2025; 56:e13487. [PMID: 39573836 DOI: 10.1111/age.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
North Africa counts several sheep breeds that can be categorized as fat- and thin-tailed. The former are well adapted to dryland environments. In this study, we used 50K genome-wide single nucleotide polymorphism profiles from 462 animals representing nine fat-tailed and 13 thin-tailed sheep breeds across North Africa to localize genomic regions putatively under differential selective pressures between the two types of breeds. We observed genetic clines from east to west and from north to south. The east-west cline separates the fat- and thin-tailed breeds, with the exception of the fat-tailed Algerian Barbarine, which is closely related to a genetically homogeneous cluster of Moroccan and Algerian thin-tailed breeds. Using a combination of three extended haplotype homozygosity tests, we detected seven candidate regions under divergent selection between fat- and thin-tailed sheep. The strongest selection signals reside on chromosomes 1 and 13, with the latter spanning the BMP2 gene, known to be associated with the fat-tail phenotype. Overall, the candidate regions under selection in fat-tailed sheep overlap with genes associated with adaptation to desert-like environments including adipogenesis, as well as heat and drought tolerance. Our results confirm previously reported candidate genes known to be a target of fat-tail selection in sheep but also reveal novel candidate genes specifically under selection in North African populations.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- Laboratoire Des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Ghazi Yahyaoui
- Département de Biologie, Faculté Des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Samia Kdidi
- Laboratoire d'Elevage et Faune Sauvage, Institut Des Régions Arides, Medenine, Tunisia
| | - Afef Najjari
- Laboratoire de Microbiologie et Biomolécules Actives LR03ES03, Faculté Des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Semir B S Gaouar
- Applied Genetic in Agriculture, Ecology and Public Health Laboratory, University of Tlemcen, Tlemcen, Algeria
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Touhami Khorchani
- Laboratoire d'Elevage et Faune Sauvage, Institut Des Régions Arides, Medenine, Tunisia
| | - Mohamed H Yahyaoui
- Laboratoire d'Elevage et Faune Sauvage, Institut Des Régions Arides, Medenine, Tunisia
| |
Collapse
|
3
|
Yang H, Chu M, Naominggaowa, Zhang X, Shan M, Lu X, Pan Z, He J. Tissue-specific expression, functional analysis, and polymorphism of the KRT2 gene in sheep horn. Genomics 2025; 117:110990. [PMID: 39761764 DOI: 10.1016/j.ygeno.2025.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Horn is a defensive weapon of sheep, consisting of a horny sheath and a bony core. The KRT2 gene is related to keratinization of the epidermis, so it is likely to be one of the contributor genes affecting horn type in sheep. In this study, we first analyzed the species-specific and tissue-specific expression of the KRT2 gene using transcriptome sequencing data. Then, by comparing the protein sequences of 20 species, we identified 28 specific amino acid sites in Artiodactyla animals, constructed a phylogenetic tree of the KRT2 gene, and predicted its three-dimensional protein structure. Finally, whole genome sequencing data was used and mined 4 functional SNP sites of KRT2 gene, and use KASP assay to verify the loci. In addition, we explored the relationship between the KRT2 gene and the evolution of Artiodactyla animals, and predicted the possible mechanism by which the KRT2 gene affects the horn type of sheep.
Collapse
Affiliation(s)
- Hao Yang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Naominggaowa
- Otog Front Banner Agricultural and Animal Husbandry Technology Promotion Center, Ordos 016200, China
| | - Xiaoxu Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingzhu Shan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoning Lu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhangyuan Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
5
|
Maxman G, van Marle-Köster E, Lashmar SF, Visser C. Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds. Trop Anim Health Prod 2024; 57:13. [PMID: 39729174 PMCID: PMC11680604 DOI: 10.1007/s11250-024-04265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.09 ± 12.82 (NGI) to 51.82 ± 21.01 (DRB), and the mean ROH length per breed ranged between 2.31 Mb (NGI) and 3.90 Mb (DRB). The smallest length categories i.e., ROH < 4 Mb were most frequent, indicating historic inbreeding effects for all breeds. The ROH based inbreeding coefficients (FROH) ranged between 0.033 ± 0.024 (NGI) and 0.081 ± 0.046 (DRB). Genes mapped to candidate regions were associated with immunity (ADAMTS12, LY96, WDPCP) and adaptation (FKBP4, CBFA2T3, TUBB3) in cattle and genes previously only reported for immunity in mice and human (EXOC3L1, MYO1G). The present study contributes to the understanding of the genetic mechanisms of adaptation, providing information for potential molecular application in genetic evaluation and selection programs.
Collapse
Affiliation(s)
- Gomo Maxman
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Este van Marle-Köster
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Carina Visser
- Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Anaya G, Garrido JM, Riquelme JA, Martínez RM, Membrillo A, Caro JA, Pajuelo A, Ruiz A, Martín de la Cruz JC, Molina A. Ancient DNA Reveals the Earliest Evidence of Sheep Flocks During the Late Fourth and Third Millennia BC in Southern Iberia. Animals (Basel) 2024; 14:3693. [PMID: 39765596 PMCID: PMC11672771 DOI: 10.3390/ani14243693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The Spanish Merino is the most significant sheep breed globally due to its economic and cultural importance in human history. It has also had a substantial influence on the development of other Merino and Merino-derived breeds. Historical sources indicate that crossbreeding to produce finer, higher-quality wool was already taking place in the south of the Iberian Peninsula during the Roman era. This evidence suggests that individuals with a racial pattern very similar to that of the modern Merino may have already existed on the peninsula. The presence of the skeletal remains of these animals at various human settlements dated to the late fourth and third millennia BC could provide insights into the genomics of these ancestral sheep. This study analyses ancient DNA extracted from nine skeletal remains from three archaeological sites in Southern Iberia, dated to the third millennium BC. The samples were sequenced and aligned with the ovine genome. The genetic distances observed among the samples indicate a closer relationship between several animals from the Marinaleda (Seville) and Grañena Baja (Jaén) sites. The study of the slaughter/death age profiles identified at La Minilla (La Rambla, Córdoba) suggests an approach centred on meat exploitation, while the data from Marinaleda (Seville) and Grañena Baja (Jaén) indicate the potential exploitation of secondary resources. A review of the composition of these small ruminant herds could provide insights into the type of secondary resource exploitation that may have been prioritised. Our aim is to investigate the presence of distinct production systems, differentiating between those aimed primarily at meat use and those focused on secondary products. This is the first approach to exploring the genetic evidence for sheep livestock related to its productive use during this period and in this geographical area.
Collapse
Affiliation(s)
- Gabriel Anaya
- MERAGEM (AGR-158) Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 14014 Cordoba, Spain;
| | - Juan Manuel Garrido
- INREPA (HUM-262) Research Group, Department of History, University of Córdoba, Plaza Cardenal Salazar, 3, 14003 Cordoba, Spain; (J.M.G.); (J.A.R.); (A.R.); (J.C.M.d.l.C.)
| | - José Antonio Riquelme
- INREPA (HUM-262) Research Group, Department of History, University of Córdoba, Plaza Cardenal Salazar, 3, 14003 Cordoba, Spain; (J.M.G.); (J.A.R.); (A.R.); (J.C.M.d.l.C.)
| | - Rafael Mª. Martínez
- Department of History, University of Córdoba, Plaza Cardenal Salazar, 3, 14003 Cordoba, Spain;
| | - Alberto Membrillo
- Department of Specific Didactics, University of Córdoba, Avda. San Alberto Magno s/n, 14004 Cordoba, Spain;
| | - José Antonio Caro
- Cuaternario y Geomorfología (RMN-273) Research Group, Department of History, University of Córdoba, Plaza Cardenal Salazar, 3, 14003 Cordoba, Spain;
| | - Ana Pajuelo
- TELLUS (HUM-949) Research Group, Department of Prehistory and Archaeology, University of Seville, Calle San Fernando 4, 41004 Sevilla, Spain;
| | - Adrián Ruiz
- INREPA (HUM-262) Research Group, Department of History, University of Córdoba, Plaza Cardenal Salazar, 3, 14003 Cordoba, Spain; (J.M.G.); (J.A.R.); (A.R.); (J.C.M.d.l.C.)
| | - José C. Martín de la Cruz
- INREPA (HUM-262) Research Group, Department of History, University of Córdoba, Plaza Cardenal Salazar, 3, 14003 Cordoba, Spain; (J.M.G.); (J.A.R.); (A.R.); (J.C.M.d.l.C.)
| | - Antonio Molina
- MERAGEM (AGR-158) Research Group, Department of Genetics, University of Córdoba, CN IV KM 396, 14014 Cordoba, Spain;
| |
Collapse
|
7
|
Taheri S, Javadmanesh A, Zerehdaran S. Identification of selective sweep and associated QTL traits in Iranian Ovis aries and Ovis orientalis populations. Front Genet 2024; 15:1414717. [PMID: 39748948 PMCID: PMC11693725 DOI: 10.3389/fgene.2024.1414717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Identifying genomic regions under selection is the most challenging issue for improving important traits in animals. Few studies have focused on identifying genomic regions under selection in sheep. The aim of this study was to identify selective sweeps and to explore the relationship between these and quantitative trait loci (QTL) in both domestic and wild sheep species using single nucleotide polymorphism markers (SNPs). Methods Genomic data were obtained from the NextGen project, which included genotyping 20 domestic and 14 wild sheep using the Illumina Ovine SNP50K BeadChip. The XP-EHH, iHS, and RSB methods were employed to detect signatures of positive selection. Results The results of the iHS method indicated 405 and 275 selective sweeps in domestic and wild sheep, respectively. Additionally, RSB and XP-EHH analyses revealed approximately 398 and 479 selective sweeps in domestic and wild sheep, respectively. Some of the genes associated with important QTL traits in domestic sheep include ADGRB3, CADM1, CAPN2, GALNT10, MTR, RELN, and USP25, while in wild sheep, the relevant genes include ACAN, ACO1, GADL1, MGST3, and PRDM16. Selective sweeps identified in domestic sheep were associated with body weight, muscle weight, milk protein percentage, and milk yield. In contrast, selective sweeps found in wild sheep were linked to average daily gain, bone weight, carcass fat percentage, and dressing percentage. Discussion These results indicate that selection by humans and the environment have largely progressed in harmony, highlighting the importance of both economic and environmental traits for survival. Additionally, the identification of potential candidate genes associated with economic traits and genomic regions that have experienced selection can be utilized in sheep breeding programs. However, due to the incomplete information regarding the functional annotation of genes in sheep and the limited sample size, further research with a larger sample group is essential to gain a deeper understanding of the candidate genes linked to economic traits in both domestic and wild sheep. Advancing knowledge in this area can significantly enhance the effectiveness of breeding strategies. The quantitative trait loci identified in this study have the potential to be incorporated into breeding plans for both domestic and wild sheep.
Collapse
Affiliation(s)
| | | | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Gaspa G, Cesarani A, Pauciullo A, Peana I, Macciotta NPP. Genomic Analysis of Sarda Sheep Raised at Diverse Temperatures Highlights Several Genes Involved in Adaptations to the Environment and Heat Stress Response. Animals (Basel) 2024; 14:3585. [PMID: 39765489 PMCID: PMC11672698 DOI: 10.3390/ani14243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Livestock expresses complex traits influenced by several factors. The response of animals to variations in climatic factors, such as increases in temperature, may induce heat stress conditions. In this study, animals living at different temperatures were compared using the genome-wide Wright fixation index (FST). A total of 825 genotypes of Sarda breed ewes were divided into two groups based on the flocks' average temperature over a 20-year period to compute the FST: 395 and 430 sheep were represented in colder and hotter groups, respectively. After LOWESS regression and CONTROL CHART application, 623 significant markers and 97 selection signatures were found. A total of 280 positional candidate genes were retrieved from a public database. Among these genomic regions, we found 51 annotated genes previously associated with heat stress/tolerance in ruminants (FCGR1A, MDH1, UGP2, MYO1G, and HSPB3), as well as immune response and cellular mechanisms related to how animals cope with thermal stress (RIPK1, SERPINB1, SERPINB9, and PELI1). Moreover, other genes were associated with milk fat (SCD, HERC3, SCFD2, and CHUK), body weight, body fat, and intramuscular fat composition (AGPAT2, ABCD2, MFAP32, YTHDC1, SIRT3, SCD, and RNF121), which might suggest the influence of environmental conditions on the genome of Sarda sheep.
Collapse
Affiliation(s)
- Giustino Gaspa
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Ilaria Peana
- Servizio Agrometeorologico Regionale per la Sardegna (ARPAS), 07100 Sassari, Italy;
| | - Nicolò P. P. Macciotta
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
| |
Collapse
|
9
|
Chen K, Zhang Y, Pan Y, Xiang X, Peng C, He J, Huang G, Wang Z, Zhao P. Genomic insights into demographic history, structural variation landscape, and complex traits from 514 Hu sheep genomes. J Genet Genomics 2024:S1673-8527(24)00330-8. [PMID: 39643267 DOI: 10.1016/j.jgg.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Hu sheep is an indigenous breed from the Taihu Lake Plain in China, known for its high fertility. Although Hu sheep belong to the Mongolian group, their demographic history and genetic architecture remain inconclusive. Here, we analyze 697 sheep genomes from representatives of Mongolian sheep breeds. Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago. As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago, they developed a unique genetic foundation and phenotypic characteristics which are evident in the genomic footprints of selective sweeps and structural variation landscape. Genes associated with reproductive traits (BMPR1B and TDRD10) and horn phenotype (RXFP2) exhibit notable selective sweeps in the genome of Hu sheep. A genome-wide association analysis reveals that structural variations at LOC101110773, MAST2, and ZNF385B may significantly impact polledness, teat number, and early growth in Hu sheep, respectively. Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep.
Collapse
Affiliation(s)
- Kaiyu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuelang Zhang
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Yizhe Pan
- Agricultural Product Quality and Safety Research Center of Huzhou City, Huzhou, Zhejiang 313000, China
| | - Xin Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jiayi He
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Guiqing Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| | - Pengju Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
10
|
Ma L, Zhao W, Ma Q, Wang J, Zhao Z, Zhang J, Gu Y. Genome-Wide Association Study of Birth Wool Length, Birth Weight, and Head Color in Chinese Tan Sheep Through Whole-Genome Re-Sequencing. Animals (Basel) 2024; 14:3495. [PMID: 39682459 DOI: 10.3390/ani14233495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese Tan sheep is a unique breed of sheep that is typical throughout China, mainly used for fur and meat production. They are widely distributed in northwestern China and are famous for their lambskin and shiny white curly wool. In this study, the phenotypic traits of wool length, birth weight, and head coat color were evaluated in 256 Chinese Tan sheep breeds. Whole genome sequencing generated 23.67 million high-quality SNPs for genome-wide association studies (GWAS). We identified 208 significant SNPs associated with birth wool length, implicating RAD50, MACROD2, SAMD5, SASH1, and SPTLC3 as potential candidate genes for this trait. For birth weight, 1056 significant SNPs, with 76.89% of them located on chromosome 2, were identified by GWAS, and XPA, INVS, LOC121818504, GABBR2, LOC101114941, and LOC106990096 were identified as potential candidate genes for birth weight. The GWAS for head coat color identified 1424 significant SNPs across three chromosomes, with 99.65% on chromosome 14, and SPIRE2, TCF25, and MC1R as candidate genes were found to be possibly involved in the development of the black-headed coat color in sheep. Furthermore, we selected head coat color as a representative trait and performed an independent test of our GWAS findings through multiplex PCR SNP genotyping. The findings validated five mutation sites in chromosome 14 (14,251,947 T>A, 14,252,090 G>A, 14,252,158 C>T, 14,252,329 T>G, and 14,252,464 C>T) within the exon1 of the MC1R gene (517 bp), as identified by GWAS in an additional 102 Tan sheep individuals, and revealed that black-headed sheep predominantly exhibited heterozygous genotypes, possibly contributing to their color change. Our results provide a valuable foundation for further study of these three economically important traits, and enhance our understanding of genetic structure and variation in Chinese Tan sheep.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Jin Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
11
|
Kleinau G, Chini B, Andersson L, Scheerer P. The role of G protein-coupled receptors and their ligands in animal domestication. Anim Genet 2024; 55:893-906. [PMID: 39324206 DOI: 10.1111/age.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The domestication of plants and animals has resulted in one of the most significant cultural and socio-economical transitions in human history. Domestication of animals, including human-supervised reproduction, largely uncoupled particular animal species from their natural, evolutionary history driven by environmental and ecological factors. The primary motivations for domesticating animals were, and still are, producing food and materials (e.g. meat, eggs, honey or milk products, wool, leather products, jewelry and medication products) to support plowing in agriculture or in transportation (e.g. horse, cattle, camel and llama) and to facilitate human activities (for hunting, rescuing, therapeutic aid, guarding behavior and protecting or just as a companion). In recent years, decoded genetic information from more than 40 domesticated animal species have become available; these studies have identified genes and mutations associated with specific physiological and behavioral traits contributing to the complex genetic background of animal domestication. These breeding-altered genomes provide insights into the regulation of different physiological areas, including information on links between e.g. endocrinology and behavior, with important pathophysiological implications (e.g. for obesity and cancer), extending the interest in domestication well beyond the field. Several genes that have undergone selection during domestication and breeding encode specific G protein-coupled receptors, a class of membrane-spanning receptors involved in the regulation of a number of overarching functions such as reproduction, development, body homeostasis, metabolism, stress responses, cognition, learning and memory. Here we summarize the available literature on variations in G protein-coupled receptors and their ligands and how these have contributed to animal domestication.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Bice Chini
- CNR, Institute of Neuroscience, Vedano al Lambro, Italy, and NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| |
Collapse
|
12
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2744-4. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
13
|
Mohammadi H, Khaltabadi Farahani AH, Moradi MH, Moradi-Shahrbabak H, Gholizadeh M, Najafi A, Tolone M, D’Alessandro E. Genome-Wide Scan for Selective Sweeps Reveals Novel Loci Associated with Prolificacy in Iranian Sheep Breeds in Comparison with Highly Prolific Exotic Breed. Animals (Basel) 2024; 14:3245. [PMID: 39595298 PMCID: PMC11591336 DOI: 10.3390/ani14223245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Domestication and selection significantly changed phenotypic traits in modern domestic animals. To identify the genomic regions associated with prolificacy in this study, 837 ewes from three Iranian indigenous sheep breeds, consisting of Baluchi, Lori-Bakhtiari, and Zandi uniparous breeds, and one Greek highly prolific dairy sheep, namely Chios, were genotyped using OvineSNP50K arrays. Statistical tests were then performed using different and complementary methods based on either site frequency (FST) and haplotype (hapFLK) between populations, followed by a pathway analysis of the genes contained in the selected regions. The results revealed that for the top 0.01 percentile of the obtained FST values, 16 genomic regions on chromosomes 2, 3, 4, 7, 8, 9, 13, 14, 16, 18, 19, and 20, and for hapFLK values, 3 regions located on chromosomes 3, 7, and 13, were under selection. A bioinformatic analysis of these genomic regions showed that these loci overlapped with potential candidate genes associated with prolificacy in sheep including GNAQ, COL5A2, COL3A1, HECW1, FBN1, COMMD3, RYR1, CCL28, SERPINA14, and HSPA2. These regions also overlapped with some quantitative trait loci (QTLs) linked to prolificacy traits, milk yield, and body weight. These findings suggest that future research could further link these genomic regions to prolificacy traits in sheep.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Amir Hossein Khaltabadi Farahani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Mohsen Gholizadeh
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran;
| | - Abouzar Najafi
- Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht 33916-53755, Iran;
| | - Marco Tolone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres, 98166 Messina, Italy;
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy
| |
Collapse
|
14
|
Bayraktar M. Analysing the genetic diversity of three sheep breeds in Turkey and nearby countries using 50 K SNPs data. Anim Biotechnol 2024; 35:2329106. [PMID: 38497403 DOI: 10.1080/10495398.2024.2329106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This study analysed the genetic diversity and population structure of eight sheep breeds in Turkey and nearby countries. Moderate genetic diversity was observed, with the Sakiz (SKZ) exhibiting the highest diversity based on heterozygosity and allelic richness (AR) values. Genetic distances revealed differentiation between the populations, with the most significant divergence between the Cyprus Fat Tail (CFT) and SKZ breeds. PCA demonstrated SKZ and Chios (CHI) clustering together, indicating genetic similarity. Karakas (KRS), Norduz (NDZ), Afshari (AFS), Moghani (MOG) and others showed overlap, reflecting genetic relationships. Ancestry analysis found that KRS was predominantly inherited from the second ancestral population, while SKZ and NDZ were primarily derived from the first and second ancestral lineages. This illustrated the populations' diverse origins. Most genetic variation (96.84%) was within, not between, populations. The phi-statistic (PhiPT) indicated moderate differentiation overall. Phylogenetic analysis further demonstrated the genetic distinctiveness of the SKZ breed. ROH and FROH analyses showed that SKZ exhibited the highest homozygosity and inbreeding, while KRS displayed the lowest. This study elucidates these breeds' genetic diversity, structure and relationships. Key findings include moderate diversity, evidence of differentiation between breeds, diverse ancestral origins and distinct ROH patterns. This provides insights into the population's genetic characteristics and conservation requirements.
Collapse
Affiliation(s)
- Mervan Bayraktar
- Department of Animal Science, Faculty of Agriculture, Çukurova University, Adana, Turkey
| |
Collapse
|
15
|
Lv FH, Wang DF, Zhao SY, Lv XY, Sun W, Nielsen R, Li MH. Deep Ancestral Introgressions between Ovine Species Shape Sheep Genomes via Argali-Mediated Gene Flow. Mol Biol Evol 2024; 41:msae212. [PMID: 39404100 PMCID: PMC11542629 DOI: 10.1093/molbev/msae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Previous studies revealed extensive genetic introgression between Ovis species, which affects genetic adaptation and morphological traits. However, the exact evolutionary scenarios underlying the hybridization between sheep and allopatric wild relatives remain unknown. To address this problem, we here integrate the reference genomes of several ovine and caprine species: domestic sheep, argali, bighorn sheep, snow sheep, and domestic goats. Additionally, we use 856 whole genomes representing 169 domestic sheep populations and their six wild relatives: Asiatic mouflon, urial, argali, snow sheep, thinhorn sheep, and bighorn sheep. We implement a comprehensive set of analyses to test introgression among these species. We infer that the argali lineage originated ∼3.08 to 3.35 Mya and hybridized with the ancestor of Pachyceriforms (e.g. bighorn sheep and snow sheep) at ∼1.56 Mya. Previous studies showed apparent introgression from North American Pachyceriforms into the Bashibai sheep, a Chinese native sheep breed, despite of their wide geographic separation. We show here that, in fact, the apparent introgression from the Pachyceriforms into Bashibai can be explained by the old introgression from Pachyceriforms into argali and subsequent recent introgression from argali into Bashibai. Our results illustrate the challenges of estimating complex introgression histories and provide an example of how indirect and direct introgression can be distinguished.
Collapse
Affiliation(s)
- Feng-Hua Lv
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Si-Yi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiao-Yang Lv
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Wei Sun
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225001, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Statistics, UC Berkeley, Berkeley, CA 94707, USA
- Globe Institute, University of Copenhagen, Copenhagen 1350, Denmark
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Kaptan D, Atağ G, Vural KB, Morell Miranda P, Akbaba A, Yüncü E, Buluktaev A, Abazari MF, Yorulmaz S, Kazancı DD, Küçükakdağ Doğu A, Çakan YG, Özbal R, Gerritsen F, De Cupere B, Duru R, Umurtak G, Arbuckle BS, Baird D, Çevik Ö, Bıçakçı E, Gündem CY, Pişkin E, Hachem L, Canpolat K, Fakhari Z, Ochir-Goryaeva M, Kukanova V, Valipour HR, Hoseinzadeh J, Küçük Baloğlu F, Götherström A, Hadjisterkotis E, Grange T, Geigl EM, Togan İZ, Günther T, Somel M, Özer F. The Population History of Domestic Sheep Revealed by Paleogenomes. Mol Biol Evol 2024; 41:msae158. [PMID: 39437846 PMCID: PMC11495565 DOI: 10.1093/molbev/msae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Collapse
Affiliation(s)
- Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Pedro Morell Miranda
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Ali Akbaba
- Selçuklu ve Malazgirt Araştırma ve Uygulama Merkezi, Muş Alparslan Üniversitesi, Muş, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Aleksey Buluktaev
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Mohammad Foad Abazari
- Division of Medical Sciences, Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sevgi Yorulmaz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Duygu Deniz Kazancı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Ayça Küçükakdağ Doğu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, Istanbul, Turkey
| | - Fokke Gerritsen
- Netherlands Institute in Turkey, Istanbul, Turkey
- Leiden Institute for Area Studies, Leiden University, Leiden, Netherlands
| | - Bea De Cupere
- Operational Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Refik Duru
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Gülsün Umurtak
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas Baird
- Department of Archaeology, Classics, and Egyptology, University of Liverpool, Liverpool, UK
| | - Özlem Çevik
- Department of Archaeology, Trakya University, Edirne, Turkey
| | - Erhan Bıçakçı
- Department of Prehistory, Istanbul University, Laleli, Istanbul, Turkey
| | | | - Evangelia Pişkin
- Department of Settlement Archaeology, Middle East Technical University, Ankara, Turkey
| | - Lamys Hachem
- Institut National de Recherches Archéologiques Préventives (Inrap), UMR 8215 Trajectoires, Paris, France
| | - Kayra Canpolat
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Zohre Fakhari
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Maria Ochir-Goryaeva
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
- Khalikov Institute of Archaeology, Academy of Sciences of Tatarstan, Kazan, The Republic of Tatarstan, Russia
| | - Viktoria Kukanova
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Hamid Reza Valipour
- Department of Archaeology, Faculty of Letters and Human Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Fatma Küçük Baloğlu
- Department of Biology, Giresun University, Giresun, Turkey
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Anders Götherström
- Center for Paleogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, University of Stockholm, Stockholm, Sweden
| | | | - Thierry Grange
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - Eva-Maria Geigl
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - İnci Z Togan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Torsten Günther
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
17
|
Meyermans R, Gorssen W, Aerts N, Hooyberghs K, Chakkingal Bhaskaran B, Chapard L, Buys N, Janssens S. Genomic characterisation and diversity assessment of eight endangered Belgian sheep breeds. Animal 2024; 18:101315. [PMID: 39276394 DOI: 10.1016/j.animal.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024] Open
Abstract
Assessing the genetic diversity of local breeds is essential for conserving these unique breeds, which may possess unique traits. This study provides the genomic characterisation of eight indigenous sheep breeds in Belgium based on pedigree and single nucleotide polymorphism (SNP) analysis. A total of 687 sheep were genotyped and were subjected to a rigorous quality control, resulting in a set of 45 978 autosomal SNPs. Pedigree analysis showed breed-average inbreeding estimates between 3.3% and 11.3%. The genomic analysis included an assessment of runs of homozygosity (ROH) to examine the genomic inbreeding coefficient, with breed-average inbreeding coefficients estimated between 4.1% and 8.5%. Runs of homozygosity islands were identified in six of the eight breeds studied, with some exhibiting an incidence of up to 58%. Interestingly, several ROH islands overlapped with other breeds included in this study, as well as with international sheep breeds. Pedigree-based effective population sizes were estimated below 100 for all breeds, whereas genomic-based effective population sizes were below 24, indicating that these eight local sheep breeds are endangered. Principal component analysis, admixture analyses, and Fst computations were used to study the population structure and genetic differences. A neighbour-joining tree using 95 international sheep breeds positioned the eight local breeds in the group of milksheep, Texel sheep and the Scandinavian breeds. Additionally, the investigation of paternal oY1 genotypes revealed diverse lineage origins within the Belgian sheep population. This study refines and deepens our knowledge about the local sheep breeds in Belgium, thereby improving their management and conservation. Moreover, as these breeds are linked to other international breeds, these insights are significant for the global scientific community.
Collapse
Affiliation(s)
- R Meyermans
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium.
| | - W Gorssen
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - N Aerts
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - K Hooyberghs
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - B Chakkingal Bhaskaran
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - L Chapard
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - N Buys
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| | - S Janssens
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30 - 2472, 3001 Leuven, Belgium
| |
Collapse
|
18
|
Adeniyi OO, Lenstra JA, Mastrangelo S, Lühken G. Genome-wide comparative analyses for selection signatures indicate candidate genes for between-breed variability in copper accretion in sheep. Animal 2024; 18:101329. [PMID: 39378609 DOI: 10.1016/j.animal.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
The problem of copper (Cu) intoxication and deficiency continues to impact economic gains and animal welfare in sheep husbandry. This study investigated the ovine genome for regions and potential genes under selection for Cu accretion between sheep breeds. For this, we compared ovine single nucleotide polymorphism (SNP) data of three Cu-susceptible breeds with three Cu-tolerant breeds. After merging SNP data of breeds and removal of related individuals, a total of 229 sheep and 45 640 autosomal SNPs were left. Then, we selected 14 individuals per breed into two datasets (datasets 1 and 2) for analysis of selection signatures using the Fixation index, cross-population extended haplotype homozygosity and haplotype-based FLK methods. Selection regions shared by both datasets detected by at least two methods revealed regions on OAR 4, 8 and 11 containing 54 candidate genes under selection for Cu accretion. Enrichment analysis revealed that 19 gene ontologies and 1 enriched Kyoto encyclopaedia of genes and genomes pathway terms were associated with the candidate genes under selection. Genes such as TP53, TNFSF13, TNFSF12, ALOX15, ALOX12, EIF5A and PREP are associated with the regulation of Cu homeostasis, programmed cell death or inflammatory response. We also found an enrichment of arachidonate 15-lipoxygenase activity, arachidonate 12-lipoxygenase activity and ferroptosis that influence cellular inflammation and cell death. These results shed light on ovine genomic regions under selection for Cu accretion and provide information on candidate genes for further studies on breed differences in ovine Cu accretion.
Collapse
Affiliation(s)
- O O Adeniyi
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21,35390 Giessen, Germany.
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM Utrecht, the Netherlands
| | - S Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo (PA), Italy
| | - G Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University of Giessen, Ludwigstrasse 21,35390 Giessen, Germany
| |
Collapse
|
19
|
Srikanth K, Jaafar MA, Neupane M, Ben Zaabza H, McKay SD, Wolfe CW, Metzger JS, Huson HJ, Van Tassell CP, Blackburn HD. Assessment of genetic diversity, inbreeding and collection completeness of Jersey bulls in the US National Animal Germplasm Program. J Dairy Sci 2024:S0022-0302(24)01152-4. [PMID: 39343205 DOI: 10.3168/jds.2024-25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Genomic selection and extensive use of a few elite bulls through artificial insemination are leading to reduced genetic diversity in Jersey cattle. Conservation of genetic diversity through gene banks can protect a breed's genetic diversity and genetic gain, ensuring continued genetic advancement in the future. The availability of genomic information in the US National Animal Germplasm Program (NAGP) facilitates characterization of Jersey bulls in the germplasm collection. Therefore, in this study, we compared the genetic diversity and inbreeding between Jersey bulls in the NAGP and the national cooperator database (NCD). The NCD is maintained and curated by the Council on Dairy Cattle Breeding (CDCB). We found the genetic diversity to be marginally higher in NAGP (Ho = 0.34 ± 0.17) relative to the NCD population (Ho = 0.33 ± 0.16). The average pedigree and genomic inbreeding (FPED, FGRM, FROH > 2Mb) were similar between the groups, with estimates of 7.6% with FPED, 11.07% with FGRM and 20.13% with FROH > 2Mb. An increasing trend in inbreeding was detected, and a significantly higher level of inbreeding was estimated among the older bulls in the NAGP collection, suggesting an overrepresentation of the genetics from elite bulls. Results from principal component analyses (PCA) provided evidence that the NAGP collection is representative of the genetic variation found in the NCD population and a broad majority of the loci segregating (98.2%) in the NCD population were also segregating in the NAGP. Ward's clustering was used to assess collection completeness of Jerseys in the NAGP by comparison with top 1000 sires of bulls, top 1000 sires of cow, and bulls with high Lifetime Net Merit (NM$). All the clusters were represented in the NAGP suggesting that most of the genetic diversity in the US Jersey population is represented in the NAGP and confirmed the PCA results. The decade of birth was the major driver grouping bulls into clusters, suggesting the importance of selection over time. Selection signature analysis between the historic bulls in the NAGP with the newer bulls, born in the decade after implementation of genomic selection, identified selection for milk production, fat and protein yield, fertility, health, and reproductive traits. Cluster analysis revealed that the NAGP has captured allele frequency changes over time associated with selection, validating the strategy of repeated sampling and suggests that the continuation of a repeated sampling policy is essential for the germplasm collection to maintain its future utility. While NAGP should continue to collect bulls that have large influence on the population due to selection, care should be taken to include the entire breadth of bulls, including low merit bulls.
Collapse
Affiliation(s)
- K Srikanth
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M A Jaafar
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M Neupane
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H Ben Zaabza
- Department of Animal Science, Michigan State, East Lansing, MI, 48824
| | - S D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - C W Wolfe
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - J S Metzger
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - H J Huson
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - C P Van Tassell
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H D Blackburn
- National Animal Germplasm Program, USDA, Fort Collins, CO 80521.
| |
Collapse
|
20
|
Ma K, Song J, Li D, Li T, Ma Y. Genetic Diversity and Selection Signal Analysis of Hu Sheep Based on SNP50K BeadChip. Animals (Basel) 2024; 14:2784. [PMID: 39409733 PMCID: PMC11476051 DOI: 10.3390/ani14192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
This research is designed to examine the genetic diversity and kinship among Hu sheep, as well as to discover genes associated with crucial economic traits. A selection of 50 unrelated adult male Hu sheep underwent genotyping with the SNP50K BeadChip. Seven indicators of genetic diversity were assessed based on high-quality SNP data: effective population size (Ne), polymorphic information content (PIC), polymorphic marker ratio (PN), expected heterozygosity (He), observed heterozygosity (Ho), effective number of alleles, and minor allele frequency (MAF). Plink software was employed to compute the IBS genetic distance matrix and detect runs of homozygosity (ROHs), while the G matrix and principal component analysis were performed using GCTA software. Selective sweep analysis was carried out using ROH, Pi, and Tajima's D methodologies. This study identified a total of 64,734 SNPs, of which 56,522 SNPs remained for downstream analysis after quality control. The population displayed relatively high genetic diversity. The 50 Hu sheep were ultimately grouped into 12 distinct families, with families 6, 8, and 10 having the highest numbers of individuals, each consisting of 6 sheep. Furthermore, a total of 294 ROHs were detected, with the majority having lengths between 1 and 5 Mb, and the inbreeding coefficient FROH was 0.01. In addition, 41, 440, and 994 candidate genes were identified by ROH, Pi, and Tajima's D methods, respectively, with 3 genes overlapping (BMPR1B, KCNIP4, and FAM13A). These results offer valuable insights for future Hu sheep breeding, genetic assessment, and population management.
Collapse
Affiliation(s)
| | | | | | | | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (K.M.); (J.S.); (D.L.); (T.L.)
| |
Collapse
|
21
|
Kerr E, Marr MM, Collins L, Dubarry K, Salavati M, Scinto A, Woolley S, Clark EL. Analysis of genotyping data reveals the unique genetic diversity represented by the breeds of sheep native to the United Kingdom. BMC Genom Data 2024; 25:82. [PMID: 39289631 PMCID: PMC11409796 DOI: 10.1186/s12863-024-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Sheep breeds native to the United Kingdom exhibit a striking diversity of different traits. Some of these traits are highly sustainable, such as seasonal wool shedding in the Wiltshire Horn, and are likely to become more important as pressures on sheep production increase in coming decades. Despite their clear importance to the future of sheep farming, the genetic diversity of native UK sheep breeds is poorly characterised. This increases the risk of losing the ability to select for breed-specific traits from native breeds that might be important to the UK sheep sector in the future. Here, we use 50 K genotyping to perform preliminary analysis of breed relationships and genetic diversity within native UK sheep breeds, as a first step towards a comprehensive characterisation. This study generates novel data for thirteen native UK breeds, including six on the UK Breeds at Risk (BAR) list, and utilises existing data from the publicly available Sheep HapMap dataset to investigate population structure, heterozygosity and admixture. RESULTS In this study the commercial breeds exhibited high levels of admixture, weaker population structure and had higher heterozygosity compared to the other native breeds, which generally tend to be more distinct, less admixed, and have lower genetic diversity and higher kinship coefficients. Some breeds including the Wiltshire Horn, Lincoln Longwool and Ryeland showed very little admixture at all, indicating a high level of breed integrity but potentially low genetic diversity. Population structure and admixture were strongly influenced by sample size and sample provenance - highlighting the need for equal sample sizes, sufficient numbers of individuals per breed, and sampling across multiple flocks. The genetic profiles both within and between breeds were highly complex for UK sheep, reflecting the complexity in the demographic history of these breeds. CONCLUSION Our results highlight the utility of genotyping data for investigating breed diversity and genetic structure. They also suggest that routine generation of genotyping data would be very useful in informing conservation strategies for rare and declining breeds with small population sizes. We conclude that generating genetic resources for the sheep breeds that are native to the UK will help preserve the considerable genetic diversity represented by these breeds, and safe-guard this diversity as a valuable resource for the UK sheep sector to utilise in the face of future challenges.
Collapse
Affiliation(s)
- Eleanor Kerr
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Melissa M Marr
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Lauren Collins
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Katie Dubarry
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
- Dairy Research Centre, Scotland's Rural College (SRUC), Barony Campus, Dumfries, DG1 3NE, United Kingdom
| | - Alissa Scinto
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Shernae Woolley
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Easter Bush, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
22
|
Bao J, Xiong J, Huang J, Yang P, Shang M, Zhang L. Genetic Diversity, Selection Signatures, and Genome-Wide Association Study Identify Candidate Genes Related to Litter Size in Hu Sheep. Int J Mol Sci 2024; 25:9397. [PMID: 39273345 PMCID: PMC11395453 DOI: 10.3390/ijms25179397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Hu sheep is a renowned prolific local sheep breed in China, widely distributed across the country due to its excellent reproductive performance. Deciphering the molecular mechanisms underlying the high fecundity of Hu sheep is crucial for improving the litter size of ewes. In this study, we genotyped 830 female Hu sheep using the Illumina OvineSNP50 BeadChip and performed genetic diversity analysis, selection signature detection, and a genome-wide association study (GWAS) for litter size. Our results revealed that the Hu sheep population exhibits relatively high genetic diversity. A total of 4927 runs of homozygosity (ROH) segments were detected, with the majority (74.73%) being short in length. Different genomic inbreeding coefficients (FROH, FHOM, FGRM, and FUNI) ranged from -0.0060 to 0.0126, showing low levels of inbreeding in this population. Additionally, we identified 91 candidate genomic regions through three complementary selection signature methods, including ROH, composite likelihood ratio (CLR), and integrated haplotype score (iHS), and annotated 189 protein-coding genes. Moreover, we observed two significant SNPs related to the litter size of Hu sheep using GWAS analysis based on a repeatability model. Integrating the selection signatures and the GWAS results, we identified 15 candidate genes associated with litter size, among which BMPR1B and UNC5C were particularly noteworthy. These findings provide valuable insights for improving the reproductive performance and breeding of high-fecundity lines of Hu sheep.
Collapse
Affiliation(s)
- Jingjing Bao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinke Xiong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jupeng Huang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Peifu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Mingyu Shang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Li Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
23
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
24
|
Kusza S, Badaoui B, Wanjala G. Insights into the genomic homogeneity of Moroccan indigenous sheep breeds though the lens of runs of homozygosity. Sci Rep 2024; 14:16515. [PMID: 39019985 PMCID: PMC11255268 DOI: 10.1038/s41598-024-67558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Numerous studies have indicated that Morocco's indigenous sheep breeds are genetically homogenous, posing a risk to their survival in the challenging harsh climate conditions where they predominantly inhabit. To understand the genetic behind genetic homogeneity through the lens of runs of homozygosity (ROH), we analyzed the whole genome sequences of five indigenous sheep breeds (Beni Guil, Ouled Djellal, D'man, Sardi, Timahdite and Admixed).The results from principal component, admixture, Fst, and neighbour joining tree analyses consistently showed a homogenous genetic structure. This structure was characterized by an average length of 1.83 Mb for runs of homozygosity (ROH) segments, with a limited number of long ROH segments (24-48 Mb and > 48 Mb). The most common ROH segments were those ranging from 1-6 Mb. The most significant regions of homozygosity (ROH Islands) were mostly observed in two chromosomes, namely Chr1 and Chr5. Specifically, ROH Islands were exclusively discovered in the Ouled Djellal breed on Chr1, whereas Chr5 exhibited ROH Islands in all breeds. The analysis of ROH Island and iHS technique was employed to detect signatures of selection on Chr1 and Chr5. The results indicate that Chr5 had a high level of homogeneity, with the same genes being discovered across all breeds. In contrast, Chr1 displays some genetic variances between breeds. Genes identified on Chr5 included SLC39A1, IL23A, CAST, IL5, IL13, and IL4 which are responsible for immune response while genes identified on Chr1 include SOD1, SLAMF9, RTP4, CLDN1, and PRKAA2. ROH segment profile and effective population sizes patterns suggests that the genetic uniformity of studied breeds is the outcome of events that transpired between 250 and 300 generations ago. This research not only contributes to the understanding of ROH distribution across breeds but helps design and implement native sheep breeding and conservation strategies in Morocco. Future research, incorporating a broader sample size and utilizing the pangenome for reference, is recommended to further elucidate these breeds' genomic landscapes and adaptive mechanisms.
Collapse
Affiliation(s)
- Szilvia Kusza
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Bouabid Badaoui
- Faculty of Sciences, Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI),, Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - George Wanjala
- Faculty of Agricultural and Food Sciences and Environmental Management, Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138., 4032, Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15., 6800, Hódmezővásárhely, Hungary
| |
Collapse
|
25
|
Spurgin LG, Bosse M, Adriaensen F, Albayrak T, Barboutis C, Belda E, Bushuev A, Cecere JG, Charmantier A, Cichon M, Dingemanse NJ, Doligez B, Eeva T, Erikstad KE, Fedorov V, Griggio M, Heylen D, Hille S, Hinde CA, Ivankina E, Kempenaers B, Kerimov A, Krist M, Kvist L, Laine VN, Mänd R, Matthysen E, Nager R, Nikolov BP, Norte AC, Orell M, Ouyang J, Petrova-Dinkova G, Richner H, Rubolini D, Slagsvold T, Tilgar V, Török J, Tschirren B, Vágási CI, Yuta T, Groenen MAM, Visser ME, van Oers K, Sheldon BC, Slate J. The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird. Mol Ecol Resour 2024; 24:e13969. [PMID: 38747336 DOI: 10.1111/1755-0998.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.
Collapse
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Mirte Bosse
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Department of Ecological Science, Animal Ecology Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Adriaensen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tamer Albayrak
- Department of Biology, Science and art Faculty, Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, Turkey
- Biology Education, Buca Faculty of Education, Mathematics and Science Education, Dokuz Eylül University, İzmir, Turkey
| | | | - Eduardo Belda
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, València, Spain
| | - Andrey Bushuev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia, Italy
| | | | - Mariusz Cichon
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU München, Planegg-Martinsried, Germany
| | - Blandine Doligez
- UMR CNRS 5558-LBBE, Biométrie et Biologie Évolutive, Villeurbanne, France
- Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Kjell Einar Erikstad
- Norwegian Institute for Nature Research, FRAM-High North Research Centre for Climate and the Environment, Tromsø, Norway
| | | | - Matteo Griggio
- Department of Biology, University of Padova, Padova, Italy
| | - Dieter Heylen
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sabine Hille
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Science, Vienna, Austria
| | - Camilla A Hinde
- Behavioural Ecology Group, Department of Life Sciences, Anglia Ruskin University, Cambridgeshire, UK
| | - Elena Ivankina
- Faculty of Biology, Zvenigorod Biological Station, Lomonosov Moscow State University, Moscow, Russia
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Anvar Kerimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Milos Krist
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ruedi Nager
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Boris P Nikolov
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ana Claudia Norte
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Markku Orell
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Gergana Petrova-Dinkova
- Bulgarian Ornithological Centre, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Heinz Richner
- Evolutionary Ecology Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Milan, Italy
| | - Tore Slagsvold
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vallo Tilgar
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Csongor I Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Teru Yuta
- Yamashina Institute for Ornithology, Abiko, Japan
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ben C Sheldon
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Huang Z, Wang J, Qi D, Li X, Wang J, Zhou J, Ruan Y, Laer Y, Baqian Z, Yang C. Uncovering the genetic diversity and adaptability of Butuo Black Sheep through whole-genome re-sequencing. PLoS One 2024; 19:e0303419. [PMID: 38857228 PMCID: PMC11164371 DOI: 10.1371/journal.pone.0303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
The Butuo Black Sheep (BBS) is well-known for its ability to thrive at high altitudes, resist diseases, and produce premium-quality meat. Nonetheless, there is insufficient data regarding its genetic diversity and population-specific Single nucleotide polymorphisms (SNPs). This paper centers on the genetic diversity of (BBS). The investigation conducted a whole-genome resequencing of 33 BBS individuals to recognize distinct SNPs exclusive to BBS. The inquiry utilized bioinformatic analysis to identify and explain SNPs and pinpoint crucial mutation sites. The findings reveal that reproductive-related genes (GHR, FSHR, PGR, BMPR1B, FST, ESR1), lipid-related genes (PPARGC1A, STAT6, DGAT1, ACACA, LPL), and protein-related genes (CSN2, LALBA, CSN1S1, CSN1S2) were identified as hub genes. Functional enrichment analysis showed that genes associated with reproduction, immunity, inflammation, hypoxia, PI3K-Akt, and AMPK signaling pathways were present. This research suggests that the unique ability of BBS to adapt to low oxygen levels in the plateau environment may be owing to mutations in a variety of genes. This study provides valuable insights into the genetic makeup of BBS and its potential implications for breeding and conservation efforts. The genes and SPNs identified in this study could serve as molecular markers for BBS.
Collapse
Affiliation(s)
| | | | | | | | - Jinkang Wang
- Butuo County Agriculture and Rural Affairs Bureau, Xichang, China
| | - Jingwen Zhou
- Butuo County Forestry and Grassland Bureau, Xichang, China
| | - Yan Ruan
- Butuo County Agriculture and Rural Affairs Bureau, Xichang, China
| | - Youse Laer
- Butuo County Agriculture and Rural Affairs Bureau, Xichang, China
| | | | | |
Collapse
|
27
|
Yang J, Wang DF, Huang JH, Zhu QH, Luo LY, Lu R, Xie XL, Salehian-Dehkordi H, Esmailizadeh A, Liu GE, Li MH. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biol 2024; 25:148. [PMID: 38845023 PMCID: PMC11155191 DOI: 10.1186/s13059-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Collapse
Affiliation(s)
- Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiang-Hui Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ling-Yun Luo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ran Lu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Giovannini S, Chessari G, Riggio S, Marletta D, Sardina MT, Mastrangelo S, Sarti FM. Insight into the current genomic diversity, conservation status and population structure of Tunisian Barbarine sheep breed. Front Genet 2024; 15:1379086. [PMID: 38881792 PMCID: PMC11176520 DOI: 10.3389/fgene.2024.1379086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Local livestock breeds play a crucial role in global biodiversity, connecting natural and human-influenced environments and contributing significantly to ecosystem services. While commercial breeds dominate industrial systems, local livestock breeds in developing countries, like Barbarine sheep in Tunisia, are vital for food security and community maintenance. The Tunisian Barbarine sheep, known for its adaptability and distinctive fat-tailed morphology, faces challenges due to historical crossbreeding. In this study, the Illumina Ovine SNP50K BeadChip array was used to perform a genome-wide characterization of Tunisian Barbarine sheep to investigate its genetic diversity, the genome structure, and the relationship within the context of Mediterranean breeds. The results show moderate genetic diversity and low inbreeding. Runs of Homozygosity analysis find genomic regions linked to important traits, including fat tail characteristics. Genomic relationship analysis shows proximity to Algerian thin-tailed breeds, suggesting crossbreeding impacts. Admixture analysis reveals unique genetic patterns, emphasizing the Tunisian Barbarine's identity within the Mediterranean context and its closeness to African breeds. Current results represent a starting point for the creation of monitoring and conservation plans. In summary, despite genetic dilution due to crossbreeding, the identification of genomic regions offers crucial insights for conservation. The study confirms the importance of preserving unique genetic characteristics of local breeds, particularly in the face of ongoing crossbreeding practices and environmental challenges. These findings contribute valuable insights for the sustainable management of this unique genetic reservoir, supporting local economies and preserving sheep species biodiversity.
Collapse
Affiliation(s)
- Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Donata Marletta
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Atağ G, Kaptan D, Yüncü E, Başak Vural K, Mereu P, Pirastru M, Barbato M, Leoni GG, Güler MN, Er T, Eker E, Yazıcı TD, Kılıç MS, Altınışık NE, Çelik EA, Morell Miranda P, Dehasque M, Floridia V, Götherström A, Bilgin CC, Togan İ, Günther T, Özer F, Hadjisterkotis E, Somel M. Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages. Genome Biol Evol 2024; 16:evae090. [PMID: 38670119 PMCID: PMC11109821 DOI: 10.1093/gbe/evae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
Collapse
Affiliation(s)
- Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Paolo Mereu
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Monica Pirastru
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Merve Nur Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Tuğçe Er
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Elifnaz Eker
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Tunca Deniz Yazıcı
- Graduate School for Evolution, Ecology and Systematics, Ludwig Maximillian University of Munich, Munich, Germany
| | - Muhammed Sıddık Kılıç
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | | | - Ecem Ayşe Çelik
- Department of Settlement Archeology, Middle East Technical University, Ankara, Turkey
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Marianne Dehasque
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Viviana Floridia
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
| | - Cemal Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
30
|
Stoffel MA, Johnston SE, Pilkington JG, Pemberton JM. Purifying and balancing selection on embryonic semi-lethal haplotypes in a wild mammal. Evol Lett 2024; 8:222-230. [PMID: 38525027 PMCID: PMC10959477 DOI: 10.1093/evlett/qrad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 03/26/2024] Open
Abstract
Embryonic lethal mutations are arguably the earliest and most severe manifestation of inbreeding depression, but their impact on wild populations is not well understood. Here, we combined genomic, fitness, and life-history data from 5,925 wild Soay sheep sampled over nearly three decades to explore the impact of embryonic lethal mutations and their evolutionary dynamics. We searched for haplotypes that in their homozygous state are unusually rare in the offspring of known carrier parents and found three putatively semi-lethal haplotypes with 27%-46% fewer homozygous offspring than expected. Two of these haplotypes are decreasing in frequency, and gene-dropping simulations through the pedigree suggest that this is partially due to purifying selection. In contrast, the frequency of the third semi-lethal haplotype remains relatively stable over time. We show that the haplotype could be maintained by balancing selection because it is also associated with increased postnatal survival and body weight and because its cumulative frequency change is lower than in most drift-only simulations. Our study highlights embryonic mutations as a largely neglected contributor to inbreeding depression and provides a rare example of how harmful genetic variation can be maintained through balancing selection in a wild mammal population.
Collapse
Affiliation(s)
- Martin A Stoffel
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jill G Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Wilson CS, Taylor JB, Lewis RM, Notter DR. Genetic impact of external Targhee sires at the U.S. Sheep Experiment Station: a case study of introgression. Transl Anim Sci 2024; 8:txae044. [PMID: 38585169 PMCID: PMC10999158 DOI: 10.1093/tas/txae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Sheep breeders requested that the U.S. Sheep Experiment Station (USSES) to participate in national genetic evaluation through the National Sheep Improvement Program (NSIP). The reasons included the need for (1) a comparison of the productivity of industry and United States Department of Agriculture (USDA) lines, (2) transparency of USDA flocks, (3) genetic ties for NSIP by sampling of industry flocks, and (4) development of premium genetic lines for public release. In response, USSES began to incorporate external sires from NSIP participating flocks into the USSES Targhee flock. Our objective, based on a pedigree analysis, was to test if introgression of external genetics into the flock was achieved. The pedigree included 13,189 animals with mean maximum generations, mean complete generations, and mean equivalent complete generations of 4.2, 1.8, and 2.6, respectively. The mean generation interval was 3.1 yr. The reference population was defined as lambs born from 2021 to 2023 (n = 792). Two additional populations were defined as the current mature ewe flock (n = 123) and the current mature rams (n = 14). The Genetic Conservation Index averaged 7.7 for the full population and 25.7 for the reference population. Overall inbreeding was 0.003 for the full population and 0.006 for the reference population. The rate of inbreeding was 0.0003 per generation. Average relatedness was 0.015 for the full population and 0.018 for the reference population. The effective number of founders, effective number of ancestors, and founder genome equivalents contributing to the reference population were 60, 39, and 19.1, respectively. The ratio of the effective number of founders to the effective number of ancestors was 1.5, indicating the presence of genetic bottlenecks. Measures of effective population size ranged from 102 to 547. Of the 704 offspring produced by external sires, 17 ram lambs and 132 ewe lambs were retained for breeding. The USSES sires produced 299 offspring with 2 ram lambs and 51 ewe lambs retained. Incorporating external sires resulted in a cumulative percentage of genetic variance of 48.8, 49.1, and 44.2 of external genetics for the reference population, current mature ewe flock, and current mature rams, respectively. Stakeholder needs were addressed by introgression of external sires and participation in NSIP, but future selection practices need to be modified to maintain a minimum of 50% USSES core genetics in the flock.
Collapse
Affiliation(s)
- Carrie S Wilson
- Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, ARS, USDA, Dubois, ID, 83423, USA
| | - J Bret Taylor
- Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, ARS, USDA, Dubois, ID, 83423, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
32
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Lenstra JA, Da Silva A, Benjelloun B, Ciani E. Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data. Front Vet Sci 2024; 11:1339321. [PMID: 38487707 PMCID: PMC10938946 DOI: 10.3389/fvets.2024.1339321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.
Collapse
Affiliation(s)
- Imen Baazaoui
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, Limoges, France
| | - Badr Benjelloun
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, Beni Mellal, Morocco
| | - Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
33
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Jain K, Bhushan B, Dutt T. Deciphering climate resilience in Indian cattle breeds by selection signature analyses. Trop Anim Health Prod 2024; 56:46. [PMID: 38233536 DOI: 10.1007/s11250-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
The signature of selection is a crucial concept in evolutionary biology that refers to the pattern of genetic variation which arises in a population due to natural selection. In the context of climate adaptation, the signature of selection can reveal the genetic basis of adaptive traits that enable organisms to survive and thrive in changing environmental conditions. Breeds living in diverse agroecological zones exhibit genetic "footprints" within their genomes that mirror the influence of climate-induced selective pressures, subsequently impacting phenotypic variance. It is assumed that the genomes of animals residing in these regions have been altered through selection for various climatic adaptations. These regions are known as signatures of selection and can be identified using various summary statistics. We examined genotypic data from eight different cattle breeds (Gir, Hariana, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, and Tharparkar) that are adapted to diverse regional climates. To identify selection signature regions in this investigation, we used four intra-population statistics: Tajima's D, CLR, iHS, and ROH. In this study, we utilized Bovine 50 K chip data and four genome scan techniques to assess the genetic regions of positive selection for high-temperature adaptation. We have also performed a genome-wide investigation of genetic diversity, inbreeding, and effective population size in our target dataset. We identified potential regions for selection that are likely to be caused by adverse climatic conditions. We observed many adaptation genes in several potential selection signature areas. These include genes like HSPB2, HSPB3, HSP20, HSP90AB1, HSF4, HSPA1B, CLPB, GAP43, MITF, and MCHR1 which have been reported in the cattle populations that live in varied climatic regions. The findings demonstrated that genes involved in disease resistance and thermotolerance were subjected to intense selection. The findings have implications for marker-assisted breeding, understanding the genetic landscape of climate-induced adaptation, putting breeding and conservation programs into action.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
34
|
Mereu P, Pirastru M, Sanna D, Bassu G, Naitana S, Leoni GG. Phenotype transition from wild mouflon to domestic sheep. Genet Sel Evol 2024; 56:1. [PMID: 38166592 PMCID: PMC10763062 DOI: 10.1186/s12711-023-00871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The domestication of animals started around 12,000 years ago in the Near East region. This "endless process" is characterized by the gradual accumulation of changes that progressively marked the genetic, phenotypic and physiological differences between wild and domesticated species. The main distinctive phenotypic characteristics are not all directly attributable to the human-mediated selection of more productive traits. In the last decades, two main hypotheses have been proposed to clarify the emergence of such a set of phenotypic traits across a variety of domestic species. The first hypothesis relates the phenotype of the domesticated species to an altered thyroid hormone-based signaling, whereas the second one relates it to changes in the neural crest cells induced by selection of animals for tameness. These two hypotheses are not necessarily mutually exclusive since they may have contributed differently to the process over time and space. The adaptation model induced by domestication can be adopted to clarify some aspects (that are still controversial and debated) of the long-term evolutionary process leading from the wild Neolithic mouflon to the current domestic sheep. Indeed, sheep are among the earliest animals to have been domesticated by humans, around 12,000 years ago, and since then, they have represented a crucial resource in human history. The aim of this review is to shed light on the molecular mechanisms and the specific genomic variants that underlie the phenotypic variability between sheep and mouflon. In this regard, we carried out a critical review of the most recent studies on the molecular mechanisms that are most accredited to be responsible for coat color and phenotype, tail size and presence of horns. We also highlight that, in such a complicate context, sheep/mouflon hybrids represent a powerful and innovative model for studying the mechanism by which the phenotypic traits related to the phenotypic responses to domestication are inherited. Knowledge of these mechanisms could have a significant impact on the selection of more productive breeds. In fact, as in a journey back in time of animal domestication, the genetic traits of today's domestic species are being progressively and deliberately shaped according to human needs, in a direction opposite to that followed during domestication.
Collapse
Affiliation(s)
- Paolo Mereu
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100, Sassari, Italy
| | - Monica Pirastru
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100, Sassari, Italy.
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100, Sassari, Italy
| | - Giovanni Bassu
- Agenzia FoReSTAS, Regione autonoma della Sardegna, 09123, Cagliari, Italy
| | - Salvatore Naitana
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100, Sassari, Italy
| | | |
Collapse
|
35
|
Arias KD, Lee H, Bozzi R, Álvarez I, Gutiérrez JP, Fernandez I, Menéndez J, Beja-Pereira A, Goyache F. Ascertaining the genetic background of the Celtic-Iberian pig strain: A signatures of selection approach. J Anim Breed Genet 2024; 141:96-112. [PMID: 37807719 DOI: 10.1111/jbg.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Celtic-Iberian pig breeds were majority in Spain and Portugal until the first half of the 20th century. In the 1990s, they were nearly extinct as a result of the introduction of foreign improved pig breeds. Despite its historical importance, the genetic background of the Celtic-Iberian pig strain is poorly documented. In this study, we have identified genomic regions that might contain signatures of selection peculiar of the Celtic-Iberian genetic lineage. A total of 153 DNA samples of Celtic-Iberian pigs (Spanish Gochu Asturcelta and Portuguese Bísara breeds), Iberian pigs (Spanish Iberian and Portuguese Alentejano breeds), Cinta Senese pig, Korean local pig and Cosmopolitan pig (Hampshire, Landrace and Large White individuals) were analysed. A pairwise-comparison approach was applied: the Gochu Asturcelta and the Bísara samples as test populations and the five other pig populations as reference populations. Three different statistics (XP-EHH, FST and ΔDAF) were computed on each comparison. Strict criteria were used to identify selection sweeps in order to reduce the noise brought on by the Gochu Asturcelta and Bísara breeds' severe population bottlenecks. Within test population, SNPs used to construct potential candidate genomic areas under selection were only considered if they were identified in four of ten two-by-two pairwise comparisons and in at least two of three statistics. Genomic regions under selection constructed within test population were subsequently overlapped to construct candidate regions under selection putatively unique to the Celtic-Iberian pig strain. These genomic regions were finally used for enrichment analyses. A total of 39 candidate regions, mainly located on SSC5 and SSC9 and covering 3130.5 kb, were identified and could be considered representative of the ancient genomic background of the Celtic-Iberian strain. Enrichment analysis allowed to identify a total of seven candidate genes (NOL12, LGALS1, PDXP, SH3BP1, GGA1, WIF1, and LYPD6). Other studies reported that the WIF1 gene is associated with ear size, one of the characteristic traits of the Celtic-Iberian pig strain. The function of the other candidate genes could be related to reproduction, adaptation and immunity traits, indirectly fitting with the rusticity of a non-improved pig strain traditionally exploited under semi-extensive conditions.
Collapse
Affiliation(s)
| | | | - Riccardo Bozzi
- DAGRI, Università degli Studi di Firenze, Firenze, Italy
| | | | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Juan Menéndez
- ACGA, C/ Párroco José Fernández Teral 5A, Avilés, Asturias, Spain
| | - Albano Beja-Pereira
- CIBIO-InBio, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- DGAOT, Faculty of Sciences, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
36
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
37
|
Nel C, Gurman P, Swan A, van der Werf J, Snyman M, Dzama K, Olivier W, Scholtz A, Cloete S. Including genomic information in the genetic evaluation of production and reproduction traits in South African Merino sheep. J Anim Breed Genet 2024; 141:65-82. [PMID: 37787180 DOI: 10.1111/jbg.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
Genomic selection (GS) has become common in sheep breeding programmes in Australia, New Zealand, France and Ireland but requires validation in South Africa (SA). This study aimed to compare the predictive ability, bias and dispersion of pedigree BLUP (ABLUP) and single-step genomic BLUP (ssGBLUP) for production and reproduction traits in South African Merinos. Animals in this study originated from five research and five commercial Merino flocks and included between 54,072 and 79,100 production records for weaning weight (WW), yearling weight (YW), fibre diameter (FD), clean fleece weight (CFW) and staple length (SL). For reproduction traits, the dataset included 58,744 repeated records from 17,268 ewes for the number of lambs born (NLB), number of lambs weaned (NLW) and the total weight weaned (TWW). The single-step relationship matrix, H, was calculated using PreGS90 software combining 2811 animals with medium density (~50 K) genotypes and the pedigree of 88,600 animals. Assessment was based on single-trait analysis using ASREML V4.2 software. The accuracy of prediction was evaluated according to the 'LR-method' by a cross-validation design. Validation candidates were assigned according to Scenario I: born after a certain time point; and Scenario II: born in a particular flock. In Scenario I, the genotyping rate for the reference population between 2006 and the 2013 cut-off point approached 7% of animals with phenotypes and 20% of their sires. For reproduction traits, about 20% of ewes born between 2006 and 2011 cut-off were genotyped, along with 15% of their sires. Genotyping rates in the validation set of Scenario I were 3.7% (production) and 11.4% (reproduction) for candidates and 35% of their sires. Sires were allowed to have progeny in both the reference and validation set. In Scenario I, ssGBLUP increased the accuracy of prediction for all traits except NLB, ranging between +8% (0.62-0.67) for FD and +44% (0.36-0.52) for WW. This showed a promising gain in accuracy despite a modestly sized reference population. In the 'across flock validation' (Scenario II), overall accuracy was lower, but with greater differences between ABLUP and ssGBLUP ranging between +17% (0.12-0.14) for TWW and +117% (0.18-0.39) for WW. There was little indication of severe bias, but some traits were prone to over dispersion and the use of genomic information did not improve this. These results were the first to validate the benefit of genomic information in South African Merinos. However, because production traits are moderately heritable and easy to measure at an early age, future research should be aimed at best exploiting GS methods towards genetic prediction of sex-limited and/or lowly heritable traits such as NLW. GS methods should be combined with dedicated efforts to increase genetic links between sectors and improved phenotyping by commercial flocks.
Collapse
Affiliation(s)
- Cornelius Nel
- Directorate: Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Phillip Gurman
- Animal Genetics and Breeding Unit, University of New England, Armidale, New South Wales, Australia
| | - Andrew Swan
- Animal Genetics and Breeding Unit, University of New England, Armidale, New South Wales, Australia
| | - Julius van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Margaretha Snyman
- Department of Agriculture, Land Reform and Rural Development, Grootfontein Agricultural Development Institute, Middelburg, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Willem Olivier
- Department of Agriculture, Land Reform and Rural Development, Grootfontein Agricultural Development Institute, Middelburg, South Africa
| | - Anna Scholtz
- Directorate: Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
| | - Schalk Cloete
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Parida S, Bhushan B, Mishra BP, Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm Genome 2023; 34:615-631. [PMID: 37843569 DOI: 10.1007/s00335-023-10021-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima's D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Anurodh Sharma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - B P Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
39
|
Lv X, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Sun W. Whole-genome resequencing of Dorper and Hu sheep to reveal selection signatures associated with important traits. Anim Biotechnol 2023; 34:3016-3026. [PMID: 36200839 DOI: 10.1080/10495398.2022.2127409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dorper and Hu sheep exhibit different characteristics in terms of reproduction, growth, and meat quality. Comparison of the genomes of two breeds help to reveal important genomic information. In this study, whole genome resequencing of 30 individuals (Dorper, DB and Hu sheep, HY) identified 15,108,125 single nucleotide polymorphisms (SNPs). Population differentiation (Fst) and cross population extended haplotype homozygosity (XP-EHH) were performed for selective signal analysis. In total, 106 and 515 overlapped genes were present in both the Fst results and XP-EHH results in HY vs DB and in DB vs HY, respectively. In HY vs DB, 106 genes were enriched in 12 GO terms and 83 KEGG pathways, such as ATP binding (GO:0005524) and PI3K-Akt signaling pathway (oas04151). In DB vs HY, 515 genes were enriched in 109 GO terms and 215 KEGG pathways, such as skeletal muscle cell differentiation (GO:0035914) and MAPK signaling pathway (oas04010). According to the annotation results, we identified a series of candidate genes associated with reproduction (UNC5C, BMPR1B, and GLIS1), meat quality (MECOM, MEF2C, and MYF6), and immunity (GMDS, GALK1, and ITGB4). Our investigation has uncovered genomic information for important traits in sheep and provided a basis for subsequent studies of related traits.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Weihao Chen
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Woolley SA, Salavati M, Clark EL. Recent advances in the genomic resources for sheep. Mamm Genome 2023; 34:545-558. [PMID: 37752302 PMCID: PMC10627984 DOI: 10.1007/s00335-023-10018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Sheep (Ovis aries) provide a vital source of protein and fibre to human populations. In coming decades, as the pressures associated with rapidly changing climates increase, breeding sheep sustainably as well as producing enough protein to feed a growing human population will pose a considerable challenge for sheep production across the globe. High quality reference genomes and other genomic resources can help to meet these challenges by: (1) informing breeding programmes by adding a priori information about the genome, (2) providing tools such as pangenomes for characterising and conserving global genetic diversity, and (3) improving our understanding of fundamental biology using the power of genomic information to link cell, tissue and whole animal scale knowledge. In this review we describe recent advances in the genomic resources available for sheep, discuss how these might help to meet future challenges for sheep production, and provide some insight into what the future might hold.
Collapse
Affiliation(s)
- Shernae A Woolley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Scotland's Rural College, Parkgate, Barony Campus, Dumfries, DG1 3NE, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
41
|
Nayak SS, Panigrahi M, Kumar H, Rajawat D, Sharma A, Bhushan B, Dutt T. Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds. Anim Biotechnol 2023; 34:4167-4173. [PMID: 37039747 DOI: 10.1080/10495398.2023.2196317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Major Histocompatibility Complex (MHC) genes are among the immune genes that have been extensively studied in vertebrates and are necessary for adaptive immunity. In the immunological response to infectious diseases, they play several significant roles. This research paper provides the selection signatures in the MHC region of the bovine genome as well as how certain genes related to innate immunity are undergoing a positive selective sweep. Here, we investigated signatures of historical selection on MHC genes in 15 different cattle populations and a total of 427 individuals. To identify the selection signatures, we have used three separate summary statistics. The findings show potential selection signatures in cattle from whom we isolated genes involved in the MHC. The most significant regions related to the bovine MHC are BOLA, non-classical MHC class I antigen (BOLA-NC1), Microneme protein 1 (MIC1) , Cluster of Differentiation 244 (CD244), Gap Junction Alpha-5 Protein (GJA5). It will be possible to gain new insight into immune system evolution by understanding the distinctive characteristics of MHC in cattle.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
42
|
Liu LL, Meng J, Ma HY, Cao H, Liu WJ. Candidate genes for litter size in Xinjiang sheep identified by Specific Locus Amplified Fragment (SLAF) sequencing. Anim Biotechnol 2023; 34:3053-3062. [PMID: 36244020 DOI: 10.1080/10495398.2022.2131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to investigate the selection signatures at a genome-wide level in 'Pishan' sheep using Specific Locus Amplified Fragment (SLAF)-seq. Blood samples from 126 ewes were sequenced using SLAF tags, and the ovarian tissues from 8 ewes (Bashbay sheep, a single litter size group (SG group); 'Pishan' sheep, double litter size group (DG group)) were collected to detect expression levels by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Selection signature analysis was performed using global fixation index (Fst) and nucleotide diversity (π) ratio. A total of 1,192,168 high-quality SLAFs were identified. Notably, 2380 candidate regions under selection using two approaches were identified. A total of 2069 genes were identified, which were involved in dopaminergic synapses, thyroid hormone synthesis, ovarian steroidogenesis and thyroid hormone signalling pathways. Furthermore, Growth Differentiation Factor 9 (GDF9), Period Circadian Regulator 2 (PER2), Thyroid Stimulating Hormone Receptor (TSHR), and Nuclear Receptor Coactivator 1 (NCOA1) reside within these regions and pathways. The expression levels of GDF9 and PER2 genes in sheep tissue of the DG group were significantly higher than those in the SG group. These genes are interesting candidates for litter size and provide a starting point for further identification of conservation strategies for 'Pishan' sheep.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Yu Ma
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hang Cao
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wu-Jun Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
43
|
Cinar MU, Arslan K, Sohel MMH, Bayram D, Piel LMW, White SN, Daldaban F, Aksel EG, Akyüz B. Genome-wide association study of early liveweight traits in fat-tailed Akkaraman lambs. PLoS One 2023; 18:e0291805. [PMID: 37988399 PMCID: PMC10662757 DOI: 10.1371/journal.pone.0291805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/06/2023] [Indexed: 11/23/2023] Open
Abstract
Small ruminants, especially sheep, are essential for sustainable agricultural production systems, future food/nutrition security, and poverty reduction in developing countries. Within developed countries, the ability of sheep to survive on low-quality forage intake could act as buffer against climate change. Besides sheep's importance in sustainable agricultural production, there has been less ongoing work in terms of sheep genetics in Near East, Middle East and in Africa. For lamb meat production, body weight and average daily gain (ADG) until weaning are critical economic traits that affects the profitability of the industry. The current study aims to identify single nucleotide polymorphisms (SNPs) that are significantly associated with pre-weaning growth traits in fat tail Akkaraman lambs using a genome-wide association study (GWAS). A total of 196 Akkaraman lambs were selected for analysis. After quality control, a total of 31,936 SNPs and 146 lambs were used for subsequent analyses. PLINK 1.9 beta software was used for the analyses. Based on Bonferroni-adjusted p-values, one SNP (rs427117280) on chromosome 2 (OAR2) had significant associations with weaning weight at day 90 and ADG from day 0 to day 90, which jointly explains a 0.8% and 0.9% of total genetic variation respectively. The Ovis aries natriuretic peptide C (NPPC) could be considered as a candidate gene for the defined significant associations. The results of the current study will help to increase understanding of the variation in weaning weight and ADG until weaning of Akkaraman lambs and help enhance selection for lambs with improved weaning weight and ADG. However, further investigations are required for the identification of causal variants within the identified genomic regions.
Collapse
Affiliation(s)
- Mehmet Ulas Cinar
- Faculty of Agriculture, Department of Animal Science, Erciyes University, Kayseri, Turkiye
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Korhan Arslan
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Md Mahmodul Hasan Sohel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Dhaka, Bangladesh
| | - Davut Bayram
- Faculty of Veterinary Medicine, Department of Animal Science, Erciyes University, Kayseri, Turkiye
| | - Lindsay M. W. Piel
- USDA-ARS Animal Disease Res. 3003 ADBF, WSU Pullman, Pullman, Washington, United States of America
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Fadime Daldaban
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Bilal Akyüz
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| |
Collapse
|
44
|
Wang J, Suo J, Yang R, Zhang CL, Li X, Han Z, Zhou W, Liu S, Gao Q. Genetic diversity, population structure, and selective signature of sheep in the northeastern Tarim Basin. Front Genet 2023; 14:1281601. [PMID: 38028584 PMCID: PMC10666172 DOI: 10.3389/fgene.2023.1281601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall regional environments. In this study, three local sheep breeds in the northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep, were analyzed for genetic diversity, population structure, and selective signature using the Illumina OvineSNP50K BeadChip. We found that LOP, BYK, and KUN had lower observed heterozygosity and expected heterozygosity than TEX, SUF, and ADP, which were differentiated based on geographic distribution. We performed fixation index (FST) analysis on three local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and introduced sheep breeds (TEX, SUF, and ADP) to measure genetic differentiation. Nucleotide diversity (PI) analysis was performed on single-nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of 493 candidate genes were obtained by taking the intersection at a threshold of 5%. Among them, SMAD2, ESR2, and HAS2 were related to reproductive traits. PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and DNAJB5 were related to desert environmental adaptation. Analyzing the genetic patterns of local sheep in the northeastern Tarim Basin can protect the germplasm resources of local sheep and promote the development and utilization of sheep genetic resources.
Collapse
Affiliation(s)
- Jieru Wang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Jiajia Suo
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Ruizhi Yang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-Long Zhang
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Xiaopeng Li
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Zhipeng Han
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Wen Zhou
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Shudong Liu
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| | - Qinghua Gao
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Co-Funded by Xinjiang Production and Construction Corps and The Ministry of Science and Technology, College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, College of Animal Science and Technology, Tarim University, Alar, China
- Livestock and Forage Resources in Circum-Tarim Region, Ministry of Agriculture and Rural Affairs, Tarim University, Alar, China
| |
Collapse
|
45
|
Morell Miranda P, Soares AER, Günther T. Demographic reconstruction of the Western sheep expansion from whole-genome sequences. G3 (BETHESDA, MD.) 2023; 13:jkad199. [PMID: 37675574 PMCID: PMC11648245 DOI: 10.1093/g3journal/jkad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
As one of the earliest livestock, sheep (Ovis aries) were domesticated in the Fertile Crescent about 12,000-10,000 years ago and have a nearly worldwide distribution today. Most of our knowledge about the timing of their expansions stems from archaeological data but it is unclear how the genetic diversity of modern sheep fits with these dates. We used whole-genome sequencing data of 63 domestic breeds and their wild relatives, the Asiatic mouflon (O. gmelini, previously known as O. orientalis), to explore the demographic history of sheep. On the global scale, our analysis revealed geographic structuring among breeds with unidirectional recent gene flow from domestics into Asiatic mouflons. We then selected 4 representative breeds from Spain, Morocco, the United Kingdom, and Iran to build a comprehensive demographic model of the Western sheep expansion. We inferred a single domestication event around 11,000 years ago. The subsequent westward expansion is dated to approximately 7,000 years ago, later than the original Neolithic expansion of sheep and slightly predating the Secondary Product Revolution associated with wooly sheep. We see some signals of recent gene flow from an ancestral population into Southern European breeds which could reflect admixture with feral European mouflon. Furthermore, our results indicate that many breeds experienced a reduction of their effective population size during the last centuries, probably associated with modern breed development. Our study provides insights into the complex demographic history of Western Eurasian sheep, highlighting interactions between breeds and their wild counterparts.
Collapse
Affiliation(s)
- Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
| | - André E R Soares
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory,
Department of Medical Biochemistry and Microbiology, Uppsala University,
SE-752 37 Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
46
|
Zhang W, Jin M, Lu Z, Li T, Wang H, Yuan Z, Wei C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals (Basel) 2023; 13:3265. [PMID: 37893989 PMCID: PMC10603731 DOI: 10.3390/ani13203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
47
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The genome-wide relationships of the critically endangered Quadricorna sheep in the Mediterranean region. PLoS One 2023; 18:e0291814. [PMID: 37851594 PMCID: PMC10584175 DOI: 10.1371/journal.pone.0291814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Nowadays most of the sheep European breeds derive from the second wave which is supposed to have largely replaced oldest genetic signatures, with the exception of several primitive breeds confined on the very edge of Northern Europe. Despite this, some populations also in the Mediterranean region are characterised by the presence of phenotypic traits considered ancestral such as the policeraty, large horns in the ram, short tail, and a moulting fleece. Italy is home of a large number of local breeds, albeit some are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterised by several traits considered as ancestral. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 41 breeds from the Mediterranean region and Middle-East, with the specific aim to reconstruct its origin. After retaining 32,862 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. The Quadricorna breed exhibit genetic diversity indices comparable with those of most of the other analysed breeds, however, the two populations showed opposing patterns of genetic diversity suggesting different levels of genomic inbreeding and drift (FIS and FROH). In general, all the performed genome-wide analyses returned complementary results, indicating a westward longitudinal cline compatible with human migrations from the Middle-East and several additional genetic footprints which might mirror more recent historical events. Interestingly, among the Italian breeds, the original Quadricorna (QUAD_SA) first separated showing its own ancestral component. In addition, the admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of this population. On the other hand, both the neighbor-joining tree and the treemix analysis seem to suggest a proximity of the Quadricorna populations to breeds of South-Eastern Mediterranean origin. Although our results do not support a robust link between the genetics of the first wave and the presence of primitive traits, the observed genetic uniqueness together with the inferred phylogeograpic reconstruction would suggest an ancient presence of the Quadricorna breed in the Italian Peninsula. Because of this singularity, urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
48
|
Rashaydeh FS, Yildiz MA, Alharthi AS, Al-Baadani HH, Alhidary IA, Meydan H. Novel Prion Protein Gene Polymorphisms in Awassi Sheep in Three Regions of the Fertile Crescent. Vet Sci 2023; 10:597. [PMID: 37888549 PMCID: PMC10611137 DOI: 10.3390/vetsci10100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Scrapie is a fatal, neurodegenerative disease that affects sheep and goats, and genetic susceptibility to scrapie in sheep is associated with polymorphisms in the prion protein (PRNP) gene. The aim of this study is to identify PRNP polymorphism in Awassi sheep from Türkiye, the Palestinian Authority, and Saudi Arabia. A total of 150 healthy sheep were genotyped for PRNP, using Sanger sequencing. There were seven alleles and eleven genotypes observed based on codons 136, 154, and 171 of PRNP. The ARQ allele was predominant in all populations. The most resistant allele to scrapie, ARR, was present in all three regions. The VRQ allele, associated with the highest susceptibility to scrapie, was detected only in Türkiye at a low frequency. In this study, twenty-seven amino acid substitutions were found. Eight of them (R40Q, G65E, H88L, S98T, A118P, S138T, V192F and L250I) have not been previously reported. These data indicate that sheep breeds close to the sheep domestication center have maintained high genetic diversity in the PRNP region. Our findings on PRNP will provide valuable insights for sheep breeding programs, aiding in the selection of genotypes resistant to scrapie in Türkiye, the Palestinian Authority, and Saudi Arabia.
Collapse
Affiliation(s)
- Faisal S. Rashaydeh
- Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya 07058, Türkiye;
| | - Mehmet A. Yildiz
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06110, Türkiye
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hani H. Al-Baadani
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hasan Meydan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya 07058, Türkiye;
| |
Collapse
|
49
|
Sallam AM, Reyer H, Wimmers K, Bertolini F, Aboul-Naga A, Braz CU, Rabee AE. Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics 2023; 24:573. [PMID: 37752425 PMCID: PMC10521497 DOI: 10.1186/s12864-023-09679-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding the genomic features of livestock is essential for successful breeding programs and conservation. This information is scarce for local goat breeds in Egypt. In the current study, genomic regions with selection signatures were identified as well as runs of homozygosity (ROH), genomic inbreeding coefficients (FROH) and fixation index (FST) were detected in Egyptian Nubian, Damascus, Barki and Boer goat breeds. A total of 46,268 SNP markers and 337 animals were available for the genomic analyses. On average, 145.44, 42.02, 87.90 and 126.95 ROHs were detected per individual in the autosomal genome of the respective breeds. The mean accumulative ROH lengths ranged from 46.5 Mb in Damascus to 360 Mb in Egyptian Nubian. The short ROH segments (< 2 Mb) were most frequent in all breeds, while the longest ROH segments (> 16 Mb) were exclusively found in the Egyptian Nubian. The highest average FROH was observed in Egyptian Nubian (~ 0.12) followed by Boer (~ 0.11), while the lowest FROH was found in Damascus (~ 0.05) and Barki breed (~ 0.03). The estimated mean FST was 0.14 (Egyptian Nubian and Boer), 0.077 (Egyptian Nubian and Barki), 0.075 (Egyptian Nubian and Damascus), 0.071 (Barki and Boer), 0.064 (Damascus and Boer), and 0.015 (Damascus and Barki), for each pair of breeds. Interestingly, multiple SNPs that accounted for high FST values were observed on chromosome 6 in regions harboring ALPK1 and KCNIP4. Genomic regions overlapping both FST and ROH harbor genes related to immunity (IL4R, PHF23, GABARAP, GPS2, and CD68), reproduction (SPATA2L, TNFSF12, TMEM95, and RNF17), embryonic development (TCF25 and SOX15) and adaptation (MC1R, KDR, and KIT), suggesting potential genetic adaptations to local environmental conditions. Our results contribute to the understanding of the genetic architecture of different goat breeds and may provide valuable information for effective preservation and breeding programs of local goat breeds in Egypt.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt.
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Francesca Bertolini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Adel Aboul-Naga
- Animal Production Research Institute, Agricultural Research Center, Dokki, Cairo, Egypt
| | - Camila U Braz
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Alaa Emara Rabee
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 Gregory Dr, Urbana, 61801, USA
| |
Collapse
|
50
|
Shi H, Li T, Su M, Wang H, Li Q, Lang X, Ma Y. Identification of copy number variation in Tibetan sheep using whole genome resequencing reveals evidence of genomic selection. BMC Genomics 2023; 24:555. [PMID: 37726692 PMCID: PMC10510117 DOI: 10.1186/s12864-023-09672-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Copy number variation (CNV) is an important source of structural variation in the mammalian genome. CNV assays present a new method to explore the genomic diversity of environmental adaptations in animals and plants and genes associated with complex traits. In this study, the genome-wide CNV distribution characteristics of 20 Tibetan sheep from two breeds (10 Oula sheep and 10 Panou sheep) were analysed using whole-genome resequencing to investigate the variation in the genomic structure of Tibetan sheep during breeding. RESULTS CNVs were detected using CNVnator, and the overlapping regions of CNVs between individual sheep were combined. Among them, a total of 60,429 CNV events were detected between the indigenous sheep breed (Oula) and the synthetic sheep breed (Panou). After merging the overlapping CNVs, 4927 CNV regions (CNVRs) were finally obtained. Of these, 4559 CNVRs were shared by two breeds, and there were 368 differential CNVRs. Deletion events have a higher percentage of occurrences than duplication events. Functional enrichment analysis showed that the shared CNVRs were significantly enriched in 163 GO terms and 62 KEGG pathways, which were mainly associated with organ development, neural regulation, immune regulation, digestion and metabolism. In addition, 140 QTLs overlapped with some of the CNVRs at more than 1 kb, such as average daily gain QTL, body weight QTL, and total lambs born QTL. Many of the CNV-overlapping genes such as PPP3CA, SSTR1 and FASN, overlap with the average daily weight gain and carcass weight QTL regions. Moreover, VST analysis showed that XIRP2, ABCB1, CA1, ASPA and EEF2 differed significantly between the synthetic breed and local sheep breed. The duplication of the ABCB1 gene may be closely related to adaptation to the plateau environment in Panou sheep, which deserves further study. Additionally, cluster analysis, based on all individuals, showed that the CNV clustering could be divided into two origins, indicating that some Tibetan sheep CNVs are likely to arise independently in different populations and contribute to population differences. CONCLUSIONS Collectively, we demonstrated the genome-wide distribution characteristics of CNVs in Panou sheep by whole genome resequencing. The results provides a valuable genetic variation resource and help to understand the genetic characteristics of Tibetan sheep. This study also provides useful information for the improvement and breeding of Tibetan sheep in the future.
Collapse
Affiliation(s)
- Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Xia Lang
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou, 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| |
Collapse
|